On the spread of topological groups containing subsets of the Sorgenfrey line
Анотація
We prove that any topological group G containing a subspace X of the Sorgenfrey line has spread s(G)≤s(X×X). Under OCA, each topological group containing an uncountable subspace of the Sorgenfrey line has uncountable spread. This implies that under OCA a cometrizable topological group G is cosmic if and only if it has countable spread. On the other hand, under CH there exists a cometrizable Abelian topological group that has hereditarily Lindelöf countable power and contains an uncountable subspace of the Sorgenfrey line. This cometrizable topological group has countable spread but is not cosmic.
Повний текст:
PDF (English)DOI: http://dx.doi.org/10.30970/vmm.2018.86.063-070
Посилання
- Поки немає зовнішніх посилань.