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We study feebly compact shift-continuous T1-topologies on the symmetric
inverse semigroup I n

λ of �nite transformations of the rank6 n. For any positive
integer n > 2 and any in�nite cardinal λ a Hausdor� countably pracompact
non-compact shift-continuous topology on I n

λ is constructed. We show that
for an arbitrary positive integer n and an arbitrary in�nite cardinal λ for a
T1-topology τ on I n

λ the following conditions are equivalent: (i) τ is countably
pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) (I n

λ , τ)
is H-closed; (v) (I n

λ , τ) is Nd-compact for the discrete countable space Nd;
(vi) (I n

λ , τ) is R-compact; (vii) (I n
λ , τ) is infra H-closed. Also we prove that

for an arbitrary positive integer n and an arbitrary in�nite cardinal λ every
shift-continuous semiregular feebly compact T1-topology τ on I n

λ is compact.

Key words: semigroup, inverse semigroup, semitopological semigroup,
compact, countably compact, countably pracompact, feebly compact, H-
closed, infra H-closed, X-compact, semiregular space.

We follow the terminology of [6, 7, 8, 26, 27]. If X is a topological space and A ⊆ X,
then by clX(A) and intX(A) we denote the topological closure and interior of A in
X, respectively. By |A| we denote the cardinality of a set A, by A4B the symmetric
di�erence of sets A and B, by N the set of positive integers, and by ω the �rst in�nite
cardinal.

A semigroup S is called inverse if every a in S possesses an unique inverse a−1, i.e.
if there exists an unique element a−1 in S such that

aa−1a = a and a−1aa−1 = a−1.

A map which associates to any element of an inverse semigroup its inverse is called the
inversion.

A topological (inverse) semigroup is a topological space together with a continuous
semigroup operation (and an inversion, respectively). Obviously, the inversion de�ned
on a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse
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semigroup) and τ is a topology on S such that (S, τ) is a topological (inverse) semigroup,
then we shall call τ a semigroup (inverse) topology on S. A semitopological semigroup

is a topological space together with a separately continuous semigroup operation. If S
is a semigroup (an inverse semigroup) and τ is a topology on S such that (S, τ) is
a semitopological semigroup (with continuous inversion), then we shall call τ a shift-

continuous (inverse) topology on S.
If S is a semigroup, then by E(S) we denote the subset of all idempotents of S.

On the set of idempotents E(S) there exists a natural partial order: e 6 f if and only

if ef = fe = e. A semilattice is a commutative semigroup of idempotents. A topological

(semitopological) semilattice is a topological space together with a continuous (separately
continuous) semilattice operation. If S is a semilattice and τ is a topology on S such that
(S, τ) is a topological semilattice, then we shall call τ a semilattice topology on S.

Every inverse semigroup S admits a partial order:

a 4 b if and only if there exists e ∈ E(S) such that a = eb.

We shall say that 4 is the natural partial order on S.
Let λ be an arbitrary non-zero cardinal. A map α from a subset D of λ into λ is

called a partial transformation of λ. In this case the set D is called the domain of α and
is denoted by domα. The image of an element x ∈ domα under α is denoted by xα Also,
the set {x ∈ λ : yα = x for some y ∈ Y } is called the range of α and is denoted by ranα.
The cardinality of ranα is called the rank of α and is denoted by rankα. For convenience
we denote by ∅ the empty transformation, a partial mapping with dom∅ = ran∅ = ∅.

Let Iλ denote the set of all partial one-to-one transformations of λ together with
the following semigroup operation:

x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ domα : yα ∈ domβ}, for α, β ∈ Iλ.

The semigroup Iλ is called the symmetric inverse semigroup over the cardinal λ (see
[7]). The symmetric inverse semigroup was introduced by V. V. Wagner [29] and it plays
a major role in the theory of semigroups.

Put I n
λ = {α ∈ Iλ : rankα 6 n}, for n = 1, 2, 3, . . .. Obviously, I n

λ (n = 1, 2, 3, . . .)
are inverse semigroups, I n

λ is an ideal of Iλ, for each n = 1, 2, 3, . . .. The semigroup I n
λ

is called the symmetric inverse semigroup of �nite transformations of the rank 6 n. By(
x1 x2 · · · xn
y1 y2 · · · yn

)
we denote a partial one-to-one transformation which maps x1 onto y1, x2 onto y2, . . .,
and xn onto yn. Obviously, in such case we have xi 6= xj and yi 6= yj for i 6= j (i, j =
1, 2, 3, . . . , n). The empty partial map ∅ : λ ⇀ λ is denoted by 0. It is obvious that 0 is
zero of the semigroup I n

