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In this work we find asymptotic formulas for eigenvalues and eigenfunctions
of a Sturm-Liouville type problem with retarded argument which contains a
spectral parameter in the boundary conditions and with discontinuous weight
function and also we obtain bounds for the distance between eigenvalues. We
extend and generalize some approaches and results of the [S. B. Norkin, Di-
fferential equations of the second order with retarded argument, Translations
of Mathematical Monographs, Vol. 31, AMS, Providence, RI (1972)].
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1. Introduction.

Some discontinuous boundary value problems with retarded argument and some
classic boundary value problems have been investigated in [1-18]. Norkin in [2] considered
the equation

" (t) + Axe(t) + M(t)z(t — A(t)) =0
with boundary conditions
z(0) =z () =0,

obtained asymptotic formulas for eigenvalues and eigenfunctions and found bounds for
the distance between eigenvalues of this problem. In this paper we investigate the ei-
genvalues and eigenfunctions of a discontinuous boundary value problem with retarded
argument with discontinuous weight function. Namely, we consider the boundary value
problem for the differential equation

(1) u"(2) + q(a)u(z — Al)) + Ar (2) u(z) = 0
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on [O, 7) U (7, ﬂ with spectral and physical parameter dependent boundary conditions

(2) Vr u(0) 4+ ' (0) = 0,

(3) mAu(m) +u' () =0,

and with transmission conditions

(4) You(g —0) — 5 u(F +0) =0,
(5) YU (5 —0)—6"u(5+0)=0

i) 2

+0)= lim q(z),

2

where the real-valued function ¢(z) is continuous in [0 ”) U (1 7r] and has finite limits
™
2 z—5£0

q(

the real valued function A(z) > 0 is continuous in [0, %) U (3, 7] and has finite limits
A(5+0)= lim A(z),

z— 510
x—A(x) 20if z € [0,%); r—A(z) = §,ifz € (%,7‘(‘]; r(z) =riifz e [O,g) and
r(z) =r? if x € (5, 7]; A is a real positive spectral parameter; m is a positive physical
parameter; r,7_,d, 67,87, 4", v~ # 0 are arbitrary real numbers.

We want to note that differential equations with retarded argument are of im-
portance in the theory of automatic control and in the theory of self-oscillatory systems.
For instance, in automatic control systems retardation is the time interval which the
system requires to react to an input impulse ([2]).

Let wi(z, A) be a solution of Eq. (1) on [0, %] satisfying the initial conditions

(6) wy (0,A) =r7"  and  w) (0,)) = —V\.

Conditions (6) determine a unique solution of Eq. (1) on [0, Z] ([2], p. 12).
After determining the above solution, we shall determine the solution ys(z, \) of
Eq. (1) on [5, 7] by means of the solution y;(x, A) using the initial conditions
+ -
(7) Wa (%,/\) = Zwi(5, ) and wh (%,/\) = wi (5, N).
The conditions (7) define a unique solution of Eq. (1) on [Z, 7] .
Consequently, the function w (z, \) defined on [0, g) U (%7 7r] by the equality

w(z, \) = { wi(x,N), z€ [0, g) ,

WQ($7A), xe(%aﬂ-]a
is a solution of the Eq. (1) on [0, g) U (%, 7r] which satisfies one of the boundary conditions
and transmission conditions.
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2. Eigenvalues and Eigenfunctions of the Problem (1)—(5).

Lemma 1. Let w(x,\) be a solution of Eq. (1). Then the following integral equations
hold:

T+

(8) wi(x,\) = Y2 cos(rVAz + T) — %/q(T) sinr, VA (z — 1) wy (1 — A (1), \) dr,
0

— (T
’w2($,)\)=%U)ﬂ%a)\)COST,\/X(ﬂU—g)-‘ri’Y w3, )sinr,\f)\(x—g)—
VAr_6-

x

- r—\/_X q(7)sinr_ VX (z — ) wy (1 — A (1), ) dr.

