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1. DEFINITIONS AND RELATIONS

In general topology one often investigates different classes of compact-like spaces
and relations between them, see, for instance, basic [11} Chap. 3] and general works [9],
[19], [23], [22], [I7]. We consider the present paper as a next small step in this quest.

We shall follow the terminology of [I1]. By N we shall denote the set of all positive
integers.

A subset of a topological space X is called regular open if it equals the interior of its
closure. A space X is quasiregular if each nonempty open subset of X contains closure
of some nonempty open subset of X.

2010 Mathematics Subject Classification: 54B10, 54D30, 54D50, 54D55
© Gutik, O., Ravsky, O., 2018



THE INVARIANCE OF THE LINDELOF NUMBER UNDER ...
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2018. Bumyck 85 49

1.1. Old classes. We recall that a topological space X is said to be

o semiregular if X has a base consisting of regular open subsets;

e compact if each open cover of X has a finite subcover;

o sequentially compact if each sequence {z,, },,en of X has a convergent subsequence
in X;

e w-bounded if each countable subset of X has compact closure;

o totally countably compact if each sequence of X contains a subsequence with
compact closure;

e countably compact if each open countable cover of X has a finite subcover;

e countably compact at a subset A C X if every infinite subset B C A has an
accumulation point x in X;

e countably pracompact if there exists a dense subset D in X such that X is
countably compact at D;

o feebly w-bounded if for each sequence {U, },en of non-empty open subsets of X
there is a compact subset K of X such that K NU,, # @ for each n;

o selectively sequentially feebly compact if for each sequence {U,, }nen of non-empty
open subsets of X we can choose a point z,, € U, for each n € N such that the
sequence {z,} has a convergent subsequence;

o selectively feebly compactll, if for each sequence {U,},cn of non-empty open
subsets of X we can choose a point € X and a point z,, € U, for each n € N
such that the set {n € N: 2, € W} is infinite for every open neighborhood W
of .

o sequentially feebly compactq [10, Def. 1.4] if for each sequence {U,:n € N}
of non-empty open subsets of the space X there exist a point z € X and an
infinite set I C N such that for each neighborhood U of the point x the set
{nelI:U,NU = @} is finite;

o feebly compact if each locally finite family of nonempty open subsets of the space
X is finite.

o k-space if X is Hausdorff and a subset F' C X is closed in X if and only if F N K
is closed in K for every compact subspace K C X.

ISelectively sequentially feebly compact Tychonoff spaces were recently introduced and studied by
Dorantes-Aldama and Shakhmatov in [8]. Also they considered selectively feebly compact Tychonoff
spaces under the name selectively pseudocompact spaces. An equivalent property appeared a few years
earlier in papers by Garcia-Ferreira with Ortiz-Castillo [12] and with Tomita [T3] under the title “strong
pseudocompactness”, but since the term “strongly pseudocompact” is used in |3, [7] to denote two different
properties, we stick to a name for this property which reflects its “selective” nature and also matches the
name of the previous “selective” property.

20ne of the authors introduced this notion a few years ago as a natural property intermediate between
feeble and sequential compactness, which may be useful in some applications in topological algebra.
Indeed, for instance, Proposition 1.10. by Artico et al. [4] combined with Theorem 1.1 by Lipparini [17]
states that that each Ty feebly compact topological group is sequentially feebly compact. But later we
found that it is a known property, even with the same name. The oldest reference which we know (see
[19] p. 15]) is Reznichenko’s paper [21]. A similar notion had been given by Artico et al. in [4], Def.
1.8], where are used pairwise disjoint open sets instead. Lipparini proved in [I7] that these notions are
equivalent.
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According to Theorem 3.10.22 of [I1], a Tychonoff topological space X is feebly compact
if and only if it is pseudocompact, that is, each continuous real-valued function on X is
bounded. Also, a Hausdorff topological space X is feebly compact if and only if every
locally finite family of non-empty open subsets of X is finite.

Relations between different classes of compact-like spaces are well-studied. Some of
them are presented on Diagram 3 in [19] p.17], on Diagram 1 in [8], p. 58] (for Tychonoff
spaces), and on Diagram 3.6 in [22] p. 611].

