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We study feebly compact shift-continuous 77-topologies on the symmetric
inverse semigroup .#y" of finite transformations of the rank < n. For any positive
integer n > 2 and any infinite cardinal A a Hausdorff countably pracompact
non-compact shift-continuous topology on .#y" is constructed. We show that
for an arbitrary positive integer n and an arbitrary infinite cardinal A for a
T1-topology 7 on .#" the following conditions are equivalent: (i) 7 is countably
pracompact; (i) 7 is feebly compact; (i) 7 is d-feebly compact; (iv) (F3', T)
is H-closed; (v) (£, 7) is Ny-compact for the discrete countable space Ny;
(vi) (A3, 7) is R-compact; (vii) (F3, 7) is infra H-closed. Also we prove that
for an arbitrary positive integer n and an arbitrary infinite cardinal X\ every
shift-continuous semiregular feebly compact Ti-topology 7 on £ is compact.

Key words: semigroup, inverse semigroup, semitopological semigroup,
compact, countably compact, countably pracompact, feebly compact, H-
closed, infra H-closed, X-compact, semiregular space.

We follow the terminology of [6, 7, 8, 26, 27]. If X is a topological space and A C X,
then by clx(A) and intx(A) we denote the topological closure and interior of A in
X, respectively. By |A| we denote the cardinality of a set A, by AAB the symmetric
difference of sets A and B, by N the set of positive integers, and by w the first infinite
cardinal.

A semigroup S is called inverse if every a in S possesses an unique inverse a ™!, i.e.
if there exists an unique element a~' in S such that

ac ta=a and ataa ™t =a N

A map which associates to any element of an inverse semigroup its inverse is called the
1NUErsion.

A topological (inverse) semigroup is a topological space together with a continuous
semigroup operation (and an inversion, respectively). Obviously, the inversion defined
on a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse

2010 Mathematics Subject Classification: 22A15, 54D45, 54H10, 54A10, 54D30, 54D40.
© Gutik O., 2017



ON FEEBLY COMPACT SEMITOPOLOGICAL ...
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mart. 2017. Bumyck 83 43

semigroup) and 7 is a topology on S such that (.5, 7) is a topological (inverse) semigroup,
then we shall call 7 a semigroup (inverse) topology on S. A semitopological semigroup
is a topological space together with a separately continuous semigroup operation. If §
is a semigroup (an inverse semigroup) and 7 is a topology on S such that (S,7) is
a semitopological semigroup (with continuous inversion), then we shall call T a shift-
continuous (inverse) topology on S.

If S is a semigroup, then by E(S) we denote the subset of all idempotents of S.
On the set of idempotents F(S) there exists a natural partial order: e < f if and only
if ef = fe=-e. A semilattice is a commutative semigroup of idempotents. A topological
(semitopological) semilattice is a topological space together with a continuous (separately
continuous) semilattice operation. If S is a semilattice and 7 is a topology on S such that
(S, 7) is a topological semilattice, then we shall call T a semilattice topology on S.

Every inverse semigroup S admits a partial order:

axb if and only if there exists e € E(S) such that a = eb.

We shall say that < is the natural partial order on S.

Let A be an arbitrary non-zero cardinal. A map « from a subset D of X into \ is
called a partial transformation of A. In this case the set D is called the domain of o and
is denoted by dom «.. The image of an element x € dom & under « is denoted by xa Also,
the set {z € A\: ya = x for some y € Y} is called the range of o and is denoted by ran a.
The cardinality of ran « is called the rank of a and is denoted by rank a.. For convenience
we denote by @ the empty transformation, a partial mapping with dom @ =ran @ = @.

Let ., denote the set of all partial one-to-one transformations of A together with
the following semigroup operation:

z(af) = (za)f if x € dom(af) ={y € doma: ya € dom S}, for «,p € 4.

The semigroup %, is called the symmetric inverse semigroup over the cardinal \ (see
[7]). The symmetric inverse semigroup was introduced by V. V. Wagner [29] and it plays
a major role in the theory of semigroups.

Put &) = {a € #: ranka < n},forn=1,2,3,.... Obviously, & (n =1,2,3,...)

are inverse semigroups, .#y" is an ideal of .#y, for each n = 1,2,3,.... The semigroup .#}*
is called the symmetric inverse semigroup of finite transformations of the rank < n. By
1‘1 :L‘Z PRI :En
Yyi Y2 - Un

we denote a partial one-to-one transformation which maps z; onto y;, x2 onto yso, ...,
and z, onto y,. Obviously, in such case we have z; # z; and y; # y; for i # j (i,j =
1,2,3,...,n). The empty partial map @: A — X is denoted by 0. It is obvious that 0 is
zero of the semigroup #".

