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For continuous on [zo, +00) functions « and § increasing to +oo we say that
an analytic in D = {z : |z| < 1} characteristic function ¢ of a probability law F’
1
In M
belongs to the generalized convergence a-class if / M
(1 —=r)?B(:=)

T0
where M (r,p) = max{|¢(z) : |z| = r}. Conditions on «, 8 and F are found
under which the function ¢ belongs to the generalized convergence af3-class if
x

and only if 700/(30)61 <W

1) x

Wr(z) =1— F(z) + F(—z).

dr < 400,

) dr < 400, where fi(z) = % and

Key words: analytic function, probability law, characteristic function,
generalized convergence class.

1. INTRODUCTION

A continuous on the left on (—oo, +00) non-decreasing function F is said [I p. 10]
to be a probability law if liIJIrl F(z) =1and lim F(x) =0, and the function ¢(z) =
T—+00 r—r—00

o

/ e"**dF(x) defined for real z is called [I, p. 12] a characteristic function of this law. If

¢ has an analytic continuation on the disk D = {z : |z| < 1} then we call ¢ an analytic in
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D characteristic function of the law F'. Further we always assume that D is the maximal
disk of the analicity of ¢. It is known [I} p. 37-38] that ¢ is an analytic in D characteristic
function of the law F' if and only if for every r € [0, 1)

(1) Wg(x)=:1—F(z)+ F(—z) =0(™"), x— +o0.
Hence it follows that
(2) lim 1 In 1 1.

sotoo & Wg(x)

For 0 <r <1 we put M(r,¢) = max{|p(z)| : |2| =r}, and if ¢ has the order

—InIn M(r,
Qeri?ll ln(l(;j) >0
a convergence class is defined [2] by the condition
1
(3) /(1 — 1) In M(r, p)dr < +o0.

To

For ¢ = 2 this condition is sufficient [3, p. 50] in order that ¢ belong to the class of
Mac-Lane.

For an analytic in D characteristic function ¢ of the order ¢ > 0 in [4] it is proved
that in order that ¢ belong to convergence class it is necessary and in the case when the

function v(z) = In Wr@) is continuously differentiable and v’ increases it is sufficient
F\Z

that
o+1

(4) 7{(1+iln WF(x))+} dz < +o0.

0

Generalizing this result in [5] the concept of the convergence ®-class is introduced
as follows.

Let Q(1) be the class of positive unbounded on (0,1) functions ® such that the
derivative @' is positive continuously differentiable and increasing to +oo on (0, 1).

As in [5], we say that ¢ belongs to a convergence P-class if

dr < +o0,

/1 &' (r)In M(r,p)

©) ()

To

and by V(1) we denote the class of positive continuously differentiable on (0, +00) functi-
ons v such that v'(x) 1 1 as © — +oc.

The following theorem was proved in [3].
@'(r) 1

() be a function, nondecreasing on [rg, 1), ®'(r) > T

1 D" (r)®(r)
P’ < H{d' —— < H. 1 H, = 3
<7‘ + @’(r)) < H19'(r) and @ = o for allr € [rg, 1), where H; = const >

Theorem 1. Let ® € (1),
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®'(r)In @’
0, and /Wdr < +4o0. Suppose that ¢ is an analytic in D characteristic
r

To

function on a probability law F such that @ Wg(z)e® = 4o0.
Tr—r+00

Then in order that ¢ belong to a convergence ®-class it is necessary and, in the case

1
when In =wv(x) € V(1), it is sufficient that
TG = V) € VI, it is suf
r d
(6) / L < oo

L)

Corollary 1. Let 0 < ¢ < +00 and ¢ be an analytic in D characteristic function of a
probability law F such that lirf Wg(x)e* = 4o00. Then in order that holds it s
T—r+00

1
necessary and, in the case when In =wv(z) € V(1), it is sufficient that
W (z)
7 1 z\\ ¢+1
/ (nWVFx(w)@)) dz < oo,

Zo

Let L be a class of continuous increasing functions « such that a(z) > 0 for « > x,
a(x) = a(zg) for z < xy and on [zg, +00) the function « increases to +oo. We say that
a€ L%if a € L and a(z(1+0(1))) = (1 + o(1))a(x) as & — +oo.

Let a € L and g € L. We say that an analytic in D function ¢ belongs to the
generalized convergence af3-class, if

; a(ln M(r,¢))
(7) /(1—7‘)26(1ir)dr < +00.

To

If a(z) = x and 8 = 22+ for 9 < x < +00 then implies (3). Here we examine a
problem of the belonging of the analytic characteristic function of probability law to the
generalized convergence «/3-class.

