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1. INTRODUCTION

Let X be a topological space. A function f: X — R belongs to the first Baire class,
if it is a pointwise limit of a sequence of real-valued continuous functions on X. We
will denote by By (X) and B (X) the collections of all Baire-one and bounded Baire-one
functions on X, respectively.

A subset E of X is By-embedded (Bf-embedded) in X, if every (bounded) function
f € B1(E) can be extended to a function g € B;(X). We will say that a space X has the
property (B = By) if every Bi-embedded subset of X is Bi-embedded in X.

Characterizations of B1- and Bj-embedded subsets of topological spaces were obtai-
ned in [3] and [4].

This short note is devoted to the following interesting problem: to find topological
spaces with the property (B} = By).

In the second section of this note we extend results from [4], Section 6] and show that
every hereditarily Lindel6ff hereditarily Baire space X which hereditarily has a o-discrete
m-base has the property (Bf = B1). In Section [3| we show that any countable completely
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regular hereditarily irresolvable space X without isolated points is Bj-embedded and is
not Bi-embedded in SX.

2. SPACES WITH THE PROPERTY (Bj =B,)

Recall that a set A in a topological space X is functionally Gs (functionally F,),
if A is an intersection (a union) of a sequence of functionally open (functionally closed)
subsets of X. We say that a subset A of a topological space X is functionally ambiguous
if A is functionally F,, and functionally Gs simultaneously.

Lemma 1. Let X be a completely regular topological space of the first category with a
o-discrete w-base. Then there exist disjoint functionally ambiguous sets A and B such
that

X=AUB=A=B.

Proof. We fix a m-base ¥ = (¥, : n € w) of X, where each family ¥;, is discrete and
consists of functionally open sets in X. Denote V,, = | J{V : V € ¥,,} for all n € w.

Let us observe that every open set G C X contains a functionally open subset U
such that U C G C U. Indeed, for every n € w we put U, = WV € 7,: V C G}
and U = J,,c,, Un- Then each U, is functionally open as a union of a discrete family of
functionally open sets. Hence, U is functionally open. It is easy to see that U is dense in
G.

Keeping in mind the previous fact, we may assume that there exists a covering
(F,: n € w) of the space X by nowhere dense functionally closed sets F,, C X. Let
Xo = Fy and X,, = F;, \ U, i for all n > 1. Then (X,,: n € w) is a partition of X by
nowhere dense functionally ambiguous sets X,,.

Fix n € wand V € ¥,. Since X is regular, we can choose two open sets H; and Hs
in V such that H; N Hy = @ and H; C V for i = 1, 2. Let G; and O; be functionally open
sets such that G; C H; C G; and O; C X\ H; C O;,i=1,2. Weput Ay, = X\ (G1UO;)
and By, = X \ (G2 UO3) and obtain disjoint nowhere dense functionally closed subsets
of V.

We put mp = 0 and choose numbers n; > 0 and m; > n; such that X,,, NV} # @
and X,,, NV} # @. Notice that A} =L, X, and B} = J! X,, are nowhere dense

n=ni+1
functionally ambiguous sets in X. Now we consider the set

W ={Vernn:vn(AiuB)) =o}

and observe that the sets A] = U{Ay1:V € #1} and BY = U{By1:V € #,} are
functionally closed and nowhere dense in X. Let A; = A] U Af and By = B] U BY.
Notice that A; and Bj are functionally ambiguous nowhere dense disjoint subsets of X.

Since X \ (41 U By) = X, there exists a number ny > my such that (X, \ (41 U
B1)) NV, # @. We put A, = )2 (X, \ (A1 U By)). Moreover, there exists mg > ns

n=mi+1
such that (X, \ (A1 U B1)) NV # @. Let By = U2, .1(Xn \ (A1 U B1)). We put
W = {V € ¥: VN (AU BS) = &} and observe that the sets A = {Ayq: V € #5}
and BY = {by2: V € #3} are functionally closed and nowhere dense in X. We denote
Ay = A5 U AY and By = B, U BY. Then A, and Bs are functionally ambiguous nowhere

dense disjoint subsets of X.
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Proceeding this process inductively we obtain sequences (Ag)7>, and (Bg)5>, of
functionally ambiguous sets such that Ay NV A @ # B,NV, AyN By = forall k e N
and V € ;. It remains to put A = (J;-; Ak, B = Uz, Bi and observe that AUB = X.

