Homeomorphisms of the space of non-zero integers with the Kirch topology

Yaryna Stelmakh

Анотація


The Golomb (resp. Kirch) topology on the set of nonzero integers is generated by the base consisting of arithmetic progressions a+b=a+bn:n where a and b is a (square-free) number, coprime with a. In 2019 Dario Spirito proved that the space of nonzero integers endowed with the Golomb topology admits only two self-homeomorphisms.  In this paper we prove an analogous fact for the space of nonzero integers endowed with the Kirch topology: it also admits exactly two self-homeomorphisms.

Повний текст:

PDF (English)

Посилання


T. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.%-Heidelberg

T. Banakh, D. Spirito, and S. Turek, The Golomb space is topologically rigid, Comment Math. Univ. Carolin. (accepted); arXiv: 1912.01994, 2019, preprint.

T. Banakh, Y. Stelmakh, and S. Turek, The Kirch space is topologically rigid, Topology Appl. (accepted); arXiv:2006.12357, 2020, preprint.

P. Dirichlet, Lectures on number theory. Supplements by R. Dedekind. Translated from the 1863 German original and with an introduction by John Stillwell, Amer. Math. Soc., Providence, RI; London Math. Soc., London, 1999.

G. A. Jones and J. M. Jones, Elementary number theory, Springer, 2012.

A. M. Kirch, A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly 76 (1969), no. 2, 169-171. DOI: 10.2307/2317265

T. Metsankyla, Catalan's conjecture: another old Diophantine problem solved, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 1, 43-57. DOI: 10.1090/S0273-0979-03-00993-5

P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167-195. DOI: 10.1515/crll.2004.048

N. J. A. Sloane, The on-line encyclopedia of integer sequences, (https://oeis.org).

M. Roitman, On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997), no. 7, 1913-1919. DOI: 10.1090/S0002-9939-97-03981-6

D. Spirito, The Golomb topology on a Dedekind domain and the group of units of its quotients, Topology Appl. 273 (2020), 107101. DOI: 10.1016/j.topol.2020.107101

K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284. DOI: 10.1007/BF01692444




DOI: http://dx.doi.org/10.30970/vmm.2020.89.039-059

Посилання

  • Поки немає зовнішніх посилань.