REMARKS TO RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES

Oksana Mulyava, Myroslav Sheremeta

Анотація


Let $F$ and $G$ be entire functions given by Dirichlet series with exponents increasing to $+\infty$ and $\varrho_R[F]_G$ be
the $R$-order of $F$ with respect to a function $G$. The quantities
$$
T_R[F]_G:=\varlimsup\limits_{\sigma\to+\infty}\dfrac{\exp\{ M^{-1}_G(M_F(\sigma))\}}{\exp\{\varrho_R[F]_G \sigma\}}, \quad
t_R[F]_G:=\varliminf\limits_{\sigma\to+\infty}\dfrac{\exp\{ M^{-1}_G(M_F(\sigma))\}}{\exp\{\varrho_R[F]_G \sigma\}}
$$
we will call the $R$-type and the lower $R$-type of $F$ with respect to $G$. A connection between $T_R[F]_G$, $t_R[F]_G$ and the
$R$-types and the lower $R$-types of $F$ and $G$ is shown


Повний текст:

PDF (English)

Посилання


Mulyava O.M., Sheremeta M.M. Relative growth of Dirichlet series // Mat. Stud. - 2018. - V. 49, No. 2. - P. 158-164.

Kamthan P.K. A theorem of step functions. II // Instambul univ. fen. fac. mecm. A. - 1963. - V. 28. - P. 65-69.

Mulyava O.M. On convergence classes of Dirichlet series // Ukr. Math. Journ. - 1999. - V. 51, no. 1. - P. 1485-1494. (in Ukrainian)

Mulyava O.M. Convergence classes in theory of Dirichlet series // Dopov. NAN Ukraine. - 1999. - no. 3. - P. 35-39. (in Ukrainian)




DOI: http://dx.doi.org/10.30970/vmm.2019.87.073-081

Посилання

  • Поки немає зовнішніх посилань.