1.2. New classes. The notion of countable pracompactness has been studied by several
authors under several names. According to Matveev [19] it “appeared in the literature
under many different names”. Matveev mentions that Baboolal, Backhouse and Ori [5]
introduced an equivalent notion under the name e-countable compactness. In the recent
paper [18] the authors study the notion using the expression “densely countably compact”.
A few references and a further name are recalled there [2] According to Arkhangel’skii [I]
countable compactness at some subset and countable pracompactness “find important
applications in C),-theory”.

In order to refine the stratification of countable pracompact spaces even more, we
introduce the following definitions. In each of them we require that a space X contains
a dense subset D with a special property. Namely,

e if each sequence of points of the set D has a convergent subsequence (in X) then
X is sequentially pracompact;

e if each sequence of points of the set D has a subsequence with compact closure
(in X) then X is totally countably pracompact;

e if each countable subset of the set D has compact closure (in X) then X is
w-bounded-pracompact.

Our main motivation to introduce the above spaces is their possible applications in
topological algebra. In particular, we are going to use them in the paper [15].

Diagram 1 shows relations between different classes of compact-like spaces. All impli-
cations on the diagram are true and we suggest that they are either well-known or easy to
prove and all non-marked arrows are not reversible without imposing additional conditi-
ons on spaces. In particular, in Section [f] of the present paper we construct a sequentially
feebly compact space which is not selectively feebly compact (Example , a sequentially
pracompact space which is not countably compact (Example , and a totally countably
pracompact space which is nether w-bounded-pracompact nor totally countably compact

(Example [)).
2. BASIC PROPERTIES

2.1. Extensions. We recall that an eztension of a space X is a space Y containing
X as a dense subspace. It is easy to check that countable pracompactness, sequenti-
al pracompactness, feeble compactness, sequential feeble compactness, selective feeble
compactness, selective sequential feeble compactness, and feeble w-boundedness is
preserved by extensions.

2.2. Continuous images. It is easy to check that sequential compactness, feeble
compactness, sequential feeble compactness, countably pracompactness, and sequential
pracompactness is preserved by continuous images and total countable compactness,
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total countable pracompactness, w-boundedness, and w-bounded-pracompactness is
preserved by continuous Hausdorff images.

compact

w-bounded-
w-bounded |———
pracompact

T>-space
. totally
sequentially countably
compact
compact
sequential k-space
totall
countably orary
T3-space countably
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pracompact pracompact
sequential T4—s/pace
selectively sequentially selectively feebly
feebly compact feebly compact w-bounded

Fréchet-Urysohn space

sequentially
feebly compact 4% feebly compact

Diagram 1

2.3. Products. The investigation of productivity of compact-like spaces is motivated
by the fundamental Tychonoff theorem, stating that a product of a family of compact
spaces is compact, On the other hand, there are two countably compact spaces whose
product is not feebly compact (see [1I], the paragraph before Theorem 3.10.16). The
product of a countable family of sequentially compact spaces is sequentially compact [11]
Theorem 3.10.35]. But already the Cantor cube D¢ is not sequentially compact (see [I1],
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the paragraph after Example 3.10.38). On the other hand, some compact-like spaces
are also preserved by products, see [23], §3-4] (especially Theorem 3.3, Proposition 3,4,
Example 3.15, Theorem 4.7, and Example 4.15) and §7 for the history, and [22] §5].
Among more recent results we note that Dow et al. in Theorem 4.1 of [I0] proved that
a product of a family of sequentially feebly compact spaces is again sequentially feebly
compact, and in Theorem 4.3 that every product of feebly compact spaces, all but one
of which are sequentially feebly compact, is feebly compact.

In the next propositions we show that sequentially pracompact, 77 totally countably
compact, and w-bounded-pracompact spaces are preserved by products. The proofs are
easy and straightforward but we provide them because a theorem should have a proof.

Let X be a product of a family {X,: a € A} of spaces. For each subset B of the
set A by mp we denote the projection from X = [[{Xs: a € A} to [[{Xs: a € B} If
B = {a} then 75 we shall denote also by m,. A space Y C X is called a 3-product of
the family {X,} provided there exists a point y € X such that

Y ={x € X: 2, =y, for all but countably many o € A}.
In this case Y is also called the Corson X-subspace of X based at y.

Proposition 1. The (X-) product of a family of sequentially pracompact spaces is
sequentially pracompact.