2. AUXILIARY RESULTS
Let I(r,p) = /Wp(x)e”dx and p(r, ) = sup{Wr(z)e™ : = > 0} be the maxi-

0
mum of integrand. Suppose that M (r, ) 1 +oo as r 1 1. Then [5]

In p(r,) < (14o0(1))In M(r,o) < (1+o0(1)In I(r,¢), r11.

Hence it follows that if o € L° then
1

/ a(ln p(r, @) / a(ln M(r,p) a(ln I(r, gp
(8) /(1_T)2ﬂ(1ir)dr</(1_7")2 (1 3 dr / T )dr.

70 T0
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On the other hand

I(r, ) /Wp(x)e”dx/Wp(x)exp{r—;lx}exp{1;Tx}dx§
0 0

() Su(r—i—l’(p) 2

2 1—17

In [6] it is proved that if a € L° then « is RO-varying and, thus [7, p. 86],
1 < a(lz)/a(r) < M(l) < 400 for each [ € [1, +00) and all © > z¢(l). Therefore,
from @ we obtain

alln I(r,¢)) < o <2maX{lnu (;1@) I 1:}) <
< s (e (C20.0) o 2 ) -

oo (1) o )
oo (1) o).

whence for 3 € L° using the cite of result from [6] we obtain

[ aln 167 0) fatnn(ste, Foolnd)
| =gy < M) (/ 0 - r2A(:t )d’”+7[<1—r>2m 1 )dr) }

"o 1—r
1 1 2
1 a(ln =
_ a2 / o (ln (5 0)) dr+1+M(2)/ (21 2 i <
41—r+1/2) BGr=) | 2 (1= r2B()

(In
(10) K/ 1_tl;511)dt+K/ o

From @D and the following statement follows.

Tal
Proposition 1. Let o € LY, 8 € L° and / aézl ;U) dr < +oo. Then holds if and
x

only if

[ aln u(r,g)

a(ln p(r, e

11 /—dr < +00.
- (- P8(%)

To
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The function In u(r, ) may be bounded. It is easy to show that u(r,¢) < K < 400
for all r € [0, 1) if and only if Wr(z)e® < K < +oo0 for all # > 0. Thus, u(r, ) T +00 as
r 1 1if and only if EI_P Wr(z)e® = 4o00. In [5] was proved that the function In pu(r, )

x (o)
is convex on [0, 1) and there exists a nondecreasing on [0, R) function v(r, ¢) such that
(In p(r, @) = v(r,¢) for all r € (0, R) with the exception of an at most countable set,
ie.
(12) In p(r,p) =1n p(ro, ) + /V(x,(p)dx, 0<ro<r<l.
To

Hence it follows that if u(r, ) 1 +o00 as r T 1 then v(r,p) * +o0 as r 1 1.

If n —— =wv(x) € V(1) then for every r € (0, 1) the function In Wr(z) + ra =
WF (Z‘)

= —v(z) + rz has a unique point of the maximum = = v(r, @), which is a continuous on
(0, 1) function increasing to +oo, and
In p(r, @) = max{ln Wg(x) +rz: >0} =In Wr(v(r,¢)) + rv(r, @),

whence

In =
V(T7 ) 4,0) WF(V(T7 90)) V(Tv 4,0)
From it follows that
In p(r, ) = In p(ro, ) +v(r,@)(r —ro) <1In u(ro,¢) + (1 —ro)v(r, ¢),

and if € LY then a(In u(r,¢)) < Kia(v(r,p) for all r € [rg, 1).
On the other hand for r > rg

1 1 1
(13) P onne)

(1+7)/2
1+7r
In (2, <p> > In p(rop) + / v(z,p)dz > In p(ro, @) + v(r, )

r

1—1r
2 )

and if a(e®) € L° then as above we obtain

a(v(r, ¢)) Soé(exp{ln 1ir+ln lnu<1;r7@>}) <

ool (152 )
< K (a (mu(lgr,w)) +a(ln 127~>)'

1
ofln p(re)) o v(rg)
T[um?ml;)d SKlr[urm(li o=

1 1

aln u((r +1)/2.9)) a(ln (2/(1 — 1))
<Kk (1-r)2B(-L) ey 2B

70 To
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whence as above we obtain the following statement.

oo
1 1
Proposition 2. Let a(e®) € LY, B € LY, /a(nx)dm < 400 and In =

PR Wr(z)
=wv(x) € V(R). Then holds if and only if
[ a9)
(14) /(1—r)2 (lir)dr<+oo.

Thus, the problem of belonging of ¢ to the generalized convergence af-class is
reduced to the problem of the fulfilment of (T4).

3. MAIN RESULT

Using Propositions 1 and 2 we may prove the following main theorem.

