Detecting -sets in topological groups and linear metric spaces
Анотація
an analytic subgroup of a linear metric space is a -space if is not Polish and contains a Polish convex set with dense affine hull in ;
a dense convex analytic subset of a linear metric space is a -space if contains no open Polish subspace and contains a Polish convex set with dense affine hull in .
Повний текст:
PDF (English)Посилання
S. Banach, Uber Metrische Gruppen, Studia Math. 3 (1931), 101-113.
T. Banakh, Some problems in infinite-dimensional topology, Mat. Stud. 8 (1997), no.1, 123-125.
T. Banakh, Some properties of the linear hull of the Erdos set in , Bulletin PAN. 47 (1999), no. 4, 385-392.
T. Banakh, R. Cauty, and M. Zarichnyi, Open problems in infinite-dimensional topology, in: Open Problems in Topology, II. E. Pearl ed., Elsevier, 2007, p. 601-624.
T. Banakh, T. Dobrowolski, and A. Plichko, Applications of some results of infinite-dimensional topology to the topological classification of operator images and weak unit balls of Banach spaces, Diss. Math. 387 (2000) 1-81pp. DOI: 10.4064/dm387-0-1
T. Banakh, T. Radul, and M. Zarichnyi, Absorbing sets in infinite-dimensional manifolds, (Matem. Studii. Monograph Series. 1), VNTL Publishers, Lviv, 1996. 240 pp.
C. Bessaga and A. Pelczynski, Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
T. A. Chapman, Lectures on Hilbert cube manifolds, Amer. Math. Soc., Providence, R. I., 1976.
T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open problems in topology, J. van Mill, G. M. Reed (eds., Elsevier Sci., B.V., Amsterdam, (1990), 409-429.
R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
A. S. Kechris, Classical descriptive set theory, Springer, New York, 1995.
J. van Mill, Infinite-dimension topology. Prerequisites and introduction, North-Holland, Amsterdam, 1989.
J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Publishing Co., Amsterdam, 2001.
S. Piccard, Sur les ensembles de distances des ensembles de points d'un espace Euclidien, Mem. Univ. Neuchtel. 13 (1939), 212 pp.
B. J. Pettis, Remarks on a theorem of E. J. McShane, Proc. Amer. Math. Soc. 2 (1951), no. 1, 166-171. DOI: 10.2307/2032640
S. Solecki, Covering analytic sets by families of closed sets, J. Symbolic Logic 59 (1994), no. 3, 1022-1031. DOI: 10.2307/2275926
DOI: http://dx.doi.org/10.30970/vmm.2019.88.070-082
Посилання
- Поки немає зовнішніх посилань.