Proof. Let X be the non-empty product of a family {X,: a € A} of sequentially
pracompact spaces and Y C X be the Corson X-subspace of X based at a point
¥y = (ya) € X. For each index o € A fix a dense subset D, 2 y, of the space X,
such that each sequence of points of the set D, has a convergent subsequence and fix a
point a,, € D,. Put D = YﬂHaeA D,. Then the set D is a dense subset of the space X.
Let C = {x,: n € N} be a sequence of points of the set D and B = {a,,: m € N} be an
enumeration of the countable set {« € A: Jo € C(z4 # yo)}- By induction we can build
a sequence {z,,, € Xq,, } of points and a sequence {S,,} of infinite subsets of N such
that Sy, D Sy for each m < m’ and for each neighborhood U,,,, C X, of the point x,,
the set {n € Spn: Tna,, € Ua,, } is finite. We can easily construct an infinite set S C N
such that the set S\ S,, is finite for each m € N. Choose a point z = (z,) € Y such
that z, is already defined for o € B and z, = y, for « € A\ B. Let U be an arbitrary
neighborhood of the point x. There exist a finite subset F' of the set A and a family

{Uy: a € F,U, C X, is an open neighborhood of z,}

such that © € U’ = 7' ([[{Ua: @ € F}) C U. The inductive construction implies that
the set T, = {n € S: xpo € Uy} is finite for each a € F. Then z,, € U’ C U for each
ne€ S\ U{Ta: @€ F}. O

Proposition 2. The (X-) product of a family of totally countably pracompact Ty spaces
is totally countably pracompact.

Proof. Let X be the non-empty product of a family {X,: o € A} of totally countably
pracompact spaces and Y C X be the Corson Y-subspace of X based at a point y =
(yo) € X. For each index a € A fix a dense subset D, 3 y, of the space X, such that
each sequence of points of the set D, has a subsequence with compact closure in X,. Put

D =YN]],ca Da- Then the set D is a dense subset of the space X. Let C = {x,: n € N}
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be a sequence of points of the set D and {a,,,: m € N} be an enumeration of the countable
set {a € A: 3z € C(z4 # yo)}. By induction we can build a sequence {S,,} of infinite
subsets of N such that S,, D S, for each m < m/ and the set {x,,,, : n € S, } has
compact closure in X, . We can easily construct an infinite set S C N such that the set
S\ S, is finite for each m € N. Then the set {z,: n € S} has compact closure in X,
which is contained in Y. O

Remark 1. The referee remarked that in the case of Cartesian product in Proposition
Ty condition can be weakened to that for each o € A a set {y,} has compact closure in
X . The proof remains almost the same, only the final words “which is contained in Y”’
should be dropped.

It motivates to define a class of spaces in which every singleton (that is, one-point
set) has compact closure. The referee suggested to investigate which classes of compact-
like spaces belong to the class. By definition, each 17 space belong to the class. Each
totally countably compact space X also belongs to the class because for any point x € X
the set {z} is the closure of any subsequence of the constant sequence {z,, }, where z,, =
for each n.

On the other hand, the referee proposed to endow w with the topology of left
intervals, whose open sets are the intervals [0,n), plus the whole of w. Here the closure
of 0 is the noncompact space w. We extend this construction as follows. Let X = w; +w
endowed with a topology with a subbase consisting of halfintervals [0, &), where o < wy+w
and (o,w; + w), where a < wy. Then the closure of w; is a noncompact set [wy,w; + w).
Now put D = w;. Then D is dense in X and each countable subset C' of D is contained
in a closed compact set [0,sup C] of D. Thus X is both sequentially and w-bounded-
pracompact.

A sequentially compact example of a space not belonging to the class is more
complicated, but, luckily, already known. Namely, in [20, Example 5] the second author
constructed a group G = @ Z, which is the direct sum of the groups Z and its subgroup

acwy

S={0}U{(za) € G: (35 € w1)((Va > B)(za = 0)&(xzz > 0))}.

Let Gs be the group G endowed with a topology with a base {z+S: € G}. Then Gg is
a paratopological group, that is the group operation + : G x G — G is continuous. In [20]
Example 5] it is shown that the group G is sequentially compact. On the other hand,
by [20, Lemma 17] the set S C Gg is compact. Since {0} = {x € G: z + S 3 0} = -8,
if the set —S is compact then G = S U (—S) is compact too, which contradicts [20]
Proposition 12].

Proposition 3. The product of a family of w-bounded-pracompact spaces is w-bounded-
pracompact. Moreover, if all spaces of the family are T, then a X-product of the family
is w-bounded-pracompact too.