Let A be a non-zero cardinal. On the set By = (A x A\) U {0}, where 0 ¢ X x A\, we
define the semigroup operation “-” as follows

_J (a,d), if b=g
(avb) (C7 d) - { 07 lf b # c,
and (a,b) -0 = 0 (a,b) = 0-0 = 0 for a,b,c,d € A. The semigroup B, is called
the semigroup of A x A\-matriz units (see [7]). Obviously, for any cardinal A > 0, the
semigroup of A\ x A-matrix units B, is isomorphic to .Z}.
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A subset A of a topological space X is called regular open if intx (clx(A)) = A.
We recall that a topological space X is said to be

o functionally Hausdorff if for every pair of distinct points x1,z2 € X there exists
a continuous function f: X — [0,1] such that f(z1) =0 and f(z2) = 1;

o semiregular if X has a base consisting of regular open subsets;

o quasiregular if for any non-empty open set U C X there exists a non-empty open
set V' C U such that clx (V) C U,

e compact if each open cover of X has a finite subcover;

o sequentially compact if each sequence {z; };en of X has a convergent subsequence
in X;

e countably compact if each open countable cover of X has a finite subcover;

e H-closed if X is a closed subspace of every Hausdorff topological space in which
it is contained;

o infra H-closed provided that any continuous image of X into any first countable
Hausdorff space is closed (see [20]);

e countably compact at a subset A C X if every infinite subset B C A has an
accumulation point x in X;

e countably pracompact if there exists a dense subset A in X such that X is

countably compact at A;

feebly compact if each locally finite open cover of X is finite;

o d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite
(sce [24]);

e pseudocompact if X is Tychonoff and each continuous real-valued function on X
is bounded,;

e Y-compact for some topological space Y, if f(X) is compact, for any continuous
map f: X —- Y.

According to Theorem 3.10.22 of [8], a Tychonoff topological space X is feebly
compact if and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly
compact if and only if every locally finite family of non-empty open subsets of X is finite.
Every compact space and every sequentially compact space are countably compact, every
countably compact space is countably pracompact, every countably pracompact space is
feebly compact (see [3]), every H-closed space is feebly compact too (see [15]). Also, every
space feebly compact is infra H-closed by Proposition 2 and Theorem 3 of [20].

Topological properties of an infinite (semi)topological semigroup A X A-matrix units
were studied in [12, 13, 14]. In [13] it was shown that on the infinite semitopological semi-
group A X A-matrix units B) there exists a unique Hausdorff topology 7. such that (B, 7.)
is a compact semitopological semigroup and it was also shown that every pseudocompact
Hausdorff shift-continuous topology 7 on B is compact. Also, in [13] it was proved that
every non-zero element of a Hausdorff semitopological semigroup A x A-matrix units Bj
is an isolated point in the topological space By. In [12] it was shown that the infinite
semigroup A X A-matrix units By cannot be embedded into a compact Hausdorff topologi-
cal semigroup, every Hausdorff topological inverse semigroup S that contains B) as a
subsemigroup, contains B) as a closed subsemigroup, i.e., B) is algebraically complete
in the class of Hausdorff topological inverse semigroups. This result in [11] was extended
onto so called inverse semigroups with tight ideal series and, as a corollary, onto the
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semigroup #7". Also, in [16] it was proved that for every positive integer n the semigroup

\ is algebraically h-complete in the class of Hausdorff topological inverse semigroups,
i.e., every homomorphic image of .#\" is algebraically complete in the class of Hausdorff
topological inverse semigroups. In the paper [17] this result was extended onto the class
of Hausdorff semitopological inverse semigroups and it was shown therein that for an
infinite cardinal A the semigroup .#7* admits a unique Hausdorff topology 7. such that
(7, 7e) is a compact semitopological semigroup. Also, it was proved in [17] that every
countably compact Hausdorff shift-continuous topology 7 on B, is compact. In [14] it
was shown that a topological semigroup of finite partial bijections .#y" with a compact
subsemigroup of idempotents is absolutely H-closed (i.e., every homomorphic image of
# is algebraically complete in the class of Hausdorff topological semigroups) and any
countably compact topological semigroup does not contain .#* as a subsemigroup for
infinite cardinal A. In [14] there were given sufficient conditions onto a topological semi-
group .y to be non-H-closed. Also in [10] it was proved that an infinite semitopological
semigroup of \ x A-matrix units B) is H-closed in the class of semitopological semigroups
if and only if the space B) is compact.

For an arbitrary positive integer n and an arbitrary non-zero cardinal A we put

exp, A ={A C X: |A] <n}.

It is obvious that for any positive integer n and any non-zero cardinal A the set
exp,, A with the binary operation N is a semilattice. Later in this paper by exp, A we
shall denote the semilattice (exp,, A,N). It is easy to see that exp,, A is isomorphic to the
subsemigroup of idempotents (the band) of the semigroup #}* for any positive integer n.
We observe that for every positive integer n the band of the semigroup .#;* is isomorphic
to the semilattice exp,, A by the mapping E(.#]") 5 ¢ — dome.