λ .
Let λ be a non-zero cardinal. On the set Bλ = (λ × λ) ∪ {0}, where 0 /∈ λ × λ, we

de�ne the semigroup operation � · � as follows

(a, b) · (c, d) =
{

(a, d), if b = c;
0, if b 6= c,

and (a, b) · 0 = 0 · (a, b) = 0 · 0 = 0 for a, b, c, d ∈ λ. The semigroup Bλ is called
the semigroup of λ × λ-matrix units (see [7]). Obviously, for any cardinal λ > 0, the
semigroup of λ× λ-matrix units Bλ is isomorphic to I 1

λ .
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A subset A of a topological space X is called regular open if intX(clX(A)) = A.
We recall that a topological space X is said to be

• functionally Hausdor� if for every pair of distinct points x1, x2 ∈ X there exists
a continuous function f : X → [0, 1] such that f(x1) = 0 and f(x2) = 1;

• semiregular if X has a base consisting of regular open subsets;
• quasiregular if for any non-empty open set U ⊂ X there exists a non-empty open
set V ⊂ U such that clX(V ) ⊆ U ;

• compact if each open cover of X has a �nite subcover;
• sequentially compact if each sequence {xi}i∈N of X has a convergent subsequence
in X;

• countably compact if each open countable cover of X has a �nite subcover;
• H-closed if X is a closed subspace of every Hausdor� topological space in which
it is contained;

• infra H-closed provided that any continuous image of X into any �rst countable
Hausdor� space is closed (see [20]);

• countably compact at a subset A ⊆ X if every in�nite subset B ⊆ A has an
accumulation point x in X;

• countably pracompact if there exists a dense subset A in X such that X is
countably compact at A;

• feebly compact if each locally �nite open cover of X is �nite;
• d-feebly compact (or DFCC ) if every discrete family of open subsets in X is �nite
(see [24]);

• pseudocompact if X is Tychono� and each continuous real-valued function on X
is bounded;

• Y -compact for some topological space Y , if f(X) is compact, for any continuous
map f : X → Y .

According to Theorem 3.10.22 of [8], a Tychono� topological space X is feebly
compact if and only ifX is pseudocompact. Also, a Hausdor� topological spaceX is feebly
compact if and only if every locally �nite family of non-empty open subsets of X is �nite.
Every compact space and every sequentially compact space are countably compact, every
countably compact space is countably pracompact, every countably pracompact space is
feebly compact (see [3]), every H-closed space is feebly compact too (see [15]). Also, every
space feebly compact is infra H-closed by Proposition 2 and Theorem 3 of [20].

Topological properties of an in�nite (semi)topological semigroup λ×λ-matrix units
were studied in [12, 13, 14]. In [13] it was shown that on the in�nite semitopological semi-
group λ×λ-matrix units Bλ there exists a unique Hausdor� topology τc such that (Bλ, τc)
is a compact semitopological semigroup and it was also shown that every pseudocompact
Hausdor� shift-continuous topology τ on Bλ is compact. Also, in [13] it was proved that
every non-zero element of a Hausdor� semitopological semigroup λ× λ-matrix units Bλ
is an isolated point in the topological space Bλ. In [12] it was shown that the in�nite
semigroup λ×λ-matrix units Bλ cannot be embedded into a compact Hausdor� topologi-
cal semigroup, every Hausdor� topological inverse semigroup S that contains Bλ as a
subsemigroup, contains Bλ as a closed subsemigroup, i.e., Bλ is algebraically complete

in the class of Hausdor� topological inverse semigroups. This result in [11] was extended
onto so called inverse semigroups with tight ideal series and, as a corollary, onto the
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semigroup I n
λ . Also, in [16] it was proved that for every positive integer n the semigroup

I n
λ is algebraically h-complete in the class of Hausdor� topological inverse semigroups,

i.e., every homomorphic image of I n
λ is algebraically complete in the class of Hausdor�

topological inverse semigroups. In the paper [17] this result was extended onto the class
of Hausdor� semitopological inverse semigroups and it was shown therein that for an
in�nite cardinal λ the semigroup I n

λ admits a unique Hausdor� topology τc such that
(I n

λ , τc) is a compact semitopological semigroup. Also, it was proved in [17] that every
countably compact Hausdor� shift-continuous topology τ on Bλ is compact. In [14] it
was shown that a topological semigroup of �nite partial bijections I n

λ with a compact
subsemigroup of idempotents is absolutely H-closed (i.e., every homomorphic image of
I n
λ is algebraically complete in the class of Hausdor� topological semigroups) and any

countably compact topological semigroup does not contain I n
λ as a subsemigroup for

in�nite cardinal λ. In [14] there were given su�cient conditions onto a topological semi-
group I 1

λ to be non-H-closed. Also in [10] it was proved that an in�nite semitopological
semigroup of λ×λ-matrix units Bλ is H-closed in the class of semitopological semigroups
if and only if the space Bλ is compact.