Proof. Let X be the non-empty product of a family {X,: a € A} of w-bounded-
pracompact spaces and Y C X be the Corson X-subspace of X based at a point
y = (yo) € X. For each index a € A fix a dense subset D, 3 y, of the space X,, such that
each countable subset of the set D, has compact closure in X,. Put D =Y N[],c4 Da-
Then the set D is a dense subset of the space X. Let C' be a countable subset of the set
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D. Then C is a subset of a closed compact subset C" = [],c 4 ma(C) of the space X.
Now assume that all spaces X, are T1. Put B ={a € A: 3z € C(xy # Yo)}- The set B
is countable and so €' = [[,c5 Ta(C) X [[nea\p{vat C Y. O

Example 1. This example shows that T; condition is essential in the »-product case
of Propositions [2| and [3| Let X’ be a space consisting of two distinct points a and b
endowed with the topology {@,{a}, X'}. Let A be an uncountable subset, X be the
product of a family {X,: o € A}, Y C X be the Corson X-subspace of X based at a
point y = (a,) € X, where X, = X’ and a,, = a for each a € A. Since the space X’ is
compact, it is easy to check that the space Y is countably compact. On the other hand,
the space Y is not totally countably pracompact. For this purpose it suffices to show that
for any point = (zo) € Y a set {z} (everywhere in this example we by S we mean the
closure in Y of its subset S) is not compact, because {z} is the closure (in Y) of any
subsequence of a constant sequence {z, }, where z,, = x for each n. By [11] Proposition
2.3.3], {z} = {(za)} =Y N [Ioca {za} Remark that b € {4} for each a € A. Now for
each a« € Aput Y, = {y = (yg) € Y: yo = a}. Since for each point z = (z,) € Y, there
exists an index « such that z, = a, the family {Y,,: a € A} is an open cover of the set Y,
and hence of {2}. Let C be any finite subset of A. Let t = (t,) € Y be such that t, = b
if 2z, = bor a € C and t, = a, otherwise. Then t € {2} \ J{Ya: @ € C}. Thus the set
{z} is not compact.

Since the sequential feebly compactness is preserved by extensions, the following
proposition strengthens Theorem 4.1 of [I0] a bit.

Proposition 4. The X-product of a family of sequentially feebly compact spaces is
sequentially feebly compact.

Proof. Let X be a non-empty product of a family {X,: o € A} of sequentially feebly
compact spaces, Y C X be the Corson X-subspace of X based at a point y = (y,) € X,
and {V,,: n € N} be a sequence of non-empty open subsets of the space Y. For each index
n choose a finite subset B,, of the set A and a family

{Una: a € By, Up, is a non-empty open subset of X, }

such that U,NY C V,,, where U,, = wgi (II{Una: @ € B,}). Put B = B,. By Theorem
4.1 of [10], the space X’ = {X,,: a € B} is sequentially feebly compact. Since {rp(U,)}
is a sequence of its non-empty open subsets, there exist a point 2’ € X’ and an infi-
nite set I C N such that for each neighborhood U’ of the point ' = (2], )ncp the set
{nel:np(U,)NU" = &} is finite. Define a point © = (£4)aca € Y by putting z, = z,
for each o € B and z, = y, for each « € A\ B. Let V be an arbitrary neighborhood
of the point z in the space Y. Pick a canonical neighborhood U of the point z in the
space X such that U N'Y C V. Then there exists a subset I’ of the set I such that a
set I\ I’ is finite and wp(U,) N7p(U) # & for each n € I'. Fix any such n and pick
a point 2’ = (2))aen € m5(U,) N7 (U). Define a point z = (24)aca € Y by putting
zo = 2z, for each o € B and z, = y, for each a € A\ B. It is easy to check that
zeU,NUNY CV,NnV. O
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3. BACKWARD IMPLICATIONS

In [6], Banakh and Zdomskyy defined a topological space X to be an az-space if for
any family {S,,: n € N} of countable infinite subsets of the space X such that a set S, \U
is finite for any n and any neighborhood U of x there exist a countable infinite subset S
of the space X and a point y € X such that a set S\ V is finite for any neighborhood V'
of y and S, N S # @ for infinitely many n.

Proposition 5. Let X be a Fréchet-Urysohn feebly compact space. Then X is sequenti-
ally feebly compact. Moreover, if X is either quasireqular or a7 then X is selectively
sequentially feebly compact.