In addition, note that Borel resolvability of topological spaces was also studied
in [I1 2].

We say that a topological space X hereditarily has a o-discrete m-base if every its
closed subspace has a o-discrete w-base. It is easy to see that if a space X hereditarily
has a o-discrete w-base, then each subspace of X has a o-discrete m-base.

Recall that a subspace F of a topological space X is z-embedded in X, if any functi-
onally closed subset F' of E can be extended to a functionally closed subset of X.

Lemma 2. Let X be a normal space such that X hereditarily has a o-discrete w-base. If
X is a By-embedded subset of a hereditarily Baire space Y, then X is hereditarily Baire.

Proof. Assume that X is not hereditarily Baire and find a closed subset F' C X of the
first category. According to Lemmal[I] there exist disjoint functionally ambiguous subsets
A and B in F such that F = AUB = A = B. Since F is a closed subset of a normal
space, F'is z-embedded in X. Therefore, there are two functionally ambiguous disjoint
sets A and B in X such that ANF = A and BN F = B (see [4, Proposition 4.3]). Let
us observe that the characteristic function x : X — [0, 1] of the set A belongs to the first
Baire class. Then there exists an extension f € B1(Y) of x. The sets f~1(0) and f~1(1)
are disjoint Gs-sets which are dense in X. We obtain a contradiction, because X is a
Baire space as a closed subset of a hereditarily Baire space. O

Remark 1. There exist a metrizable separable Baire space X and its Bj-embedded
subspace E which is not a Baire space. Let X = (Q x {0})U(R x (0,1]) and E = Q x {0}.
Then F is closed in X. Therefore, any F,- and Gs-subset C of E is also F,- and G- in
X. Hence, F is Bj-embedded in X.

Theorem 1. Let Y be a hereditarily Baire completely reqular space and X CY be a
Lindelof space which hereditarily has a o-discrete w-base. The following are equivalent:

(1) X is Bi-embedded in Y;
(2) X is By-embedded in Y.

Proof. We need only to show 1) = 2). By Lemma X is hereditarily Baire. Then X is
B;i-embedded in Y by [3, Theorem 13]. O

Corollary 1. Every hereditarily Lindeldff hereditarily Baire space X which hereditarily
has a o-discrete m-base has the property (Bf = By).
3. SPACES WITHOUT THE PROPERTY (B} = B;)

A subset A of a topological space X is called (functionally) resolvable in the sense
of Hausdorff or (functionally) H-set if

AZ(F1\Fg)U(Fg\F4)U-~-U(F§\F£+1)U...,

where (F¢)e<q is a decreasing chain of (functionally) closed sets in X.
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It is well-known [5, §12.I] that a set A is an H-set if and only if for any closed
nonempty set F' C X there is a nonempty relatively open set U C F such that U C A or
UCX\A.

A topological space without isolated points is called crowded.

A topological space X is irresolvable if it is not a union of two disjoint dense subsets.
A space X is hereditarily irresolvable if every subspace of X is irresolvable.

Lemma 3. Every subset of a hereditarily irresolvable space is an H-set.

Proof. Assume that there is a closed nonempty set F' in a hereditarily irresolvable space
X and a set A C X such that FNANF\ A= F. Then

FNA=F\A=F=(FNA)U(F\A),
which contradicts to irresolvability of F. O

A function f: X — Y from a topological space X to a metric space (Y,d) is called
fragmented if for every € > 0 and for every closed nonempty set F' C X there exists a
relatively open nonempty set U C F' such that diamf(U) < e.

Proposition 1. Every bounded function f : X — R on a hereditarily irresolvable space
X is fragmented.

Proof. To obtain a contradiction we assume that there exists a bounded function f: X —
R which is not fragmented. Then there is € > 0 and a closed nonempty set ' C X such
that for every relatively open set U C F we have diamf(U) > e.

