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1. Introduction

Let X be a topological space. A function f : X → R belongs to the �rst Baire class,
if it is a pointwise limit of a sequence of real-valued continuous functions on X. We
will denote by B1(X) and B∗1(X) the collections of all Baire-one and bounded Baire-one
functions on X, respectively.

A subset E of X is B1-embedded (B∗1-embedded) in X, if every (bounded) function
f ∈ B1(E) can be extended to a function g ∈ B1(X). We will say that a space X has the
property (B∗1 = B1) if every B∗1-embedded subset of X is B1-embedded in X.

Characterizations of B1- and B∗1-embedded subsets of topological spaces were obtai-
ned in [3] and [4].

This short note is devoted to the following interesting problem: to �nd topological
spaces with the property (B∗1 = B1).

In the second section of this note we extend results from [4, Section 6] and show that
every hereditarily Lindel�o� hereditarily Baire space X which hereditarily has a σ-discrete
π-base has the property (B∗1 = B1). In Section 3 we show that any countable completely
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regular hereditarily irresolvable space X without isolated points is B∗1-embedded and is
not B1-embedded in βX.

2. Spaces with the property (B∗1 = B1)

Recall that a set A in a topological space X is functionally Gδ (functionally Fσ),
if A is an intersection (a union) of a sequence of functionally open (functionally closed)
subsets of X. We say that a subset A of a topological space X is functionally ambiguous
if A is functionally Fσ and functionally Gδ simultaneously.

Lemma 1. Let X be a completely regular topological space of the �rst category with a
σ-discrete π-base. Then there exist disjoint functionally ambiguous sets A and B such
that

X = A ∪B = A = B.

Proof. We �x a π-base V = (Vn : n ∈ ω) of X, where each family Vn is discrete and
consists of functionally open sets in X. Denote Vn =

⋃
{V : V ∈ Vn} for all n ∈ ω.

Let us observe that every open set G ⊆ X contains a functionally open subset U
such that U ⊆ G ⊆ U . Indeed, for every n ∈ ω we put Un = ∪{V ∈ Vn : V ⊆ G}
and U =

⋃
n∈ω Un. Then each Un is functionally open as a union of a discrete family of

functionally open sets. Hence, U is functionally open. It is easy to see that U is dense in
G.

Keeping in mind the previous fact, we may assume that there exists a covering
(Fn : n ∈ ω) of the space X by nowhere dense functionally closed sets Fn ⊆ X. Let
X0 = F0 and Xn = Fn \

⋃
k<n Fk for all n ≥ 1. Then (Xn : n ∈ ω) is a partition of X by

nowhere dense functionally ambiguous sets Xn.
Fix n ∈ ω and V ∈ Vn. Since X is regular, we can choose two open sets H1 and H2

in V such that H1∩H2 = ∅ and Hi ⊆ V for i = 1, 2. Let Gi and Oi be functionally open
sets such that Gi ⊆ Hi ⊆ Gi and Oi ⊆ X\Hi ⊆ Oi, i = 1, 2. We put AV,n = X\(G1∪O1)
and BV,n = X \ (G2 ∪O2) and obtain disjoint nowhere dense functionally closed subsets
of V .

We put m0 = 0 and choose numbers n1 ≥ 0 and m1 > n1 such that Xn1
∩ V1 6= ∅

and Xm1 ∩V1 6= ∅. Notice that A′1 =
⋃n1

n=0Xn and B′1 =
⋃m1

n=n1+1Xn are nowhere dense
functionally ambiguous sets in X. Now we consider the set

W1 = {V ∈ V1 : V ∩ (A′1 ∪B′1) = ∅}

and observe that the sets A′′1 = ∪{AV,1 : V ∈ W1} and B′′1 = ∪{BV,1 : V ∈ W1} are
functionally closed and nowhere dense in X. Let A1 = A′1 ∪ A′′1 and B1 = B′1 ∪ B′′1 .
Notice that A1 and B1 are functionally ambiguous nowhere dense disjoint subsets of X.