For an arbitrary positive integer n and an arbitrary non-zero cardinal λ we put

expn λ = {A ⊆ λ : |A| 6 n} .

It is obvious that for any positive integer n and any non-zero cardinal λ the set
expn λ with the binary operation ∩ is a semilattice. Later in this paper by expn λ we
shall denote the semilattice (expn λ,∩). It is easy to see that expn λ is isomorphic to the
subsemigroup of idempotents (the band) of the semigroup I n

λ for any positive integer n.
We observe that for every positive integer n the band of the semigroup I n

λ is isomorphic
to the semilattice expn λ by the mapping E(I n

λ ) 3 ε 7→ dom ε.
In the paper [18] feebly compact shift-continuous topologies τ on the semilattice

expn λ were studied, and all compact semilattice topologies on expn λ were described. In
[18] it was whown that for an arbitrary positive integer n and an arbitrary in�nite cardi-
nal λ for a T1-topology τ on expn λ the following conditions are equivalent: (i) (expn λ, τ)
is a compact topological semilattice; (ii) (expn λ, τ) is a countably compact topological
semilattice; (iii) (expn λ, τ) is a feebly compact topological semilattice; (iv) (expn λ, τ)
is a compact semitopological semilattice; (v) (expn λ, τ) is a countably compact semi-
topological semilattice. Also, in [18] there was constructed a countably pracompact H-
closed quasiregular non-semiregular topology τ2

fc
such that

(
exp2 λ, τ

2
fc

)
is a semitopologi-

cal semilattice with the discontinuous semilattice operation and it was proved that for
an arbitrary positive integer n and an arbitrary in�nite cardinal λ a semiregular feebly
compact semitopological semilattice expn λ is a compact topological semilattice. In [19]
it was shown that for an arbitrary positive integer n and an arbitrary in�nite cardinal λ
for a T1-topology τ on expn λ the following conditions are equivalent: (i) τ is countably
pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) (expn λ, τ) is an
H-closed space.

This paper is a continuation of [11, 13, 16, 17]. We study feebly compact shift-
continuous T1-topologies on the semigroup I n

λ . For any positive integer n > 2 and
any in�nite cardinal λ a Hausdor� countably pracompact non-compact shift-continuous
topology on I n

λ is constructed. We show that for an arbitrary positive integer n and
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an arbitrary in�nite cardinal λ for a T1-topology τ on I n
λ the following conditions are

equivalent: (i) τ is countably pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly
compact; (iv) (I n

λ , τ) is H-closed; (v) (I
n
λ , τ) is Nd-compact for the discrete countable

space Nd; (vi) (I n
λ , τ) is R-compact; (vii) (I n

λ , τ) is infra H-closed. Also we prove that for
an arbitrary positive integer n and an arbitrary in�nite cardinal λ every shift-continuous
semiregular feebly compact T1-topology τ on I n

λ is compact.

Later we shall assume that n is an arbitrary positive integer.
For every element α of the semigroup I n

λ we put

↑lα =
{
β ∈ I n

λ : αα−1β = α
}

and ↑rα =
{
β ∈ I n

λ : βα−1α = α
}
.

Then Proposition 5 of [17] implies that ↑lα = ↑rα and by Lemma 6 of [23, Section 1.4]
we have that α 4 β if and only if β ∈ ↑lα for α, β ∈ I n

λ . Hence we put ↑4α = ↑lα = ↑rα
for any α ∈ I n

λ .
The de�nition of the semigroup operation of I n

λ implies the following trivial lemma.

Lemma 1. Let n be an arbitrary positive integer and λ be any cardinal. Then for any

elements α and β of the semigroup I n
λ the sets αI n

λ β and

↓4α = {γ ∈ I n
λ : γ 4 α}

are �nite.

Proof. For any elements α and β of I n
λ we have that

αI n
λ β = αI n

λ ∩I n
λ β = {γ ∈ I n

λ : dom γ ⊆ domα and ran γ ⊆ ranβ} .

Since the sets domα and ranβ are �nite, αI n
λ β is �nite, as well.

For every γ ∈ ↓4α the de�nition of the natural partial order 4 on the semigroup
I n
λ (see [23, Chapter 1]) implies that the �nite partial map γ is a restriction of the �nite

partial map α onto the set A = domα ∩ dom ε, where ε is an idempotent of I n
λ such

that γ = εα. This implies that the set ↓4α is �nite. �

Lemma 2. Let n be an arbitrary positive integer, λ be any in�nite cardinal and τ be a

shift-continuous T1-topology on semigroup I n
λ . Then for every element α of the semigroup

I n
λ the set ↑4α is open-and-closed in (I n

λ , τ), the space (I
n
λ , τ) is functionally Hausdor�

and hence it is quasi-regular.