(9)

Proof. To prove this lemma, it is enough to substitute —A\2w;(7,\) — w{(7,\) and
—~A2wa(7,A) — wh (7, A) instead of —q(T)wi(7 — A(7),\) and —q(7)wa (T — A(7), \) in
the integrals in (9), (10) respectively and integrate by parts twice. O
Theorem 1. Problem (1)—(5) can have only simple eigenvalues.

Proof. The proof is similar to the proof of Theorem 1 in [8]. O

The function w(x, A) defined in Section 1 is a nontrivial solution of Eq. (1) satisfying
conditions (2) and (4)-(5). Putting w(x, A) into (3), we get the characteristic equation

(10) Z(A\) =w' (7, A) + mAw(w, \) = 0.

By Theorem 1 the set of eigenvalues of boundary-value problem (1)-(5) coincides
with the set of real roots of Eq. (10). Let

Q=74 [ lg(n)|dr, Qe =r_ [ |q(7)|dr.
/ /

Lemma 2. Let A > max{2Q1,2Q2}. Then for the solutions wy (x,\) and ws (z, X)of
Eq. (8) and Eq. (9) the following inequalities hold:

(11) lwy (z,A\)| < const., z€[0,%],

(12) lwa (2, A)] < const., z € [F,7].

Proof. The proof is similar to the proof of Theorem 1 in [7]. O
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From (8)-(10)

w/2
_# [;/f cos(ﬁ%ﬁ\+g)_%/q(7) Sin(“rﬁ(g—T))wl(T—A(T),)\)dT] sin r,gﬁ
0
/2

+1- q(7) cos (T+\/X(§—T))w1(T—A(7—)7 )\)dTl cos r_gﬁ

VB (£554)
0

-i-m)\{glr l;/f COS(7T+T;\&+%)—% /q(T) sin(hr\f)\(g—r))wl(T—A(T), )\)drl cos T’Zﬁ
0
/2
e l V2Xsin(T B4 1) g2 / g(7) cos (uﬁ(gT))wl(TA(T),A)dT]
0
(13)

T

2 oy

< sin TV e q(7) sin (7‘, \/X(’]T — ’7'))’(1)2(7’ — A7), )\)dT} =0.
/2

Let A be sufficiently large and vT6~r_ = r, 6Ty ~. With the helps of (8), (9), (11) and
(12), we have

VAcos (@ [ry +r-]+Z)+0(1) =0.
So we have the following formula for the eigenvalues:

in —3 1
@:72[““1_] +0 (L),

Using the same techniques in [2] we find the next asymptotic formulas for the eigenfuncti-
ons of problem (1)—(5):

urn =5 {eos (Ur25m) —sin (222 ) )y 0 (1), we [0.5)

and

7“71’}’+ [4”—3]7’—7’23? [An—=3][rL+r_]m
Uzn = +57+ {COS ( 2[74—',—7:1r + 16[T+j&r-7",] )

. 4n—3 r,r2w n—3][r r_|mw s
—sin (Spt 4 glldrld) L 0 (1), we (3,7].

Now let us assume that the following conditions hold: The derivatives

q

A"(x) exist and are bounded in [0, 5)(J(5,n] and have finite limits ¢'(§ £0) =

lirnjEO ¢'(x) and A"(5+0) = limiO A" (x), respectively; A'(z) <1 in [0, 5)U(F, 7],
T

=
z—%

A(0)=0 and lim A(z)=0.
z—5+0
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Under these additional conditions we have
7+r 4V (T—A(T
(14) wl(T—A(T),A)zrﬁ?cos(w)+O(%>7

(15)  walr - A(). ) = L2 cos (Tl )i WACAIDY L g (1)

