On the monoid of cofinite partial isometries of with the usual metric

Oleg Gutik, Anatolii Savchuk

Анотація


In the paper we show that the monoid I of all partial cofinite isometries of positive integers  does not embed isomorphically into the monoid ID of all partial cofinite isometries of integers.  Moreover, every non-annihilating homomorphism h:IID has the following property: the image (I)h is isomorphic  either to the two-element cyclic group 2 or to the additive group of integers (+). Also we prove that the monoid I is not  finitely generated, and, moreover, monoid I does not contain a minimal generating set.

Повний текст:

PDF (English)

Посилання


O. Bezushchak, On growth of the inverse semigroup of partially defined co-finite automorphisms of integers, Algebra Discrete Math. (2004), no. 2, 45-55.

O. Bezushchak, Green's relations of the inverse semigroup of partially defined co-finite isometries of discrete line, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka (2008), no. 1, 12-16.

I. Chuchman and O. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ. 2 (2010), no. 1, 119-132.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

V. Doroshenko, Generators and relations for the semigroups of increasing functions on and . Algebra Discrete Math. (2005), no. 4, 1-15.

В. В. Дорошенко, Про напівгрупи перетворень зліченних лінійно упорядкованих множин, які зберігають порядок, Укр. мат. журн. 61 (2009), no. 6, 723-732; English version: V. V. Doroshenko,
On semigroups of order-preserving transformations of countable linearly ordered sets, Ukr. Math. J. 61 (2009), no. 6, 859-872. DOI: 10.1007/s11253-009-0256-3

O. Gutik and D. Repovs, Topological monoids of monotone, injective partial selfmaps of having cofinite domain and image, Stud. Sci. Math. Hungar. 48 (2011), no. 3, 342-353. DOI: 10.1556/SScMath.48.2011.3.1176

O. Gutik and D. Repovs, On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. 19 (2012), no. 3, 511-532. DOI: 10.1515/gmj-2012-0022

O. Gutik and D. Repovs, On monoids of injective partial cofinite selfmaps, Math. Slovaca 65 (2015), no. 5, 981-992. DOI: 10.1515/ms-2015-0067

O. Gutik and A. Savchuk, On the semigroup ID, Visn. Lviv. Univ., Ser. Mekh.-Mat. 83 (2017), 5-19 (in Ukrainian).

O. Gutik and A. Savchuk, The semigroup of partial co-finite isometries of positive integers, Bukovyn. Mat. Zh. 6 (2018), no. 1-2, 42-51 (in Ukrainian). DOI: 10.31861/bmj2018.01.042

O. Gutik and A. Savchuk, On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers, Carpathian Math. Publ. 11 (2019), no. 2, 296-310. DOI: 10.15330/cmp.11.2.296-310

M. Lawson, Inverse semigroups. The theory of partial symmetries, Singapore: World Scientific, 1998.

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

A. Savchuk, On homomorphic retracts of the monoid I, Visn. Lviv. Univ., Ser. Mekh.-Mat. 88 (2019), 22-31 (in Ukrainian).

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).




DOI: http://dx.doi.org/10.30970/vmm.2020.89.017-030

Посилання

  • Поки немає зовнішніх посилань.