Proof. Fix an arbitrary α ∈ I n
λ . Then α ∈ αI n

λ α and

αI n
λ α = αI n

λ ∩I n
λ α = αα−1I n

λ ∩I n
λ α
−1α = αα−1I n

λ α
−1α,

because I n
λ is an inverse semigroup. Since the topology τ is T1, Lemma 1 implies that

the set (αI n
λ α) \ {α} is closed in (I n

λ , τ). By the separate continuity of the semigroup
operation in (I n

λ , τ) we have that there exists an open neighbourhood U(α) of the point
α in (I n

λ , τ) such that

αα−1 · U(α) · α−1α ⊆ I n
λ \ ((αI n

λ ∪I n
λ α) \ {α}) .

The last inclusion implies that U(α) ⊆ ↑α. Again, since the semigroup operation in
(I n

λ , τ) is separately continuous the set ↑4α is open in (I n
λ , τ) as a full preimage of

U(α) and the set ↑4α is closed in (I n
λ , τ) as a full preimage of the singleton set {α}.
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Fix arbitrary distinct elements α and β of the semigroup I n
λ . Then either α and β

are comparable or not with respect to the natural partial order on I n
λ . If α 4 β or α and

β are incomparable in (I n
λ ,4) then it is obvious that the map g : I n

λ → [0, 1] de�ned
by the formula

(γ)f =

{
1, if γ ∈ ↑4β;
0, if γ /∈ ↑4β

is continuous. We observe that quasi-regularity of (I n
λ , τ) follows from the fact that every

non-empty open subset U of (I n
λ , τ) contains a maximal element δ with respect to the

natural partial order 4 on I n
λ such that ↑4α is an open-and-closed subset of (I n

λ , τ)
and hence, since τ is a T1-topology, {α} ⊆ U is an open-and-closed subset of (I n

λ , τ). �

A topological space X is called

• totally disconnected if the connected components in X are singleton sets;
• scattered if X does not contain non-empty dense in itself subset, which is equi-
valent that every non-empty subset of X has an isolated point in itself.

Lemma 2 implies the following corollary:

Corollary 1. Let n be an arbitrary positive integer, λ be any in�nite cardinal and τ be a

shift-continuous T1-topology on the semigroup I n
λ . Then (I n

λ , τ) is a totally disconnected
scattered space.

A partial order 6 on a topological space X is called closed if the relation 6 is a
closed subset of X×X in the product topology. In this case (X,6) is called a pospace [9].

Lemma 2 and Proposition VI-1.4 from [9] imply the following corollary:

Corollary 2. Let n be an arbitrary positive integer, λ be any in�nite cardinal and τ be

a shift-continuous T1-topology on semigroup I n
λ . Then (I n

λ , τ,4) is a pospace

The following example shows that the statement of Lemma 2 does not hold in the
case when (I n

λ , τ) is a T0-space.

Example 1. For an arbitrary positive integer n and an arbitrary in�nite cardinal λ we
de�ne a topology τ0 on I n

λ in the following way:

(i) all non-zero elements of the semigroup I n
λ are isolated points in (I n

λ , τ0); and
(ii) I n

λ is the unique open neighbourhood of zero in (I n
λ , τ0).

Simple veri�cations show that the semigroup operation and inversion on (I n
λ , τ0) are

continuous.

We need the following example from [17].

Example 2 ([17]). Fix an arbitrary positive integer n. The following family

Bc =
{
Uα(α1, . . . , αk) = ↑4α \ (↑4α1 ∪ · · · ∪ ↑4αk) :
αi ∈ ↑4α \ {α}, α, αi ∈ I n

λ , i = 1, . . . , k
}

determines a base of the topology τc on I n
λ . By Proposition 10 from [17], (I n

λ , τc) is a
Hausdor� compact semitopological semigroup with continuous inversion.
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By Theorem 7 from [17], for an arbitrary in�nite cardinal λ and any positive integer
n every countably compact Hausdor� semitopological semigroup I n

λ is topologically
isomorphic to (I n

λ , τc). By Corollary 1 the topological space (I n
λ , τc) is scattered.

Since every countably compact scattered T3-space is sequentially compact (see [28,
Theorem 5.7]), (I n

λ , τc) is a sequentially compact space.
Next we summarise the above results in the following theorem.

Theorem 1. Let n be an arbitrary positive integer, λ be any in�nite cardinal and τ be

a T1-shift continuous topology on the semigroup I n
λ . Then the following conditions are

equivalent:

(i) τ is compact;

(ii) τ = τc;
(iii) τ is countably compact;

(iv) τ is sequentially compact.