In the paper [18] feebly compact shift-continuous topologies 7 on the semilattice
exp,, A were studied, and all compact semilattice topologies on exp,, A were described. In
[18] it was whown that for an arbitrary positive integer n and an arbitrary infinite cardi-
nal A for a Ti-topology 7 on exp,, A the following conditions are equivalent: (i) (exp,, A, 7)
is a compact topological semilattice; (i) (exp,, A, 7) is a countably compact topological
semilattice; (¢i7) (exp,, A, 7) is a feebly compact topological semilattice; (iv) (exp,, A, T)
is a compact semitopological semilattice; (v) (exp,, A\,7) is a countably compact semi-
topological semilattice. Also, in [18] there was constructed a countably pracompact H-
closed quasiregular non-semiregular topology 72 such that (exp2 A, szc) is a semitopologi-
cal semilattice with the discontinuous semilattice operation and it was proved that for
an arbitrary positive integer n and an arbitrary infinite cardinal A a semiregular feebly
compact semitopological semilattice exp,, A is a compact topological semilattice. In [19]
it was shown that for an arbitrary positive integer n and an arbitrary infinite cardinal A
for a Ty-topology 7 on exp,, A the following conditions are equivalent: (i) 7 is countably
pracompact; (i) 7 is feebly compact; (ii7) 7 is d-feebly compact; (iv) (exp,, A, 7) is an
H-closed space.

This paper is a continuation of [11, 13, 16, 17]. We study feebly compact shift-
continuous T7-topologies on the semigroup .#)'. For any positive integer n > 2 and
any infinite cardinal A a Hausdorff countably pracompact non-compact shift-continuous
topology on # is constructed. We show that for an arbitrary positive integer n and
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an arbitrary infinite cardinal A for a Tj-topology 7 on )" the following conditions are
equivalent: () 7 is countably pracompact; (i¢) 7 is feebly compact; (iii) 7 is d-feebly
compact; (iv) (3, 1) is H-closed; (v) (&), 7) is Ny-compact for the discrete countable
space Ny; (vi) (Z}, 7) is R-compact; (vii) (&3, 7) is infra H-closed. Also we prove that for
an arbitrary positive integer n and an arbitrary infinite cardinal A every shift-continuous

semiregular feebly compact T%-topology 7 on .#{* is compact.

Later we shall assume that n is an arbitrary positive integer.
For every element a of the semigroup .#y" we put

Tla:{BEﬂf:aoflﬂ:a} and Troz:{ﬂe]/\”:ﬁofla:a}.

Then Proposition 5 of [17] implies that T;a = 1,.a and by Lemma 6 of [23, Section 1.4]
we have that o < § if and only if 3 € 1,a for a, 8 € Z}'. Hence we put T a = 1) = 1.«
for any o € ).

The definition of the semigroup operation of .#;* implies the following trivial lemma.

Lemma 1. Let n be an arbitrary positive integer and A be any cardinal. Then for any
elements o and 8 of the semigroup 95" the sets a?'(3 and

lqa={ye S y<a}
are finite.

Proof. For any elements « and 5 of #* we have that
af'f=ady NI ={ye I: domy Cdoma and rany Cranf}.

Since the sets dom a and ran 3 are finite, a.#)' 8 is finite, as well.

For every v € |« the definition of the natural partial order < on the semigroup
F (see [23, Chapter 1]) implies that the finite partial map + is a restriction of the finite
partial map « onto the set A = doma N dome, where € is an idempotent of #* such
that v = ea. This implies that the set | o is finite. O

Lemma 2. Let n be an arbitrary positive integer, A be any infinite cardinal and T be a
shift-continuous Ty -topology on semigroup #3'. Then for every element o of the semigroup
I the set T is open-and-closed in (I3, T), the space (I3, ) is functionally Hausdorff
and hence it is quasi-reqular.

Proof. Fix an arbitrary o € .#'. Then a € a.#{'a and
afla=adPNIa=aa I NIaa=aa A0 a,

because " is an inverse semigroup. Since the topology 7 is 77, Lemma 1 implies that
the set (a#y'a) \ {a} is closed in (£, 7). By the separate continuity of the semigroup
operation in (£}, 7) we have that there exists an open neighbourhood U(«) of the point
a in (&, 7) such that

act-U(a)-a ta C I8\ (s U 2a)\ {a}).

The last inclusion implies that U(a) C fa. Again, since the semigroup operation in
(#3,7) is separately continuous the set T« is open in (#3",7) as a full preimage of

U(a) and the set T a is closed in (£, 7) as a full preimage of the singleton set {a}.
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Fix arbitrary distinct elements « and § of the semigroup .#;*. Then either o and 3
are comparable or not with respect to the natural partial order on .#}. If o < 8 or « and
§ are incomparable in (£, <) then it is obvious that the map g: .#* — [0,1] defined
by the formula

_ )L iy e
(”)f‘{ 0 ify ¢ 18

is continuous. We observe that quasi-regularity of (.#), 7) follows from the fact that every
non-empty open subset U of (£, 7) contains a maximal element § with respect to the
natural partial order < on .#y' such that T« is an open-and-closed subset of (I, 7)
and hence, since 7 is a T}-topology, {a} C U is an open-and-closed subset of (7", 7). O

A topological space X is called

o totally disconnected if the connected components in X are singleton sets;
o scattered if X does not contain non-empty dense in itself subset, which is equi-
valent that every non-empty subset of X has an isolated point in itself.

Lemma 2 implies the following corollary:
Corollary 1. Let n be an arbitrary positive integer, A be any infinite cardinal and T be a

shift-continuous Ty -topology on the semigroup Z3*. Then (S, T) is a totally disconnected
scattered space.