Since f(X) is a compact set, we take a finite partition {Bj,...,B,} of f(X) by
sets of diameter < e. Let Hy = f~1(By) N F for every k € {1,...,n}. Then each Hy
has empty interior in F, because f is not fragmented. By Lemma [3] each Hj, is an H-set
and, therefore, is nowhere dense in F. Hence, {Hy, ..., H,} is a finite partition of F' by
nowhere dense sets, which is impossible. O

Lemma 4. Let E be a z-embedded countable subspace of a topological space X and A C FE
be a functionally H-set in E. Then there exists a functionally H-set B C X such that B
is Fy and BNE = A.

Proof. We take a decreasing transfinite sequence (A¢ : £ < a) of functionally closed
subsets of E such that A = [J;_,(A¢ \ A¢t1) (every ordinal ¢ is odd). Since [A] < N,
we may assume that [(Ag : € < )| < Ng. The subspace E is z-embedded in X and we
choose a decreasing sequence (B¢ : { < «) of functionally closed sets in X such that
A¢ = B¢ N E for all £ < a. We put

B=|J (Be\Bep).
£<a, € is odd
Then B is functionally F,-set in X and BN E = A. (]

Lemma 5. Let X be a compact space and B C X be functionally Borel measurable H-set.
Then B is functionally ambiguous in X.
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Proof. Since B is functionally Borel measurable, there exists a sequence (f,,)new of conti-
nuous functions f, : X — [0,1] such that B belongs to the o-algebra generated by the
system of sets {f,1(0) : n € w}. We consider a continuous map f : X — [0,1]*,
f(z) = (fn(2))new for all z € X, and a compact metrizable space Y = f(X) C [0,1]“.
We show that the set B’ = f(B) is an H-set in Y. Suppose to the contrary that there
is a closed nonempty set Y/ in Y such that Y N B’ =Y’ \ B’ =Y’. Weput X' = f~1(Y”)
and g = f|x/. Since X’ is a compact space and f(X') = Y’, we apply Zorn’s Lemma
and find a closed nonempty set Z C X’ such that the restriction g|z : Z — Y’ of the
continuous map ¢g : X’ — Y’ is irreducible. Keeping in mind that the preimage of any
everywhere dense set remains everywhere dense under an irreducible map, we obtain that

g Y NB)Y=g 'Y \B)=Z=ZNB=2Z\B,

which contradicts to resolvability of B.

By [5) §30, X, Theorem 5] the set f(B) is F, and G5 in a compact metrizable space
Y. Since B = f~!(f(B)) and f is continuous, we have that B is functionally ambiguous
subset of X. O

Proposition 2. Let X be a countable hereditarily irresolvable completely reqular space.
Then X is B}-embedded in fX.

Proof. Since X is countable and completely regular, it is perfectly normal. Therefore,
every subsets of X is functionally ambiguous.

Fix an arbitrary A C X. By Lemma [3] the set A is an H-set. We apply Lemma [4]
and find a functionally H-set B C X such that B is F, and BN X = A. Notice that
B is functionally ambiguous by Lemma [5| Hence, B is a Bj-embedded subspace of §X
according to [4, Proposition 5.1]. O

Let us observe that examples of countable hereditarily irresolvable completely
regular spaces can be found, for instance, in [6, p. 536].

Proposition 3. Let X be a countable completely reqular space without isolated points.
Then X is not Byi-embedded in BX.

Proof. Observe that X is a functionally F,-subset of SX. Now assume that X is B;-
embedded in fX. According to [3 Proposition 8(iii)] there should be a function f €
B1(BX) such that X C f71(0) and X \ X C f~!(1). Then the set X is Gs in BX.
Therefore, X is a Baire space, which implies a contradiction, since X is of the first
category in itself. O

Propositions 2] and [3] imply the following fact.

Theorem 2. Let X be a countable hereditarily irresolvable completely reqular space wi-
thout isolated points. Then X is B} -embedded in X and is not Bi-embedded in BX.
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