Proof. Let X be a Fréchet-Urysohn feebly compact space and {V;,: n € N} be a sequence
of non-empty open subsets of the space X. For each n choose a non-empty open set
U, C V,, such that U,, C V,, provided the space X is quasiregular. Since the space X is
feebly compact, there exists a point € X such that each neighborhood of the point z
intersects infinitely many sets of the sequence {U, }. Put Iy = {n eN:z e Un}.

Suppose that the set Iy is infinite. Then U N U,, # @ for each n € Iy and each
neighborhood U of the point x. If the space X is quasiregular then x € V,, for each
n € Iy, thus the constant sequence {z, = x: n € Iy} converges to x. Assume that X is
an ar-space. Since the space X is Fréchet-Urysohn, for each n € I there exists a sequence
S, = {z}: k € N} of points of U,, convergent to a point =. Considering its subsequence,
if necessarily, we can assume that the sequence S/, either consists of distinct points or it
is constant. In the latter case we have z}} = 2™ € U, for each k for some point 2" € U,
such that z € {z"}. Put I} = {n € Iy: S’ is constant}. If the set I} is infinite then a
sequence {z™: n € I} converges to the point x. So we suppose that the set I is finite.
Since X is an ay-space, there exist a countable infinite subset S of the space X and a
point y € X such that a set S\ V is finite for any neighborhood V of y and a set

Iy = {n € I\ Iy: there exists a natural k(n) such that z7,,) € S}

is infinite. For each n € I} put z,, = xg(n) € U,. If there exists a point z € X such that
the set Iy = {n € I} x,, = z} is infinite then the sequence {z,,: n € I;} converges to the
point z. Otherwise the sequence {x,: n € I/} converges to the point y. Indeed, let V be
an arbitrary neighborhood of the point y. Then the set S\ V is finite and z,, € V for
eachn € I\ {n: z, € S\ V}.

Suppose that the set I is finite. Since x € U{U,: n €N\ I} and X is a
Fréchet-Urysohn space, there exists a sequence {z,,: m € N} of points of the set
U{U,: n e N\ Iy} converging to the point x. For each index m € N choose an index
n(m) € N\ I such that z}, € Upy(m. Put It = {n(m): m € N}. Since = ¢ U, for
each n € N\ Iy, the set I; is infinite. For each r € Iy pick a point x, = x:n(T), where
n(m(r)) = r. Then z, € U, and the sequence {z,: r € I;} converges to the point x.
Indeed, let U be an arbitrary neighbourhood of the point z. Since the sequence {x,}
converges to the point z, there exists N € N such that a/, € U for each m > N. Then
x, € U for each r € I1 \ {n(m): 0 <m < N}. O

Proposition 6. Each sequential countably pracompact space is sequentially pracompact.
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Proof. Let X be a sequential countably pracompact space. There exists a dense subset D
of the space X such that each infinite subset of the set D has an accumulation point in X.
Let {z,: n € N} be a sequence of points of the set D. If there exists a point 2 € X such
that « € {z,} for infinitely many indices n € N then the {z,: z, = z} is a convergent
subsequence of the sequence {x,: n € N}. So we suppose that there is no such point z.
Then the set B = {x,,: n € N} is infinite. The set B has an accumulation point y in X.
Then y € B\ {y}. Therefore the set B\ {y} is not sequentially closed and there exists a
sequence {z,,: m € N} of points of the set B\ {y} converging to a point z ¢ B\{y}. Then
the sequence {z,,: m € N} contains infinitely many distinct points of the set B\ {y}. O

Proposition 7. Each countably pracompact k-space X is totally countably pracompact.

Proof. There exists a dense subset D of the space X such that each infinite subset of the
set D has an accumulation point in X. Let {x,: n € N} be a sequence of points of the
set D. Put B = {x,: n € N}. If the set B is finite then there exists a point z € X such
that x,, = x for infinitely many indices n € N. Then a subsequence {x,,: z,, = x} of the
sequence {z,: n € N} has compact closure {z} in X. Thus we suppose that the set B is
infinite. The set B has an accumulation point y in X. Then y € B\ {y}. Therefore the set
B\ {y} is not closed and there exists a compact subset K of the space X such that a set
BN K is not closed in K. Then the set BN K is infinite, the sequence {z,: x, € BN K}
is infinite too and {z,: z, € BN K} C K. O

Proposition 8. Fach sequentially feebly compact space containing a dense set D of
isolated points is sequentially pracompact.