A partial order < on a topological space X is called closed if the relation < is a
closed subset of X x X in the product topology. In this case (X, <) is called a pospace [9].
Lemma 2 and Proposition VI-1.4 from [9] imply the following corollary:

Corollary 2. Let n be an arbitrary positive integer, A be any infinite cardinal and T be
a shift-continuous Ty -topology on semigroup I'. Then (I3, T,<) is a pospace

The following example shows that the statement of Lemma 2 does not hold in the
case when (7, 7) is a Ty-space.

Example 1. For an arbitrary positive integer n and an arbitrary infinite cardinal A we
define a topology 79 on .#)" in the following way:

(7) all non-zero elements of the semigroup .#;" are isolated points in (&', 79); and
(#4) &3 is the unique open neighbourhood of zero in (&7, 7).

Simple verifications show that the semigroup operation and inversion on (£, 7y) are
continuous.

We need the following example from [17].
Example 2 ([17]). Fix an arbitrary positive integer n. The following family

%C = {Ua(a17~";ak) :T<OZ\(T#041UUT<O£]€)
a; € tga\{a}, 0,0 € 30 = 1,...,k}

determines a base of the topology 7 on .#)'. By Proposition 10 from [17], (&, 7c) is a
Hausdorff compact semitopological semigroup with continuous inversion.
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By Theorem 7 from [17], for an arbitrary infinite cardinal A and any positive integer
n every countably compact Hausdorff semitopological semigroup #3* is topologically
isomorphic to (', 7). By Corollary 1 the topological space (£}, 7.) is scattered.
Since every countably compact scattered Tj-space is sequentially compact (see [28,
Theorem 5.7]), (#, 7c) is a sequentially compact space.

Next we summarise the above results in the following theorem.

Theorem 1. Let n be an arbitrary positive integer, A be any infinite cardinal and T be
a T -shift continuous topology on the semigroup #'. Then the following conditions are
equivalent:
(i) T is compact;
(i1) T =71¢;
(#it) T is countably compact;
(iv) T is sequentially compact.

Since every feebly compact Hausdorff topology on the semigroup . is compact,
it is natural to ask: Does there exist a shift-continuous Hausdorff non-compact feebly
compact topology T on the semigroup I\ for n > 2¢

The following example shows that for any infinite cardinal A and any positive integer
n > 2 there exists a Hausdorff feebly compact topology 7 on the semigroup #y" such
that (£, 7) is a non-compact semitopological semigroup.

Example 3. Let \ be any infinite cardinal and 72 = 7 be the topology on the semigroup
# which is defined in Example 2. We construct a stronger topology 72 on .#¢ then 72
in the following way. By m: A\ — .#2: a — &, we denote the map which assigns to any
element a € A the identity partial map e,: {a} — {a}. Fix an arbitrary infinite subset A
of . For every non-zero element z € .#3 we assume that the base %2 () of the topology
Tf2c at the point x coincides with the base of the topology 72 at z, and

B (0) = {Ugp(0) =U(0)\ (B)rU{e,...,as}): U(0) € BZ(0),01,...,as € I5\ {0}
and B C A such that |AAB| < oo}

form a base of the topology 72 at zero 0 of the semigroup .#¢. Simple verifications show
that the family { %% (z): € #2} satisfies conditions (BP1)—(BP4) of [8], and hence
72 is a Hausdorff topology on .#2.

Proposition 1. Let \ be an arbitrary infinite cardinal. Then (])?7’7'3:) is a countably
pracompact semitopological semigroup with continuous inversion.

Proof. 1t is obvious that the inversion in (/f7 szc) is continuous and later we shall show
that all translations in (,ﬂ)\27 TEC) are continuous maps. We consider the following possible
cases.

(1) 0-0 = 0. For every basic open neighbourhood Ug(0) of zero in (&2, 72) we
have that

Ug(0)-0=0-Ug(0) ={0} C U,(0).

(2) -0 = 0. For all basic open neighbourhoods Ug(0) and U, (1, ..., Bk) of zero

and an element o # 0 in (ff, szc), respectively, we have that

Ua(B1,--.,Bk) -0 ={0} C Ug(0).
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Let Vp(0) = #2\ (tgo1 U+ Utga, U (B)7) be an arbitrary basic neighbourhood of
zero in (ﬂf, Tf%:) Without loss of generality we may assume that

ranka; = ... =ranka, = 1 <ranko.

Put
¢ = {weff : ranky = 1 such that ay = «; for some i =1,...,k

or ay € B(53)\ {0}}.

The definition of the semigroup .#7 implies that the set C; is finite. Then we have that
o WB(O) - VB(O) for WB(O) = j)? \ U {T<’71 v e Cl}.
(3) 0-a = 0. For all basic open neighbourhoods Ug(0) and U, (B4, ..., Bx) of zero
and an element « # 0 in (ﬂf, Tf%), respectively, we have that
0-Uy(B1,...,0k) ={0} C Ug(0).
Let Vp(0) = #\ (Tgo1 U -+ Utga, U (B)7) be an arbitrary basic neighbourhood of
zero in (//\2, Tf%:) Without loss of generality we may assume that
ranka; = ... =rankag = 1 <ranko.