Let

R (e 0 8() = [ 45 sin (R/3800x ) gy
0

Ra(z, A, A(T)) = / %cos (%) dr,
0

sin (7“ 4‘5?“) T ) dr,

/2
Ry (z, )\, A(T)) = / % cos (%) dr.
w/2

The following formulas

/(7 (r+4f @r—A(r) H) dr

O

/(7 S(r+4f(2r AT))+7r)dT

(16) % =0(%)
a(r) r_4v/X( 27’ A(1))

/3 V2 “( )

/ a(r) rAVACGT=A()+r ) 4

Tr/z fCOS( 1 ) T

can be proved by the similar method as in Lemma 3.3.3 in [2]. Putting formulas (14) and
(15) in (13) and using (16) we obtain following equality:

(ﬁﬂ'(r;Jrr_) n %)

COS

sin <7ﬁﬂ(%'+r_) Jr%)

- 7

(5+77+m5w+ [T+Rg(a(c§,+,\ﬁ(f))+r_R4(m,A,A(T))]) L0 (%> _
_ 4n-3

S 20y +r]
4[5y~ +md—~t] [r+32(2 S A (1) 4Ry, 2t A m)}

_ 1
On = (4n — 3) mo+é— 05

Now replacing v\ by + d,, we get
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Thus, we now may obtain a sharper asymptotic formula for the eigenfunctions.
Putting (14) in (8) and replacing v/A by /A, for z € [0, Z) we have

o r2 (8n—6)z+m(ry+r_) (8”_6)"‘2\/57’1(7”4—"‘7”—)1%1( W A("'))
uln(ﬂ?) = COs ( 4(ry+r_) ) [ r1v2(4n—3) .

(8n—6)xz+m(ry+r_)
_4\[sm< 0 tr) )

X( by 6y R2(272[+M7A(T))+7nr’y+6R4(W7W,A(T))> +O(L)

(4n—3)mwryd+o6— n2/"

Putting (15) in (9) and replacing v'A by v/A,, for = € (%, 7] we have
UQn((E) _ At { |:(_1)n+1 Sin( _((4n—3)z) + cos (‘n'[(m_—r_)(4n—3)+(r++r_)}+(8n—6)r_m)}

25+ 2(r4+r_) 4(ry+r_)
(8n—6)+2v2r (i +r- )R (5, 42[rf+f ]’A(T)> 1) cos [ T=(4n=3)
X r+\f(4n 3) + |:(_ ) Cos ( 2(ry+r_) )

_sin w[(re—r—)(4n—=3)+(r4+r_)]+Bn—6)r_= « 2T‘+(T++7,7)R2( [ +r ]’A(T)>
A(ro+r_) (4n—3)

V2y~ n+1 (4n—3)r’r n (4n—-3)r’r x
— o 5 {( 1 Sm( 2(r++r,)+ ) + (4nf3)ﬂ' [(_1) cos (W) +

w[(r+—r_)(4n—3)+(r++r_)]+(8n—6)r_rc>}
4(ry+r_)

xsin(

[76++7+577z[T+R2<2,m A )+rRa(mopist, (T))ﬂ]
6t~

X

w[(ry—r_)(4n—3)+(r4y+r_)]|+(8n—6)r_=

YT (e n r_(4n—3)x
+ o §<Zn 3) RQ(Q’% A(T)) {(_1) cos (W)

_sin (w[(r+—r,)(4n—3)+(r++r,)]+(8n—6)r,m) }

A(rp+r_)

-3 4n—3
2y T+(T++T7)R1<%7W7A(T)>

+ 5 (an=3)

x{ (0" sin (TR ) 4 cos (g bl inntias ) |
2y tr_(ry4r_) {Sil’l (7T[(7‘+7r_)(4n73)+(r++7‘_)]+(8n76)r_a:)

(4n—3)r4 o6+ A(rp+r_)