Since every feebly compact Hausdor� topology on the semigroup I 1
λ is compact,

it is natural to ask: Does there exist a shift-continuous Hausdor� non-compact feebly

compact topology τ on the semigroup I n
λ for n > 2?

The following example shows that for any in�nite cardinal λ and any positive integer
n > 2 there exists a Hausdor� feebly compact topology τ on the semigroup I n

λ such
that (I n

λ , τ) is a non-compact semitopological semigroup.

Example 3. Let λ be any in�nite cardinal and τ2c = τc be the topology on the semigroup
I 2
λ which is de�ned in Example 2. We construct a stronger topology τ2

fc
on I 2

λ then τ2c
in the following way. By π : λ → I 2

λ : a 7→ εa we denote the map which assigns to any
element a ∈ λ the identity partial map εa : {a} → {a}. Fix an arbitrary in�nite subset A
of λ. For every non-zero element x ∈ I 2

λ we assume that the base B2
fc
(x) of the topology

τ2
fc
at the point x coincides with the base of the topology τ2c at x, and

B2
fc(0) =

{
UB(0) = U(0) \ ((B)π ∪ {α1, . . . , αs}) : U(0) ∈ B2

c (0), α1, . . . , αs ∈ I 2
λ \ {0}

and B ⊆ λ such that |A4B| <∞}

form a base of the topology τ2
fc
at zero 0 of the semigroup I 2

λ . Simple veri�cations show
that the family

{
B2

fc
(x) : x ∈ I 2

λ

}
satis�es conditions (BP1)�(BP4) of [8], and hence

τ2
fc
is a Hausdor� topology on I 2

λ .

Proposition 1. Let λ be an arbitrary in�nite cardinal. Then
(
I 2
λ , τ

2
fc

)
is a countably

pracompact semitopological semigroup with continuous inversion.

Proof. It is obvious that the inversion in
(
I 2
λ , τ

2
fc

)
is continuous and later we shall show

that all translations in
(
I 2
λ , τ

2
fc

)
are continuous maps. We consider the following possible

cases.
(1) 0 ·0 = 0. For every basic open neighbourhood UB(0) of zero in

(
I 2
λ , τ

2
fc

)
we

have that
UB(0) · 0 = 0 ·UB(0) = {0} ⊂ Uπ(0).

(2) α · 0 = 0. For all basic open neighbourhoods UB(0) and Uα(β1, . . . , βk) of zero
and an element α 6= 0 in

(
I 2
λ , τ

2
fc

)
, respectively, we have that

Uα(β1, . . . , βk) · 0 = {0} ⊂ UB(0).
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Let VB(0) = I 2
λ \ (↑4α1 ∪ · · · ∪ ↑4αk ∪ (B)π) be an arbitrary basic neighbourhood of

zero in
(
I 2
λ , τ

2
fc

)
. Without loss of generality we may assume that

rankα1 = . . . = rankαk = 1 6 rankα.

Put

Cl =
{
γ ∈ I 2

λ : rank γ = 1 such that αγ = αi for some i = 1, . . . , k

or αγ ∈ E(I 2
λ ) \ {0}

}
.

The de�nition of the semigroup I 2
λ implies that the set Cl is �nite. Then we have that

α ·WB(0) ⊆ VB(0) for WB(0) = I 2
λ \

⋃{
↑4γ : γ ∈ Cl

}
.

(3) 0 ·α = 0. For all basic open neighbourhoods UB(0) and Uα(β1, . . . , βk) of zero
and an element α 6= 0 in

(
I 2
λ , τ

2
fc

)
, respectively, we have that

0 ·Uα(β1, . . . , βk) = {0} ⊂ UB(0).

Let VB(0) = I 2
λ \ (↑4α1 ∪ · · · ∪ ↑4αk ∪ (B)π) be an arbitrary basic neighbourhood of

zero in
(
I 2
λ , τ

2
fc

)
. Without loss of generality we may assume that

rankα1 = . . . = rankαk = 1 6 rankα.

Put

Cr =
{
γ ∈ I 2

λ : rank γ = 1 such that γα = αi for some i = 1, . . . , k

or γα ∈ E(I 2
λ ) \ {0}

}
.

The de�nition of the semigroup I 2
λ implies that the set Cr is �nite. Then we have that

WB(0) · α ⊆ VB(0) for WB(0) = I 2
λ \

⋃{
↑4γ : γ ∈ Cr

}
.

(4) α · β = γ 6= 0 and rankα = rankβ = rank γ, i.e., ranα = domβ. Then for any
open neighbourhoods Uα(α1, . . . , αk), Uβ(β1, . . . , βn), Uγ(γ1, . . . , γm) of the points α, β
and γ in

(
I 2
λ , τ

2
fc

)
, respectively, we have that

Uα(α1, . . . , αk) · β = α · Uβ(β1, . . . , βn) = {γ} ⊆ Uγ(γ1, . . . , γm).

