The monoid of monotone injective partial selfmaps of the poset with cofinite domains and images
Анотація
Повний текст:
PDF (English)Посилання
O. Andersen, Ein Bericht uber die Struktur abstrakter Halbgruppen,
PhD Thesis, Hamburg, 1952.
L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521-529. DOI: 10.2307/1994222
T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211-218.
T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803-2814. DOI: 10.1016/j.topol.2010.08.020
S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 21--28.
S. Bardyla, On a semitopological -bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 81 (2016), 9-22.
S. Bardyla, On locally compact shift-continuous topologies on the $alpha$-bicyclic monoid, Topol. Algebra Appl. 6 (2018), 34-42. DOI: 10.1515/taa-2018-0003
S. Bardyla, On locally compact semitopological graph inverse semigroups, Mat. Stud. 49 (2018), no. 1, 19-28. DOI: 10.15330/ms.49.1.19-28
S. Bardyla, On locally compact topological graph inverse semigroups, Topology Appl. 267 (2019), 106873. DOI: 10.1016/j.topol.2019.106873
S. Bardyla, Embedding of graph inverse semigroups into CLP-compact topological semigroups, Topology Appl. 272 (2020), 107058. DOI: 10.1016/j.topol.2020.107058
S. Bardyla and O. Gutik, On a semitopological polycyclic monoid,
Algebra Discrete Math. 21 (2016), no. 2, 163-183.
S. Bardyla and A. Ravsky, Closed subsets of compact-like topological spaces, Preprint arXiv:1907.12129.
G. Berman and K. D. Fryer, Introduction to combinatorics, New-York, Academic Press, 1972.
M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76 (1976), no. 21--23, 219-226.
O. Bezushchak, On growth of the inverse semigroup of partially defined co-finite automorphisms of integers, Algebra Discrete Math. (2004), no. 2, 45-55.
O. Bezushchak, Green's relations of the inverse semigroup of partially defined co-finite isometries of discrete line, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka (2008), no.1, 12-16.
P. J. Cameron, Permutation groups, Cambridge Univ. Press, London, 1999.
I. Chuchman and O.Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ. 2 (2010), no. 1, 119-132.
A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
C. Eberhart and J. Selden, On the closure of the bicyclic semigroup,
Trans. Amer. Math. Soc. 144 (1969), 115-126. DOI: 10.2307/1995273
I. R. Fihel and O. V. Gutik, On the closure of the extended bicyclic semigroup, Carpathian Math. Publ. 3 (2011), no. 2, 131-157.
J. A. Green, On the structure of semigroups, Ann. Math. (2) 54 (1951), no. 1, 163-172. DOI: 10.2307/1969317
P. A. Grillet, Semigroups. An introduction to the structure theory},
Marcel Dekker, New York, 1995.
O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visn. L'viv. Univ., Ser. Mekh.-Mat. 80 (2015), 33-41.
O. Gutik, On locally compact semitopological 0-bisimple inverse -semigroups, Topol. Algebra Appl. 6 (2018), 77-101. DOI: 10.1515/taa-2018-0008
O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.
O. V. Gutik and K. M. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups, Mat. Metody Fiz.-Mekh. Polya 59 (2016), no. 4, 31-43; reprinted version: J. Math. Sci. 238 (2019), no. 1, 32-45 DOI: 10.1007/s10958-019-04216-x
O. Gutik and T. Mokrytskyi, The monoid of order isomorphisms between principal filters of , Eur. J. Math. 6 (2020), no. 1, 14-36. DOI: 10.1007/s40879-019-00328-5
O. V. Gutik and I. V. Pozdniakova, Congruences on the monoid of monotone injective partial selfmaps of with co-finite domains and images, Mat. Metody Fiz.-Mekh. Polya 57 (2014), no. 2, 7-15;
reprinted version: J. Math. Sci. 217 (2016), no. 2, 139-148. DOI: 10.1007/s10958-016-2962-3
O. Gutik and I. Pozdniakova, On the monoid of monotone injective partial selfmaps of with cofinite domains and images, Visn. Lviv. Univ., Ser. Mekh.-Mat. 81 (2016), 101-116.
O. Gutik and I. Pozdniakova, On the monoid of monotone injective partial selfmaps of with cofinite domains and images, II, Visn. Lviv. Univ., Ser. Mekh.-Mat. 82 (2016), 109-127.
O. Gutik and I. Pozdnyakova, On monoids of monotone injective partial selfmaps of with co-finite domains and images, Algebra Discrete Math. 17 (2014), no. 2, 256-279.
O. Gutik and D. Repovs, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x
O. Gutik and D. Repovs, Topological monoids of monotone, injective partial selfmaps of having cofinite domain and image, Stud. Sci. Math. Hungar. 48 (2011), no. 3, 342-353. DOI: 10.1556/SScMath.48.2011.3.1176
O. Gutik and D. Repovs, On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. 19 (2012), no. 3, 511-532. DOI: 10.1515/gmj-2012-0022
O. Gutik and D. Repovs, On monoids of injective partial cofinite selfmaps, Math. Slovaca 65 (2015), no. 5, 981-992. DOI: 10.1515/ms-2015-0067
O. Gutik and A. Savchuk, On the semigroup , Visn. Lviv. Univ., Ser. Mekh.-Mat. 83 (2017), 5-19 (in Ukrainian).
O. Gutik and A. Savchuk, The semigroup of partial co-finite isometries of positive integers, Bukovyn. Mat. Zh. 6 (2018), no. 1-2, 42-51 (in Ukrainian). DOI: 10.31861/bmj2018.01.042
O. Gutik and A. Savchuk, On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers, Carpathian Math. Publ. 11 (2019), no. 2, 296-310. DOI: 10.15330/cmp.11.2.296-310,
O. Gutik and A. Savchuk, On the monoid of cofinite partial isometries of with the usual metric, Proc. Int. Geom. Cent. 12 (2019), no. 3, 51-68. DOI: 10.15673/tmgc.v12i3.1553
M. Hall, The theory of groups, Macmillan, New York, 1963.
J. A. Hildebrant and R. J. Koch, Swelling actions of -compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183
J. W. Hogan, The -bicyclic semigroup as a topological semigroup, Semigroup forum 28 (1984), 265-271. DOI: 10.1007/BF02572488
J. M. Howie, Fundamentals of semigroup theory, London Math. Monographs, New Ser. 12, Clarendon Press, Oxford, 1995.
M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
T. Mokrytskyi, On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of with adjoined zero, Visn. L'viv. Univ., Ser. Mekh.-Mat. 87 (2019), 37--45. DOI: 10.30970/vmm.2019.87.037-045
M. Petrich, Inverse semigroups, John Wiley $&$ Sons, New York, 1984.
V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).
DOI: http://dx.doi.org/10.30970/vmm.2019.88.032-050
Посилання
- Поки немає зовнішніх посилань.