Put
Cr={v¢€ F2: rank~y = 1 such that ya = a; for some i = 1,...,k
or ya € E(3)\ {0}}.
The definition of the semigroup .#Z implies that the set C, is finite. Then we have that
Wg(0) - o € Vp(0) for Wp(0) = £Z\ U {txv: v €Cr}.

(4) a- B =~ # 0 and rank @ = rank § = rank~, i.e., rana = dom . Then for any
open neighbourhoods Uq (v, ..., ar), Ug(B1,...,Bn), Uy(71,...,7m) of the points «, 8
and v in (&2, 72), respectively, we have that

Uoc(a17"'7ak‘) /8 =a- Uﬁ(ﬁl?;ﬁn) = {’Y} g U’y(’yla" 7’Ym)

(5) a- 8 =7 # 0 and ranka = ranky = 1 and rank 8 = 2, i.e., rana & dom f3.
Then for any open neighbourhoods Ug(f1, ..., 3,) and Uy(71,...,7vm) of the points 3
and v in (£, 72), respectively, we have that

a-Ug(Br,-- - Bn) = {7} S Uy (01, m)-

Let Uy(y1,...,7) be an arbitrary open neighbourhood of the point + in (f/\z,Tf?c) for
some V1,...,V € 157, L.e, ranky; = ... =rank~y, = 2. Put

Q= {5€T$a: 556{71,...,%}}.

The definition of the semigroup .#¢ implies that the set Q is finite. Then we have that
Ua(Q) : ﬁ g U’y(’}/h cee v’yk)
for Un(Q) =t5a\ {6 € t4a: 6 € Q).
(6) a- B =~ # 0 and rank § = ranky = 1 and rank o = 2, i.e., dom § G rana. In

this case the proof of separate continuity of the semigroup operation on (ﬂf, szc) is dual
to case (5).
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(7) - =~ # 0, ranky = 1 and rank @ = rank § = 2. Then « and § are isolated
points in (ffmfzc) and hence

OZ‘B:’}/QUV('Yl,...,’)/k),

for any basic open neighbourhood Uy (y1,...,v%) of v in (/f, szc).
(8) - =0. Then dom S Nrana = & and hence

Ua(ag,...,oan) - =a-Ug(B1,...,5,) = {0} C Ug(0),

for any basic open neighbourhoods U, (a1, ..., o), Ug(B1,...,Bs) and Ug(0) of «, B
and zero 0 in (F2,72), respectivelly.

Thus we have shown that the translations in (.#,72) are continuous maps.

Also, the definition of the topology 72 on .#¢ implies that the set .2\ .#! is dense
in (#2,72) and every infinite subset of .#2.#} has an accumulation point in (#Z,72),
and hence the space (ﬂf , szc) is countably pracompact. O

Proposition 2. Let n be an arbitrary positive integer and A be an arbitrary infinite
cardinal. Then for every d-feebly compact shift-continuous Th-topology T on F3* the subset
IPN\ I is dense in (I, 7).

Proof. Since every quasi-regular d-feebly compact space is feebly compact (see [19,
Theorem 2]), by Lemma 2 the topology 7 is feebly compact.

Suppose to the contrary that there exists a feebly compact shift-continuous 7;-
topology 7 on .#}* such that ﬂf\ff‘l is not dense in (#3", 7). Then there exists a point
a € 7" of the space (£, 7) such that o & clgp (£ \ £~ "). This implies that there
exists an open neighbourhood U(a) of a in (%, 7) such that U(a) N (£ \ #77") =
@. Lemma 2 implies that T5a is an open-and-closed subset of (#)',7) and hence by
Theorem 14 of [4], T4« is feebly compact. This implies that without loos of generality we
may assume that U(a) C Tz N #1. By the definition of the semigroup .#7* we have
that there exists a point 3 € U(a) such that 158N U(a) = {8}. Again, by Lemma 2 we
have that 1/ is an open-and-closed subset of (.}, 7) and hence by Theorem 14 of [4],
T4 is feebly compact. Moreover, our choice implies that 3 is an isolated point in the
subspace 143 of (7', 7).

Suppose that

r1 e Tk
B_(yl Yk )’

for some finite subsets {x1,--- ,2;} and {y1,--- ,yx} of distinct points from A. Then the
above arguments imply that & < n. Put p = n — k. Next we fix an arbitrary infinite
sequence {a;}; .y of distinct elements of the set A\ ({z1, -+, 21} U{y1, - ,un}).

For arbitrary positive integer j we put

o xr1 e Tk ap(j71)+1 “e . apj
B = :

Yo Yk GGt Gpy

Then §; € .# for any positive integer j. Moreover, we have that 3; € £ \ ff‘l and
Bj € 148 for any positive integer j.
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We claim that the set Ty N {3;: j € N} is finite for any v € 1,8\ {8}. Indeed, if
the set T5yN{B;: j € N} is infinite for some v € 158\ {5} then dom ~y contains infinitely
many points of the set {a;: ¢ € N}, which contradicts that v € .