(5) α · β = γ 6= 0 and rankα = rank γ = 1 and rankβ = 2, i.e., ranα $ domβ.
Then for any open neighbourhoods Uβ(β1, . . . , βn) and Uγ(γ1, . . . , γm) of the points β
and γ in

(
I 2
λ , τ

2
fc

)
, respectively, we have that

α · Uβ(β1, . . . , βn) = {γ} ⊆ Uγ(γ1, . . . , γm).

Let Uγ(γ1, . . . , γk) be an arbitrary open neighbourhood of the point γ in
(
I 2
λ , τ

2
fc

)
for

some γ1, . . . , γk ∈ ↑4γ, i.e., rank γ1 = . . . = rank γk = 2. Put

Q =
{
δ ∈ ↑4α : δβ ∈ {γ1, . . . , γk}

}
.

The de�nition of the semigroup I 2
λ implies that the set Q is �nite. Then we have that

Uα(Q) · β ⊆ Uγ(γ1, . . . , γk)

for Uα(Q) = ↑4α \
{
δ ∈ ↑4α : δ ∈ Q

}
.

(6) α · β = γ 6= 0 and rankβ = rank γ = 1 and rankα = 2, i.e., domβ $ ranα. In
this case the proof of separate continuity of the semigroup operation on

(
I 2
λ , τ

2
fc

)
is dual

to case (5).
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(7) α · β = γ 6= 0, rank γ = 1 and rankα = rankβ = 2. Then α and β are isolated
points in

(
I 2
λ , τ

2
fc

)
and hence

α · β = γ ⊆ Uγ(γ1, . . . , γk),

for any basic open neighbourhood Uγ(γ1, . . . , γk) of γ in
(
I 2
λ , τ

2
fc

)
.

(8) α · β = 0. Then domβ ∩ ranα = ∅ and hence

Uα(α1, . . . , αk) · β = α · Uβ(β1, . . . , βn) = {0} ⊂ UB(0),

for any basic open neighbourhoods Uα(α1, . . . , αk), Uβ(β1, . . . , βn) and UB(0) of α, β
and zero 0 in

(
I 2
λ , τ

2
fc

)
, respectivelly.

Thus we have shown that the translations in
(
I 2
λ , τ

2
fc

)
are continuous maps.

Also, the de�nition of the topology τ2
fc
on I 2

λ implies that the set I 2
λ \I 1

λ is dense
in
(
I 2
λ , τ

2
fc

)
and every in�nite subset of I 2

λI 1
λ has an accumulation point in

(
I 2
λ , τ

2
fc

)
,

and hence the space
(
I 2
λ , τ

2
fc

)
is countably pracompact. �

Proposition 2. Let n be an arbitrary positive integer and λ be an arbitrary in�nite

cardinal. Then for every d-feebly compact shift-continuous T1-topology τ on I n
λ the subset

I n
λ \I n−1

λ is dense in (I n
λ , τ).

Proof. Since every quasi-regular d-feebly compact space is feebly compact (see [19,
Theorem 2]), by Lemma 2 the topology τ is feebly compact.

Suppose to the contrary that there exists a feebly compact shift-continuous T1-
topology τ on I n

λ such that I n
λ \I

n−1
λ is not dense in (I n

λ , τ). Then there exists a point

α ∈ I n−1
λ of the space (I n

λ , τ) such that α /∈ clIn
λ

(
I n
λ \I n−1

λ

)
. This implies that there

exists an open neighbourhood U(α) of α in (I n
λ , τ) such that U(α) ∩

(
I n
λ \I n−1

λ

)
=

∅. Lemma 2 implies that ↑4α is an open-and-closed subset of (I n
λ , τ) and hence by

Theorem 14 of [4], ↑4α is feebly compact. This implies that without loos of generality we

may assume that U(α) ⊆ ↑4x ∩I n−1
λ . By the de�nition of the semigroup I n

λ we have
that there exists a point β ∈ U(α) such that ↑4β ∩ U(α) = {β}. Again, by Lemma 2 we
have that ↑4β is an open-and-closed subset of (I n

λ , τ) and hence by Theorem 14 of [4],
↑4β is feebly compact. Moreover, our choice implies that β is an isolated point in the
subspace ↑4β of (I n

λ , τ).
Suppose that

β =

(
x1 · · · xk
y1 · · · yk

)
,

for some �nite subsets {x1, · · · , xk} and {y1, · · · , yk} of distinct points from λ. Then the
above arguments imply that k < n. Put p = n − k. Next we �x an arbitrary in�nite
sequence {ai}i∈N of distinct elements of the set λ \ ({x1, · · · , xk} ∪ {y1, · · · , yk}).