Since X \ (A1 ∪B1) = X, there exists a number n2 > m1 such that (Xn2
\ (A1 ∪

B1))∩ V2 6= ∅. We put A′2 =
⋃n2

n=m1+1(Xn \ (A1 ∪B1)). Moreover, there exists m2 > n2
such that (Xm2

\ (A1 ∪ B1)) ∩ V2 6= ∅. Let B′2 =
⋃m2

n=n2+1(Xn \ (A1 ∪ B1)). We put

W2 = {V ∈ V2 : V ∩ (A′2 ∪B′2) = ∅} and observe that the sets A′′2 = {AV,2 : V ∈ W2}
and B′′2 = {bV,2 : V ∈ W2} are functionally closed and nowhere dense in X. We denote
A2 = A′2 ∪A′′2 and B2 = B′2 ∪B′′2 . Then A2 and B2 are functionally ambiguous nowhere
dense disjoint subsets of X.
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Proceeding this process inductively we obtain sequences (Ak)
∞
k=1 and (Bk)

∞
k=1 of

functionally ambiguous sets such that Ak ∩ V 6= ∅ 6= Bk ∩ V , Ak ∩Bk = ∅ for all k ∈ N
and V ∈ Vk. It remains to put A =

⋃∞
k=1Ak, B =

⋃∞
k=1Bk and observe that A∪B = X.

In addition, note that Borel resolvability of topological spaces was also studied
in [1, 2].

We say that a topological space X hereditarily has a σ-discrete π-base if every its
closed subspace has a σ-discrete π-base. It is easy to see that if a space X hereditarily
has a σ-discrete π-base, then each subspace of X has a σ-discrete π-base.

Recall that a subspace E of a topological space X is z-embedded in X, if any functi-
onally closed subset F of E can be extended to a functionally closed subset of X.

Lemma 2. Let X be a normal space such that X hereditarily has a σ-discrete π-base. If
X is a B∗1-embedded subset of a hereditarily Baire space Y , then X is hereditarily Baire.

Proof. Assume that X is not hereditarily Baire and �nd a closed subset F ⊆ X of the
�rst category. According to Lemma 1, there exist disjoint functionally ambiguous subsets
A and B in F such that F = A ∪ B = A = B. Since F is a closed subset of a normal
space, F is z-embedded in X. Therefore, there are two functionally ambiguous disjoint

sets Ã and B̃ in X such that Ã ∩ F = A and B̃ ∩ F = B (see [4, Proposition 4.3]). Let

us observe that the characteristic function χ : X → [0, 1] of the set Ã belongs to the �rst
Baire class. Then there exists an extension f ∈ B1(Y ) of χ. The sets f−1(0) and f−1(1)
are disjoint Gδ-sets which are dense in X. We obtain a contradiction, because X is a
Baire space as a closed subset of a hereditarily Baire space. �

Remark 1. There exist a metrizable separable Baire space X and its B∗1-embedded
subspace E which is not a Baire space. Let X = (Q×{0})∪ (R× (0, 1]) and E = Q×{0}.
Then E is closed in X. Therefore, any Fσ- and Gδ-subset C of E is also Fσ- and Gδ- in
X. Hence, E is B∗1-embedded in X.

Theorem 1. Let Y be a hereditarily Baire completely regular space and X ⊆ Y be a
Lindel�of space which hereditarily has a σ-discrete π-base. The following are equivalent:

(1) X is B∗1-embedded in Y ;
(2) X is B1-embedded in Y .

Proof. We need only to show 1) ⇒ 2). By Lemma 2, X is hereditarily Baire. Then X is
B1-embedded in Y by [3, Theorem 13]. �

Corollary 1. Every hereditarily Lindel�o� hereditarily Baire space X which hereditarily
has a σ-discrete π-base has the property (B∗1 = B1).

3. Spaces without the property (B∗1 = B1)

A subset A of a topological space X is called (functionally) resolvable in the sense
of Hausdor� or (functionally) H-set if

A = (F1 \ F2) ∪ (F3 \ F4) ∪ · · · ∪ (Fξ \ Fξ+1) ∪ . . . ,

where (Fξ)ξ<α is a decreasing chain of (functionally) closed sets in X.
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It is well-known [5, �12.I] that a set A is an H-set if and only if for any closed
nonempty set F ⊆ X there is a nonempty relatively open set U ⊆ F such that U ⊆ A or
U ⊆ X \A.

A topological space without isolated points is called crowded.
A topological space X is irresolvable if it is not a union of two disjoint dense subsets.

A space X is hereditarily irresolvable if every subspace of X is irresolvable.

Lemma 3. Every subset of a hereditarily irresolvable space is an H-set.

Proof. Assume that there is a closed nonempty set F in a hereditarily irresolvable space
X and a set A ⊆ X such that F ∩A ∩ F \A = F . Then

F ∩A = F \A = F = (F ∩A) ∪ (F \A),

which contradicts to irresolvability of F . �

A function f : X → Y from a topological space X to a metric space (Y, d) is called
fragmented if for every ε > 0 and for every closed nonempty set F ⊆ X there exists a
relatively open nonempty set U ⊆ F such that diamf(U) < ε.

Proposition 1. Every bounded function f : X → R on a hereditarily irresolvable space
X is fragmented.