By Lemma 2 for every v € %) the set 147 is open in (£, 7). Then since 3 is
an isolated point in T_f3, our claim implies that the infinite family of isolated points
% = {{b;}: j € N} is locally finite in 1/, which contradicts that the subspace 13
of (#, 1) is feebly compact. The obtained contradiction implies the statement of the
proposition. O

Remark 1. The following three examples of topological semigroups of matrix units
(Bxs Tmw)s (Bxs Tmn) and (B, T ) from [12] imply that the converse to Proposition 2 is
not true for any infinite cardinal .

Later by Np and R we denote the sets of positive integers with the discrete topology
and the real numbers with the usual topology.

Theorem 2. Let n be an arbitrary positive integer and A be an arbitrary infinite cardi-
nal. Then for every shift-continuous Th-topology T on the semigroup &\ the following
statements are equivalent:

(z) T is countably pracompact;
1) T is feebly compact;
( u) T is d-feebly compact;
(tv) (A3, 7) is H-closed;
v) (f)’f,T) is Ny-compact;
(vi) (F7,7) is R-compact;
(vig) (F3,7) is infra H-closed.

Proof. Implications (i) = (#¢) and (it) = (i4i) are trivial.

(#4i) = (i9) Suppose that a space (S, 7) is d-feebly compact. By Lemma 2 it is
quasi-regular. Then by Theorem 1 of [19] every quasiregular d-feebly compact space is
feebly compact and hence so is (Z, 7).

(#4) = (i) Suppose that a space (&, 7) is feebly compact. By Lemma 2 the topologi-
cal space (£, 7) is Hausdorff. Then by Lemma 1 of [19] every Hausdorff feebly compact
space with a dense discrete subspace is countably pracompact (also see Lemma 4.5 of [5]
or Proposition 1 from |2 for Tychonoff spaces) and hence so is (Z}", 7).

Implication (iv) = (i) follows from Proposition 4 of [15].

(#4) = (iv) We shall show by induction that if 7 is a shift-continuous feebly compact
T1-topology on the semigroup .#3" then the subspace T4a of (£}, 7) is H-closed for any
ac I

It is obvious that for any o € .73 with ranka = n the set T = {a} is singleton,
and since (£, 7) is a T-space, tais H-closed.

Fix an arbitrary a € )" with ranka = n — 1. By Lemma 2, T« is an open-
and-closed subset of (.#}",7) and hence by Theorem 14 from [4] the space 14« is feebly
compact. Since by Lemma 2 every point 8 of T4 with rank o = n is isolated in (&), 7),
the feeble compactness of 1« implies that « is a non-isolated point of (.3, 7) and the
space Tga is compact. This implies that T4« is H-closed.
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Next we shall prove the following statement: if for some positive integer k < n for
any o € I3 with rank o < k the subspace T« is H-closed then 14/ is H-closed for any
B € IV withrank f =k — 1.

Suppose to the contrary that there exists a shift-continuous feebly compact T;-
topology 7 on the semigroup #* such that for some positive integer £k < n for any
a € ' with rank a = k the subspace T4« is H-closed and 14/ is not an H-closed space
for some 8 € £ with rank 8 = k — 1. Then there exists a Hausdorff topological space X
which contains the space T4/ as a dense proper subspace. We observe that by Lemma 2
and Theorem 14 of [4] the space 14/ is feebly compact.

Fix an arbitrary x € X \ 148. The Hausdorffness of X implies that there exist
open neighbourhoods Ux () and Ux () of the points x and /8 in X, respectively, such
that Ux () NUx(B) = @. Then the assumption of induction implies that without loss of
generality we may assume that there do not exist finitely many a1, ..., a, € 148 with
rank oy = ... = rank «,,, = k such that

Ux(z) N8 Ctgar U - Utgam.

Fix an arbitrary oy € 14/ such that rank a; = k and 1504 N Ux (x) # @. Proposi-
tion 1.3.1 of [8], Lemma 2 and Proposition 2 imply that there exists v, € " \ f;‘fl
such that v; € T4 NUx (x). Next, by induction using Proposition 1.3.1 of [8], Lemma 2
and Proposition 2 we construct sequences {c;},.y and {v;};cy of distinct points of the
set T3 such that the following conditions hold:

(a) rank a1 =k and Tga41 \ (T<a1 U---u T<o¢i) NUx(z) # @; and
(b) vit1 € I\ A7 and yiq € Tiigr \ (Tgaa U= UT<O¢1—) NUx(z),

for all positive integers i > 1.

Then Lemma 1 implies that the infinite family of non-empty open subsets % =
{{7i} : i € N} is locally finite, which contradicts the feeble compactness of t43. The
obtained contradiction implies the statement of induction which completes the proof of
the statement that the space (£, 7) is H-closed.

(tv) = (v) By Katétov’s Theorem every continuous image of an H-closed topological
space into a Hausdorff space is H-closed (see [8, 3.15.5 (b)] or [22]). Hence the image
f(#3) is H-closed for every continuous map f: (&, 7) — Ny, which implies that f(.#}")
is compact (see [8, 3.15.5 (a)]).