< R (. 22 A ) = By (2, iy A(r)

m[(ry—r_)4n—3)4+(r4y+r_)]+(8n—6)r_x
xcos( Iy —r-) 4274(;;.7) [+{8n-6) )}4—0(”%)
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3. Bounds for the Distance Between Eigenvalues.
Let us define

min {33Q7, 7% Q37> }

X0 = x
12Q2, ifx|q<:c>\>/ g()dt, 0 < <.
0

where [y is the unique real root of the equation 5 = (\/2 +v2 + \/i) el/B; 4y is the

unique real root of the equation v = % (\/ 9+ 42+ 3) e Q= / lg(z)| dz and
0

Qo = maxy - |¢(x)|. Assume that A 2 xo and let An, An41,..., AN4p,... be the ei-
genvalues of problem (4)—(5) listed in the increasing order, N is the number of zeros on
the set (0,7/2) U (w/2,7) of the eigenfunctions corresponding to the eigenvalue Ay. In
what follows the eigenvalues with odd index will be called odd, and those with even index
will be called even.

Now, we will state the following theorem which can be proven easily using the same
method as in [2].

Theorem 2 (Asymptotic Oscillation Theorem). The eigenvalues of problem (1)—(5)
form an unbounded increasing sequence AN, AN41,. .., AN4p;- .., in the region X\ 2 xo.
Moreover, the eigenfunction corresponding to the eigenvalue Ay, has ezactly N + p
zeros on the set (0,7/2) U (7/2,7), where N is the number of zeros of the eigenfunction
corresponding to the first eigenvalue Ay of the sequence.

Lemma 3. Suppose that A\ = xo in (1) and that X' is an eigenvalue of problem (1)—(5).
dn' — 3 1

Th N =y =———+405y, wh " it d |0y € ———.

en VN = p 2[r++r,]+ n, where n' is an integer, and |6,/ < et

Moreover, if X is an odd eigenvalue, then n' is even; for an even eigenvalue, n’ is odd.

Proof. Suppose that A’ is an odd eigenvalue of the problem (1)—(5) and that

— 4n’ — 3
17 )\/ - ! = —F———3 + 5,”/
(17) =3 [ry +r_]
where n’ is an integer, and
1
18 S| < —
(18) o <

Differentiating (9) with respect to = and evaluating its value at © = 7 we obtain

(19) ‘sin (7“'”“;*“] + %)‘ > V2
However, if A’ = xo, from (6) and Lemma 2.3.6 in [2] it follows that
1] , / -
(20) " q(7)cos(pr_ (m—7))wy (1 — A7), N)dr| < 5
w/2

and it follows from the (19) and (20) that the sign of the derivative coincides with the
sign of sin (W%M + %) From Theorem 3.1 and Lemma 2.3.3 in [2] we obtain that



Erdogan SEN, Azad BAYRAMOV
186 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2017. Bunyck 83

wl, (m, A') > 0. Therefore we get

. 'mlry+r_] T
(21) sin (”+ + Z) > 0.
From (17) it now follows that
sin (£l 5) = o (e o) Sl )
— sin " ;3)7r cos (5”'W[T;+T’] + %) :
If the equality holds in (18), then cos (% + Z) = 0 and therefore

sin (% + %) = 0, which contradicts (21), the integer n’ is defined uniquely and
(4n'73)7r
1

% + %‘ < 5. Then cos (% + %) > 0 and, from (21), sin > 0.

Thus the proof is completed. O

Theorem 3. Let N = p2, N = pu3, N = pu3 (N > N > X = xo) be three successive
eigenvalues of problem (1)—(5). Then

(22) u%<ﬂ3*u1<w
(23) u3*u2<u%, u27u1<ﬁ.
Proof. By Lemma 3.2, us = %—1—5% and 1 = %—&—&m with n3—n; = 2
and [0, | < et |00, ] < ﬁ Therefore
o= 2 2 5 15 >

The inequalities in (23) and the second inequality in (22) may be proved using the same
method in the proof of Theorem 3.6.1 in [2]. O
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