For arbitrary positive integer j we put

βj =

(
x1 · · · xk ap(j−1)+1 · · · apj
y1 · · · yk ap(j−1)+1 · · · apj

)
.

Then βj ∈ I n
λ for any positive integer j. Moreover, we have that βj ∈ I n

λ \I n−1
λ and

βj ∈ ↑4β for any positive integer j.



ON FEEBLY COMPACT SEMITOPOLOGICAL ...
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2017. Âèïóñê 83 51

We claim that the set ↑4γ ∩ {βj : j ∈ N} is �nite for any γ ∈ ↑4β \ {β}. Indeed, if
the set ↑4γ∩{βj : j ∈ N} is in�nite for some γ ∈ ↑4β \{β} then dom γ contains in�nitely
many points of the set {ai : i ∈ N}, which contradicts that γ ∈ I n

λ .
By Lemma 2 for every γ ∈ I n

λ the set ↑4γ is open in (I n
λ , τ). Then since β is

an isolated point in ↑4β, our claim implies that the in�nite family of isolated points
U = {{bj} : j ∈ N} is locally �nite in ↑4β, which contradicts that the subspace ↑4β
of (I n

λ , τ) is feebly compact. The obtained contradiction implies the statement of the
proposition. �

Remark 1. The following three examples of topological semigroups of matrix units
(Bλ, τmv), (Bλ, τmh) and (Bλ, τmi) from [12] imply that the converse to Proposition 2 is
not true for any in�nite cardinal λ.

Later by Nd and R we denote the sets of positive integers with the discrete topology
and the real numbers with the usual topology.

Theorem 2. Let n be an arbitrary positive integer and λ be an arbitrary in�nite cardi-

nal. Then for every shift-continuous T1-topology τ on the semigroup I n
λ the following

statements are equivalent:

(i) τ is countably pracompact;

(ii) τ is feebly compact;

(iii) τ is d-feebly compact;

(iv) (I n
λ , τ) is H-closed;

(v) (I n
λ , τ) is Nd-compact;

(vi) (I n
λ , τ) is R-compact;

(vii) (I n
λ , τ) is infra H-closed.

Proof. Implications (i)⇒ (ii) and (ii)⇒ (iii) are trivial.
(iii) ⇒ (ii) Suppose that a space (I n

λ , τ) is d-feebly compact. By Lemma 2 it is
quasi-regular. Then by Theorem 1 of [19] every quasiregular d-feebly compact space is
feebly compact and hence so is (I n

λ , τ).
(ii)⇒ (i) Suppose that a space (I n

λ , τ) is feebly compact. By Lemma 2 the topologi-
cal space (I n

λ , τ) is Hausdor�. Then by Lemma 1 of [19] every Hausdor� feebly compact
space with a dense discrete subspace is countably pracompact (also see Lemma 4.5 of [5]
or Proposition 1 from [2] for Tychono� spaces) and hence so is (I n

λ , τ).
Implication (iv)⇒ (ii) follows from Proposition 4 of [15].
(ii)⇒ (iv) We shall show by induction that if τ is a shift-continuous feebly compact

T1-topology on the semigroup I n
λ then the subspace ↑4α of (I n

λ , τ) is H-closed for any
α ∈ I n

λ .
It is obvious that for any α ∈ I n

λ with rankα = n the set ↑4α = {α} is singleton,
and since (I n

λ , τ) is a T1-space, ↑4α is H-closed.
Fix an arbitrary α ∈ I n

λ with rankα = n − 1. By Lemma 2, ↑4α is an open-
and-closed subset of (I n

λ , τ) and hence by Theorem 14 from [4] the space ↑4α is feebly
compact. Since by Lemma 2 every point β of ↑4α with rankα = n is isolated in (I n

λ , τ),
the feeble compactness of ↑4α implies that α is a non-isolated point of (I n

λ , τ) and the
space ↑4α is compact. This implies that ↑4α is H-closed.
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Next we shall prove the following statement: if for some positive integer k < n for

any α ∈ I n
λ with rankα 6 k the subspace ↑4α is H-closed then ↑4β is H-closed for any

β ∈ I n
λ with rankβ = k − 1.
Suppose to the contrary that there exists a shift-continuous feebly compact T1-

topology τ on the semigroup I n
λ such that for some positive integer k < n for any

α ∈ I n
λ with rankα = k the subspace ↑4α is H-closed and ↑4β is not an H-closed space

for some β ∈ I n
λ with rankβ = k−1. Then there exists a Hausdor� topological space X

which contains the space ↑4β as a dense proper subspace. We observe that by Lemma 2
and Theorem 14 of [4] the space ↑4β is feebly compact.