(v) = (i9) Suppose to the contrary that there exists a Hausdorff shift-continuous
Np-compact topology 7 on " which is not feebly compact. Then there exists an infinite
locally finite family % = {U;} of open non-empty subsets of ()", 7). Without loss of
generality we may assume that the family % = {U,} is countable., i.e., = {U;: i € N}.
Then the definition of the semigroup .#* and Lemma 2 imply that for every U; € %
there exists a; € U; such that T4a; NU; = {a;} and hence %* = {{a;}: 7 € N} is a
family of isolated points of (£, 7). Since the family % is locally finite, without loss of
generality we may assume that «; # o for distinct 4, j € N. We claim that the family
%™ is locally finite. Indeed, if we assume the contrary then there exists o € %" such
that every open neighbourhood of « contains infinitely many elements of the family % *.
This implies that the family % is not locally finite, a contradiction. Since (£}, 7) is a
T)-space and the family % * is locally finite, we have that | J%* is a closed subset in
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(#7, 1) and hence the map f: (£, 7) = Ny defined by the formula

£(8) = 1, ifpgesg\NU%";
1+ 1, if 8= q; for some i € N,

is continuous. This contradicts that the space (.#3", 7) is Ny-compact.

The proofs of implications (iv) = (vi) and (vi) = (i7) are same as the proofs of
(iv) = (v) and (v) = (i), respectively.

Implication (i) = (vii) follows from Proposition 2 and Theorem 3 of [20].

(vii) = (i4) Suppose to the contrary that there exists a Hausdorff shift-continuous
infra H-closed topology 7 on .#y" which is not feebly compact. Then similarly as in the
proof of implication (v) = (i7) we choice a locally finite family %* = {{a;}: i € N} of
isolated points of (£, 7). Then the map f: (&, 7) — R defined by the formula

1, ifpgesP\Uzs
f(B) = ;7 if B = o; for some i € N,
t+1

is continuous. This contradicts that the space (£, ) is infra H-closed. ]

Remark 2. By Theorem 5 from [20] conditions (i7) and (vii) of Theorem 2 are equivalent
for any Tychonoff space X.

It is not, however, the case that feebly compact and infra H-closed are equivalent
in general. In [21] Herrlich, beginning with a Tj-space Y, constructs a regular space X
such that the only continuous functions from X into Y are constant. His construction
involves the cardinality of Y, but only as the cardinality of collections of open sets whose
intersections are singletons. Thus only the most trivial modifications are needed in his
argument to produce a regular Hausdorff infra H-closed space. It is also easily shown
that the space constructed in this manner is not feebly compact.

Any regular lightly compact space must be a Baire space [25, Lemma 3], and thus it
is of interest to note that the space constructed in [21] can be shown to be the countable
union of nowhere dense subsets using essentially the same argument as can be used to
show it is not feebly compact.

Later we need the following technical lemma.

Lemma 3. Let n be an arbitrary positive integer and X\ be an arbitrary infinite cardinal.
Let T be a feebly compact shift-continuous T1-topology on the semigroup #\'. Then for
every a € 7 and any open neighbourhood U () of v in (I, T) there exist finitely many
a0 € Tga\ {a} such that

TN I Ntga CU(@) Ut U---Utga.

Proof. Suppose to the contrary that there exists a feebly compact shift-continuous 77-
topology on the semigroup .#}* which satisfies the following property: some element « of
the semigroup .#3" has an open neighbourhood U () of o in (&7, 7) such that

TN I N ga U () Utgar U+ Utgay,

for any finitely many ay,...,ax € T4a '\ {a}. We observe that Lemma 2 implies that
without loss of generality we may assume that U(a) C T4a.
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Fix such an element o of .# and its open neighbourhood U(«) with the above
determined property. Then our assumption implies that there exists a1 € T \ U(a)
such that the set

IR\ NTga1\ Ula)
is infinite and fix an arbitrary v, € #7\ £ N t<a1 \ U(a). Next, by induction using
our assumption we construct sequences {c;};cy and {7;},cy of the distinct points of the
set T a such that the following conditions hold:

(a) aiy1 € tga\ (U(a)Utgon U - Utsa;) and the set

I\ I N toantgar \ (U(@) Utgag U+ Utgoy)
is infinite;

() vit1 € 2P\ A Ntiantan\ (U(@) Utgag U Utgay),
for all positive integers .

By Lemma 2 and Theorem 14 of [4] the space T« is feebly compact. Then Lemma 1
implies that the infinite family of non-empty open subsets = {{7;} : ¢ € N} is locally fi-
nite, which contradicts the feeble compactness of T4 a. The obtained contradiction implies
the statement of the lemma. (]

Theorem 3. Letn be an arbitrary positive integer and A be an arbitrary infinite cardinal.
Then every shift-continuous semiregular feebly compact Ti-topology T on F3* is compact.

Proof. We shall prove the statement of the theorem by induction. First we observe that
for every element o of a semiregular feebly compact T;-semitopological semigroup (.#3", 7)
with ranka = n — 1,n the set T a is compact. Indeed, by Lemma 2 for every 3 € .7y
the set 143 is open-and-closed in (3", 7), and hence we have that "\ f;“l is an open
discrete subspace of (#',7) and using Theorem 14 of [4] we obtain that T« is feebly
compact, which implies that the space T4« is compact.

Next we shall prove a more stronger step of induction: if for every element o of a
semiregular feebly compact T -semitopological semigroup (F3, T) with ranka > [ < n the
set T is compact, then 143 is compact for every € S with ranka = [.

