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1. Introduction. The Fibonacci numbers F, are defined by the recurrence relation
F, = F,_1 + F,_o, for any integer n > 1, and with initial values Fy = 0 and F; = 1.
Different kinds of the Fibonacci sequence and their properties have been presented in
the literature, see, e.g., [1, 4, 7]. Similarly to the Fibonacci numbers, the Lucas numbers
L,, are defined by the recurrence relation L, = L,,_1 + L,,_s, for any integer n > 1, and
with initial values Lo =2 and L; = 1.

The sequence L,, (mod m) is periodic and repeats by returning to its starting values
because there are only a finite number m? of pairs of terms possible, and the recurrence
of a pair results in recurrence of all following terms.

In analogy to the definition of the infinite Fibonacci word [2, 6], one defines the
Lucas words as the contatenation of the two previous terms I, = l,,_1l,_2, n > 1, with
initial values lo = 10 and I; = 1 and defines the infinite Lucas word [, [ = lim1,,.

Using Lucas words, in the present article we shall introduce some new kinds of
infinite words, namely LLP-words, and investigate some of their properties.

For any notations not explicitly defined in this article we refer to [3, 4, 5].

2. Lucas sequence modulo m. The letter p, p > 2, is reserved to denote a prime,
m may be arbitrary integer, m > 2.

Let for any integer n > 0, L,,(m) denote the n-th member of the sequence of integers
L,, (mod m). We reduce L,, modulo m by taking the least nonnegative residues, and let
k(m) denote the length of the period of the repeating sequence L, (m).
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The problem of determining the length of the period of the recurring sequence arose
in connection with a method for generating random numbers. A few properties of the
function k(m) are in the following theorem [9].

Theorem 1. For all m the following hold:
1) Any sequence L, (m) is periodic.
2) If m has prime factorization m = [\, pj*, then k(m) = lem(k(p'), ..., k(pS")).

Theorem 2. If m > 2, then k(m) is an even number.
Proof. We find:
Li(m)(m) = Lo(m) = 2,
Limy-1(m) = La(m) =m —1 = —Ly(m),
Li(my—2(m) = Li(my(m) — Lk(m)—l(m) = Lo(m) + Li(m) = La(m).

Let for each ¢, to, 0 < t < tg — 1 < k(m) — 1, we have Lyu)—¢(m) = (=1)"L¢(m). By
using the fact that

h

Lit1(m) = Le(m) 4+ Li—1(m) (mod m)
for each t € N, the identity above can be verified by direct calculation for t = t:
Lo (m) = Li(m)—to+2(m) = Li(m)—to+1(m) =
= Li(m)—(to—2) (M) = Li(m)—(to—1) (M) =
= (=1)"* 72 Lyy—2(m) — (1) Lyy 1 (m) =
= <_1)t0 (Lt072(m) + Lto*l(m» =
= (=1)" Ly, (m).
If t = k(m), then
Lo(m) = (=1)*™ Ly (m), 2 = (—1)*m2.
Suppose that k(m) is odd, then m = 2, k(2) = 3, or m =4, k(4) = 6. For m > 2 k(m) is
even. O
3. Lucas words.
Let lp =10 and I = 1. Now I, = l,,_1l,_2, n > 1, the contatenation of the two
previous terms. The successive initial finite Lucas words are:
(1) lo=10, l1 =1, Ily=110, I3=1101, I;=1101110 I5=11011101101,...

The infinite Lucas word [ is the limit { = lim/,. It is referenced A230603 in the
On-line Encyclopedia of Integer Sequences [8]. The combinatorial properties of the Fi-
bonacci (A003849 [8] ) and Lucas infinite words are of great interest in some aspects of
mathematics and physics, such as number theory, fractal geometry, cryptography, formal
language, computational complexity, quasicrystals etc. See [5].

As usual we denote by |I,,| the length (the number of symbols) of I,, (see [5]). The
following proposition summarizes basic properties of Lucas words [5, 6].

Theorem 3. The infinite Lucas word and the finite Lucas words satisfy the following
properties:
1) The words 1111 and 00 are not subwords of the infinite Lucas word.
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2) For all n > 1 let ab be the last two symbols of l,,,n > 1, then we have ab = 10 if n is
even and ab = 01 if n is odd.
3) For alln |l,| = Ly.

4. Periodic LLP-words. Let us start with the classical definition of periodicity
on words over arbitrary alphabet {ag, a1, as,...} (see [3]).