Proof. To obtain a contradiction we assume that there exists a bounded function f : X →
R which is not fragmented. Then there is ε > 0 and a closed nonempty set F ⊆ X such
that for every relatively open set U ⊆ F we have diamf(U) ≥ ε.

Since f(X) is a compact set, we take a �nite partition {B1, . . . , Bn} of f(X) by
sets of diameter < ε. Let Hk = f−1(Bk) ∩ F for every k ∈ {1, . . . , n}. Then each Hk

has empty interior in F , because f is not fragmented. By Lemma 3, each Hk is an H-set
and, therefore, is nowhere dense in F . Hence, {H1, . . . ,Hn} is a �nite partition of F by
nowhere dense sets, which is impossible. �

Lemma 4. Let E be a z-embedded countable subspace of a topological space X and A ⊆ E
be a functionally H-set in E. Then there exists a functionally H-set B ⊆ X such that B
is Fσ and B ∩ E = A.

Proof. We take a decreasing trans�nite sequence (Aξ : ξ < α) of functionally closed
subsets of E such that A =

⋃
ξ<α(Aξ \ Aξ+1) (every ordinal ξ is odd). Since |A| ≤ ℵ0,

we may assume that |(Aξ : ξ < α)| ≤ ℵ0. The subspace E is z-embedded in X and we
choose a decreasing sequence (Bξ : ξ < α) of functionally closed sets in X such that
Aξ = Bξ ∩ E for all ξ < α. We put

B =
⋃

ξ<α, ξ is odd

(Bξ \Bξ+1).

Then B is functionally Fσ-set in X and B ∩ E = A. �

Lemma 5. Let X be a compact space and B ⊆ X be functionally Borel measurable H-set.
Then B is functionally ambiguous in X.
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Proof. Since B is functionally Borel measurable, there exists a sequence (fn)n∈ω of conti-
nuous functions fn : X → [0, 1] such that B belongs to the σ-algebra generated by the
system of sets {f−1n (0) : n ∈ ω}. We consider a continuous map f : X → [0, 1]ω,
f(x) = (fn(x))n∈ω for all x ∈ X, and a compact metrizable space Y = f(X) ⊆ [0, 1]ω.

We show that the set B′ = f(B) is an H-set in Y . Suppose to the contrary that there

is a closed nonempty set Y ′ in Y such that Y ′ ∩B′ = Y ′ \B′ = Y ′. We putX ′ = f−1(Y ′)
and g = f |X′ . Since X ′ is a compact space and f(X ′) = Y ′, we apply Zorn's Lemma
and �nd a closed nonempty set Z ⊆ X ′ such that the restriction g|Z : Z → Y ′ of the
continuous map g : X ′ → Y ′ is irreducible. Keeping in mind that the preimage of any
everywhere dense set remains everywhere dense under an irreducible map, we obtain that

g−1(Y ′ ∩B′) = g−1(Y ′ \B′) = Z = Z ∩B = Z \B,
which contradicts to resolvability of B.

By [5, �30, X, Theorem 5] the set f(B) is Fσ and Gδ in a compact metrizable space
Y . Since B = f−1(f(B)) and f is continuous, we have that B is functionally ambiguous
subset of X. �

Proposition 2. Let X be a countable hereditarily irresolvable completely regular space.
Then X is B∗1-embedded in βX.

Proof. Since X is countable and completely regular, it is perfectly normal. Therefore,
every subsets of X is functionally ambiguous.

Fix an arbitrary A ⊆ X. By Lemma 3 the set A is an H-set. We apply Lemma 4
and �nd a functionally H-set B ⊆ βX such that B is Fσ and B ∩X = A. Notice that
B is functionally ambiguous by Lemma 5. Hence, B is a B∗1-embedded subspace of βX
according to [4, Proposition 5.1]. �

Let us observe that examples of countable hereditarily irresolvable completely
regular spaces can be found, for instance, in [6, p. 536].

Proposition 3. Let X be a countable completely regular space without isolated points.
Then X is not B1-embedded in βX.

Proof. Observe that X is a functionally Fσ-subset of βX. Now assume that X is B1-
embedded in βX. According to [3, Proposition 8(iii)] there should be a function f ∈
B1(βX) such that X ⊆ f−1(0) and βX \ X ⊆ f−1(1). Then the set X is Gδ in βX.
Therefore, X is a Baire space, which implies a contradiction, since X is of the �rst
category in itself. �

Propositions 2 and 3 imply the following fact.

Theorem 2. Let X be a countable hereditarily irresolvable completely regular space wi-
thout isolated points. Then X is B∗1-embedded in βX and is not B1-embedded in βX.
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