Suppose to the contrary that there exists a semiregular feebly compact Ti-
semitopological semigroup (.#3",7) such that for some positive integer [ < n the
set T4 is compact for every a € )" with ranka > [, but there exists 8 € )" with
rank 3 = [ such that the set 743 is not compact.

First we observe that our assumption that the set T a is compact and Corolla-
ry 3.1.14 of [8] imply that the following family

Be(a) = {Ualon,...,ar) =Tga\ (Tgon U---Utgap): os € tga\{a},i=1,...,k}
is a base of topology at the point « of (), 7) for every a € £ with ranka > [.

Then the Alexander Subbase Theorem (see [1, Theorem 1] or [8, p. 221, 3.12.2(a)])
and Lemma 2 imply that there exists a base # of the topology 7 on .#}* with the following
properties:

(1) B=U{AB(v): v € F} and for every v € F the family H(v) is a base at the

point ~;
(1) U(y) € 157 for any U(y) € #(7);
(130) B(vy) = B.(v) for every v € F with ranky > [;
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(iv) there exists a cover % of the set 1 by members of the base % which has not
a finite subcover.

We claim that the subspace 1.8 of (#)',7) contains an infinite closed discrete
subspace X. Indeed, let % be a subfamily of % such that

{Bru BN\ 7 <%

Since the set 153 is not compact and 147 is compact for any v € 148\ {8}, without
loss of generality we may assume that there exists k > rank 8 such that the following
conditions hold:
(a) there exist infinitely many elements ¢ € 143 with rank ¢ = k such that ¢ ¢ (J %;
(b) s € U for all ¢ € 143 with rank¢ < k.
It is obvious that the set

X =128\ (U%O\U{T<§: rank ¢ > k})

is requested.
Fix an arbitrary regular open neighbourhood U(f3) of the point 8 in (£, 7) such
that U(8) N X = @. By Lemma 3 there exist finitely many 31,...,3s € 15/ such that

TINIXTINIBCUB)UTALU - UTLBs
It is obvious that the set X\ (1581 U---UT,f;) is infinite. For every 6 € X the set 10 is
compact and open, and moreover by Lemma 1 the set 746\ (T<ﬁ1 U---u T<ﬂs) contains
infinitely many points of the neighbourhood U (). This implies that int g5 (clop (U(5)))N
X # &, which contradicts the assumption that U(0)NX = &. The obtained contradiction
implies that the subspace 143 of (.#]",7) is compact, which completes the proof of the
theorem. 0
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Mu BuB4Ya€MO C/IaOKO KOMHOAKTHI 71-TOIMOJIOrNT HA CUMETPUYHIN 1HBEPCHIN
HamiBrpyii £y CKIHYEHHUX LEPETBOPEHb PAHIYy < M, dKi 11€peTBOPIOIOTH 11 B
HAIiBTOIOJIOTIYHY HAMmIBIpymy. g HOBLIBPHOTO HATYpPAJBHOTO UHCAA N > 2 1
71t KOYKHOTO HECKIHYeHHOTO KapAuHaIa A mo0y10BaHa raycaopdoBa 3/i9eHHO
[IPAKOMIIAKHA HEKOMIIAKTHA TOLOJIONis HA HAIBrpyui £y’ sika nepeTBopIoE 11
B HaIIiBTOIIOJIOTiYHY HamiBrpymy. /loBemeHo, Mo 11 JOBIIBHOTO HATYPAJIHHOTO
YUCaa N i A7 JOBLIBHOTO HECKIHYEHHOrO KapauHasa A ajis 11-TomoJiorii 7 Ha
mauisrpyni £ taki ymoBu € expiBasieHTHUMY: (1) T — 3/I9E€HHO IPAKOMIIAKT-
ma; (1) T — cmabko kKommakTHa; (7i1) T — d-cabko KOMIAKTHA; (iv) TPOCTIP
(£, 7) € H-3amkuenuwm; (v) upoctip (I, 7) € No-KOMIAKTHUM It AUCKPET-
moro 3mivennoro npocropy Np; (vi) mpocrip (43, 7) € R-xomnakrauwm; (vii)
npocrip (#3', 7) € indpa H-3amkaernm. Takox I0BEIEHO, MO [/IA JOBLILHOTO
HATYPAJIbHOTO YMCJIA N 1 /IS JTOBIIBHOTO HECKIHYEHHOTO KAPAWMHAJIA A KOXKHA
HauiBperyJispHa cJabko KoMiakTHa 17-rouosoris Ha £y, gKa 1eperBopioe 11
B HAIIBTOIIOJIOTIYHY HAIBIPYILY, € KOMIAKTHOIO.

Karowost caosa: HamiBrpymna, iHBepCHa HAIBIPyIa, HAIIBTOIOJIOTiYHA
HAIBrpymna, KOMIIAKTHH, 3/II9eHHO KOMIIAKTHUH, 3/TI9€HHO MTPAKOMITAKTHUIA,
cinabko kommnakTHuil, H-3amkwenwii, indpa H-zamxwenwmii, X-komirakTHuUii,
HAIiBPeryagpHuil IpoCTip.