Proof. Tt is easy to check that each sequence of points of the set D has a convergent
subsequence. O

4, EXAMPLES

Example 2. Let Xy be a non-empty 7} space. Determine a topology on the set X =
(Xo x w) U{yo}, where yo & Xo X w by the following base

B ={U x {n}: U is an open subset of the space Xg,n € w}U
u U {{yo} U U Xo x {m}\ Fin: n € w, Fy, is a finite subset of Xy

m>n
for each m € w such that m > n}

It is easy to check the following:

e the space X is Hausdorff provided the space Xy is Hausdorff;
e the space X is feebly compact provided the space X is a feebly compact space
without isolated points;
e the space X is sequentially feebly compact provided the space Xy is a sequentially
feebly compact space without isolated points.
Now we take the standard unit segment [0, 1] as Xy. Then X is a sequentially feebly
compact space containing a closed discrete infinite subspace {1} x w. Now for each n € w
put U, = Xo x {n}. Let {x,,} be a sequence of points of the space X such that z,, € U,.
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Then the set {z,,} has no accumulation points, thus the space X is not selectively feebly
compact.

We recall that the Stone-Cech compactification of a Tychonoff space X is a compact
Hausdorff space X containing X as a dense subspace so that each continuous map
f: X — Y to a compact Hausdorff space Y extends to a continuous map f: X — Y
(see [I1).

Example 3 ([I1, Exer. 3.6.1], [8, Ex. 2.6]). Let {Ny}aca, where ANN = &, be an infinite
family of infinite subsets of N such that the intersection N,NNp is finite for every pair o, 8
of distinct elements of A and that { N, }aeca is maximal with respect to the last property.
Generate a topology on the set X = NUS by the neighborhood system {5(z)}.cx, where
B(z) = {{n}},if x =n € Nand B(z) = {{a} U(N, \ {1,2,...,n})},_ ifz =a€ A

Since A is a closed discrete infinite subset of X, X is not countably compact. On
the other hand, the set D = N is dense in X. Let {z,: n € N} be an arbitrary sequence
of points of the set D. If the set S = {z,,: n € N} is finite then the sequence {z,,: n € N}
has a constant subsequence. If the set S is infinite then by maximality of A there exists
a € A such that N, NS is infinite. Note that the enumeration {x,, : k € N} of N, NS
in the increasing order is a subsequence of the sequence {z,: n € N} converging to the
point a. Thus the space X is sequentially pracompact.

Example 4. Endow the set N with the discrete topology. Let &7 (N) = NU{co} be a one-
point Alexandroff compactification of N with the remainder co. We define on «7(N) x N
the product topology 7, and extend the topology 7, onto X = &/ (N) x NU {a}, where
a ¢ o/(N) x N, to a topology 7* in the following way: bases of the topologies 7, and 7*
coincide at x for any = € &/(N) x N and the family

%*(Q) :{Ua(il,...,in)l il,...,in GN},

where
Ua(ity..yin) = X\ ({oo} x N)U (& (N) x {i1,...,in})),

determines a set of neighbourhood systems for 7* at the point a.

The definition of the topology 7* on X implies that N x N is the maximum discrete
subspace of (X, 7*) and N x N is dense in (X, 7*). Hence every dense subset D of (X, 7*)
contains N x N. However, N x N = X is not compact, and hence (X, 7*) is not an w-
bounded-pracompact space.

Now we shall show that (X, 7*) is totally countably pracompact. Especially we shall
prove that N x N is the requested dense subset of the space (X,7*). Fix an arbitrary
sequence {x,}, .y C NxN. If there exists a positive integer i such that the set {z,,}, .1
(o7 (N) x {i}) is infinite then the subsequence {z;, }jEN ={7n}, ey N (F(N) x {i}) with
the corresponding renumbering has compact closure in (X, 7*). In the other case the set
{Zn},en N (' (N) x {i}) is finite for any positive integer 4. Then the definition of (X, 7*)
implies that {z,}, .y = {a} U {2, },cy is a compact subset of (X, 7%).

We observe that by Proposition 19 of [14], (X,7*) is Hausdorff non-semiregular
countably pracompact non-countably compact space, and hence (X,7*) is not totally
countably compact.
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