Definition 1. Let w = agaias ... be an infinite word. We say that w is

1) a periodic word if there exists a positive integer ¢t such that a; = a;4, for all i > 0.
The smallest ¢ satisfying previous conditions is called the period of w;

2) an eventually periodic word if there exist two positive integers k, p such that a; = a4,
for all ¢ > k;

3) an aperiodic word if it is not eventually periodic.

Hypothesis. The infinite Lucas word is aperiodic.

We consider finite Lucas words [,, (1) as numbers written in the binary system and
denote them by b,,. Denote by d,, the value of the number b,, in usual decimal numeration
system. We write b, = d,, meaning that b,, and d,, are writings of the same number in
different numeration systems.

Example 1.
(2) by =10, by =1, by = 110, bg = 1101, by = 1101110, b5 = 11011101101, ...,

(3) do=2,di =1, dy =6, ds =13, dy = 110, d5 = 1773, ... .
Theorem 4. For any integer n, n > 1, we have
(4) dny = dp_12""* + dy_s
with dy = 2 and dq = 1.
Proof. One can easily verify (4) for the first few n:
dy=6=1-22+2=d 2" + 4y,
ds =13=16-2' +1 =dy2" 4 d,
dy =110 =13 - 2% + 6 = d32"* + dy.
Statement (4) follows from Theorem 3 (statement 3) and the equality

dp =byp=bp_10...04b,_2=dp 1252 +d,_s.
Ln72

O
Let do(m) = 2, lo(m) = 10 and for arbitrary n, n

bp(m) = d,(m) in binary numeration system and I,,(m
I(m) the limit I(m) = lim,,— o0 I, (M).

WV

1, dp(m) = d, (mod m),
ln—1(m)by(m). Denote by
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Example 2.
m=3; do=2,d =1, dy =6, d3 =13, dy =110, d5 = 1773, ...;
do(3) =2, di(3) =1, d2(3) =0, d3(3) =1, da(3) =2, d5(3) =0,
bo(3) =10, b1(3) =1, b2(3) =0, b3(3) =1, ba(3) =10, b5(3) =0, ...;
10(3)=10,1;(3)=101, 1(3)=1010, 13(3)=10101, 14(3)=1010110, I5(3)=10101100, . . . .

Definition 2. We say that

1) l,,(m) is a finite LLP-word type 1 modulo m;
2) I(m) is a infinite LLP-word type 1 modulo m.

Theorem 5. The word I(p) is periodic.

Proof. The statement follows from (4) and Theorem 1 because there are only a finite
number of d,, (mod p) and 2L»-2 (mod p) possible, and the recurrence of the first few
terms sequence d,, (mod p) gives recurrence of all subsequent terms. O

Using Lucas words (1) we define a periodic LLP-word *(m) (infinite LLP-word type
2 by modulo m). As usual we denote by e the empty word [5].

First we define words w;(m). Let w(m) be the last L, (m) symbols of the word
ln. If L,(m) = 0 for some n, then w} (m) = e. The word length |w} (m)| coincides with
L, (m). Since L,(m) is a periodic sequence with period k(m), the sequence |w}(m)]| is
periodic with the same period.

Theorem 6. The word wy,(m) coincides with the word wy, ;. (m).

Proof. Since I,, = l,,_1l,_2, n > 1, the last L,,_5 symbols of the word [,, coincide with
the word [,,_o, and therefore the last L, elements of the word [,,;2, coincide with the
word I,,_o for any natural number r. The period k(m) is an even number (Theorem 2),
so the last L (m) elements of the word [,, coincide with the last L*(m) elements of the
word ln+k(m)- U

*

Let I§(m) = 10 and for arbitrary integer n, n > 1, I, (m) = I¥ _; (m)w,

by *(m) the limit I*(m) = lim,_, o I (m).

(m). Denote

Example 3.
lp=10, =1, Ily=110, I3=1101, Iy =1101110 I =11011101101,...
m=3; Lo(38)=2, L1(3)=1, La(3)=0, L3(3) =1, L4(3) =1, L5(3) =2, ...;
wg(3) =10, wi(3) =1, wi(3) =¢, w3(3) =1, wi(3) =0, wi(3) =01, ...;
15(3) = 10,17 (3) = 101,15(3) = 101,15(3) = 1011, 1;(3) = 10110, 1%(3) = 1011001, ... .
Definition 3. We say that

1) I (m) is a finite LLP-word of type 2 modulo m;
2) I*(m) is an infinite LLP-word of type 2 by modulo m.

Theorem 7. The word I*(m) is a periodic word and has period Lo(m) + ...+ Ly(m)—1-
Proof. The proof is a directly corollary of Theorem 6. O
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