Simultaneous approximation of value of Jacobi elliptic functions in their real periods

Yaroslav Kholyavka, Olga Mylyo

Анотація


Let snnz be algebraically independent Jacobi elliptic functions, 4Ki,2iKi' be the main periods  and κ1,κ2 be algebraic moduli of snnz  i=1,2. We estimate from below the simultaneous approximation of sn14K2, sn24K1.


Повний текст:

PDF

Посилання


D. F. Lawden, Elliptic functions and applications, Springer, Berlin, 1989.

N. I. Fel'dman, Hilbert’s seventh problem, Moskov State Univ., Moskov, 1982 (in Russian).

N. I. Fel'dman and Yu. V. Nesterenko, Transcendental numbers, Springer, Berlin, 1998.

E. Reyssat, Approximation alg'{e}brique de nombres lies aux fonctions elliptiques et exponentielle, Bull. Soc. Math. Fr. 108 (1980), 47-79. DOI: 10.24033/bsmf.1908

D. Masser, Elliptic functions and transcendence, Springer, Berlin, 1975.

Ya. M. Kholyavka, On the simultaneous approximation of invariants of the elliptic function by algebraic numbers, Diophantine Analysis, Mosk. Univ. Press, Moscow, 1986, Part 2, 114-121 (in Russian)

Ю. В. Нестеренко, О мере алгебраической независимости значений эллиптической функции, Изв. РАН. Сер. матем. 59 (1995), no. 4, 155-178; English version: Yu. V. Nesterenko, On a measure of algebraic independence of values of an elliptic function,
Izv. Math. 59 (1995), no. 4, 815-838. DOI: 10.1070/IM1995v059n04ABEH000035

G. V. Chudnovsky, Algebraic independence of the values of elliptic functions at algebraic points; Elliptic analogue of the Lindemann-Weierschtrass theorem, Invent. Math. 61 (1980), 267-290. DOI: 10.1007/BF01390068




DOI: http://dx.doi.org/10.30970/vmm.2019.88.005-011

Посилання

  • Поки немає зовнішніх посилань.