!
Theorem 2. Let a(e®) € L°, g € LY, / Bn z) dz < 400 and 55((1):) > 2+ h for all
T

x > xg. Suppose that ¢ is an analytic m D characteristic function on probability law F
such that Wgr(0) =1, In W =v(z) € V(1) and hrf Wr(z)e® = +o0.
r—r 400

Then in order that ¢ belongs to a generalized convergence af-class it is necessary
and sufficient that

(15) 7&(3:)[31 (W) de < 400, Bu(x) = OO‘Z).

Proof. Clearly, : )
= s ()-

16 =—abteon (1 )]+ / o) (1 ) vl o)

T0

At first we suppose that holds. Then, from and (13), in view of the nonincreasing
of 31, we have

[ alw(ny) 1 =
[ Gy s N S —
o To v(r,o)  Wr(v(r,¢))

IN
=
_|_
—

Q\
=
3
=

oo

) v(r, o)
=K —|—/a (v(r,v))51 (ln Wr(o(r, ;;@ey(nw))) dv(r,p) < 400,

zo

because the function v(r, ¢) is continuous. The sufficiency of (15)) is proved.
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Now we prove its necessity. From for each € > 0 and all r € [ro(g),1) we have
1 1

owlrg) e (L
E>T/(1T)2B(1ir)d > af (agp))/(lr)zﬂ(lir) ( (7@))ﬂ1 (1_T>a

that is from (14) and (16) we obtain
1

/0/(1/(7', )5 <1> du(r, p) < +o0.

1—1r

s

To

Since In = v(z) € V(1) and « = v(r,¢) is a solution of the equation

1
WF(JZ)

—v'(z) +r =0, we have r = v/(v(r, ¢)) and hence it follows that

[t (1) i) < .

i.e.

(17) 70a'(x)51 (1—111(90)) de < +oc.

Zo

From a theorem proved in [§] it follows that if a(x) and p(x) are continuous functions
on (0, +00), —00 < A < a(z) < B < 400, p(x) \y 4t > 0 as x — 400, and for a positive
function f on (A, B) the function f!/? with p > 1 is convex on (A, B), then

1

(18) /y,u(:r:)f ;/a(t)dt dr < (pp1>p/yu(x)f(a(x))dx7 y < +oo.
0 0 0

1
We choose p(z) = o' (), a(z) =v'(z), f(z) = p1 (1 ) and show that the function
-z

fY/P is convex for some p > 1.

-1

It is easy to see that f/? is convex for p > 1 if f(x)f"(z) — pT(f’(x))2 > 0 that

is if
2
1N [ 1 1N,/ 1 p—1/,( 1
= _ >

() () 2o (72) 4 (75) 2 55 (3 (7))
and thus, if

BB (0) + £ BOAL(0) = T (5 (0)*

[ d
Since (1 (t) = / Wi)’ the last inequality holds if
t

ey
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Since f'(t) — %(t) > %(t) > 0, we have
e 2t
sy 28 dx ey 28() dx oy 28Nt
(o= [ 2 (0= [ 2 (0 -5 g 2

—1
Therefore, choosing p > 1 such that A — P—- > 0, we get inequality (19), i. e. the
p

1
function S,/" (1) is convex and in view of (18)
—x

o faen T ooz (525) [ (i) o

1
Since /v’(t)dt =In Wr@)’ from (17) and (20) we obtain ([15). Theorem 2 is proved.
LT
zo

O
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ITPO HAJIE2KHICTD AHAJIITUYHNX B OAVMHNYHOMY
KPVY3I XAPAKTEPUCTNYHUX ®YHKIIIV UMOBIPHICHUX
3AKOHIB /10 ¥Y3ATAJIbHEHOTI' O KJIACY 3BI2KHOCTI

Oxcana MVJISIBA', Mupocnas IIIEPEMETA?

L Kuiscoruti nayionasviull ynieepeumem Tapuoeus meruonozit
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s HenmepepBHUX 3pOCTAYHX 10 +00 Ha [To, +00) dyHKHil o i 3 Gymemo
rosopurh, mwo anagituana B D = {z : |z| < 1} xapakrepucrtuuna GyHxuis ¢
HMMOBIpHICHOrO 3aKOHY F' HAJEXWUTH O y3arajabHEHOro «of-Kjaacy 301xKHOCTI,

In M

SIKIIIO0 /wdr < +o00. 3Haiineno ymoBu Ha «, [ i F, 3a saxux
(1=7)28(=)

o

GYHKIIA ¢ HATEXKWUTH 10 y3arajbHEHOTO af-Kiacy 301KHOCTI TOmi i1 Tinmb-
oo
x

: : _ [
KU TOxi, KO la (z) B <W> dx < +o0, ne fi(z) = J B3
Wr(z) =1— F(x) + F(—x).

Karouost crosa: ananpituaaa GyHKIisS, IMOBIPHICHUN 3aKOH, XapPaKTEPUC-
TugHa (DYHKIS, y3araJbHeHnH Kaac 3061KHOCTI.
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