Fix an arbitrary x ∈ X \ ↑4β. The Hausdor�ness of X implies that there exist
open neighbourhoods UX(x) and UX(β) of the points x and β in X, respectively, such
that UX(x)∩UX(β) = ∅. Then the assumption of induction implies that without loss of
generality we may assume that there do not exist �nitely many α1, . . . , αm ∈ ↑4β with
rankα1 = . . . = rankαm = k such that

UX(x) ∩ ↑4β ⊆ ↑4α1 ∪ · · · ∪ ↑4αm.

Fix an arbitrary α1 ∈ ↑4β such that rankα1 = k and ↑4α1 ∩ UX(x) 6= ∅. Proposi-
tion 1.3.1 of [8], Lemma 2 and Proposition 2 imply that there exists γ1 ∈ I n

λ \ I n−1
λ

such that γ1 ∈ ↑4α1∩UX(x). Next, by induction using Proposition 1.3.1 of [8], Lemma 2
and Proposition 2 we construct sequences {αi}i∈N and {γi}i∈N of distinct points of the
set ↑4β such that the following conditions hold:

(a) rankαi+1 = k and ↑4αi+1 \
(
↑4α1 ∪ · · · ∪ ↑4αi

)
∩ UX(x) 6= ∅; and

(b) γi+1 ∈ I n
λ \I n−1

λ and γi+1 ∈ ↑4αi+1 \
(
↑4α1 ∪ · · · ∪ ↑4αi

)
∩ UX(x),

for all positive integers i > 1.
Then Lemma 1 implies that the in�nite family of non-empty open subsets U =

{{γi} : i ∈ N} is locally �nite, which contradicts the feeble compactness of ↑4β. The
obtained contradiction implies the statement of induction which completes the proof of
the statement that the space (I n

λ , τ) is H-closed.
(iv)⇒ (v) By Kat�etov's Theorem every continuous image of an H-closed topological

space into a Hausdor� space is H-closed (see [8, 3.15.5 (b)] or [22]). Hence the image
f(I n

λ ) is H-closed for every continuous map f : (I n
λ , τ)→ Nd, which implies that f(I n

λ )
is compact (see [8, 3.15.5 (a)]).

(v) ⇒ (ii) Suppose to the contrary that there exists a Hausdor� shift-continuous
Nd-compact topology τ on I n

λ which is not feebly compact. Then there exists an in�nite
locally �nite family U = {Ui} of open non-empty subsets of (I n

λ , τ). Without loss of
generality we may assume that the family U = {Ui} is countable., i.e., U = {Ui : i ∈ N}.
Then the de�nition of the semigroup I n

λ and Lemma 2 imply that for every Ui ∈ U
there exists αi ∈ Ui such that ↑4αi ∩ Ui = {αi} and hence U ∗ = {{αi} : i ∈ N} is a
family of isolated points of (I n

λ , τ). Since the family U is locally �nite, without loss of
generality we may assume that αi 6= αj for distinct i, j ∈ N. We claim that the family
U ∗ is locally �nite. Indeed, if we assume the contrary then there exists α ∈ I n

λ such
that every open neighbourhood of α contains in�nitely many elements of the family U ∗.
This implies that the family U is not locally �nite, a contradiction. Since (I n

λ , τ) is a
T1-space and the family U ∗ is locally �nite, we have that

⋃
U ∗ is a closed subset in
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(I n
λ , τ) and hence the map f : (I n

λ , τ)→ Nd de�ned by the formula

f(β) =

{
1, if β ∈ I n

λ \
⋃

U ∗;
i+ 1, if β = αi for some i ∈ N,

is continuous. This contradicts that the space (I n
λ , τ) is Nd-compact.

The proofs of implications (iv) ⇒ (vi) and (vi) ⇒ (ii) are same as the proofs of
(iv)⇒ (v) and (v)⇒ (ii), respectively.

Implication (ii)⇒ (vii) follows from Proposition 2 and Theorem 3 of [20].
(vii) ⇒ (ii) Suppose to the contrary that there exists a Hausdor� shift-continuous

infra H-closed topology τ on I n
λ which is not feebly compact. Then similarly as in the

proof of implication (v) ⇒ (ii) we choice a locally �nite family U ∗ = {{αi} : i ∈ N} of
isolated points of (I n

λ , τ). Then the map f : (I n
λ , τ)→ R de�ned by the formula

f(β) =

{
1, if β ∈ I n

λ \
⋃

U ∗;
1

i+ 1
, if β = αi for some i ∈ N,

is continuous. This contradicts that the space (I n
λ , τ) is infra H-closed. �

Remark 2. By Theorem 5 from [20] conditions (ii) and (vii) of Theorem 2 are equivalent
for any Tychono� space X.

It is not, however, the case that feebly compact and infra H-closed are equivalent
in general. In [21] Herrlich, beginning with a T1-space Y , constructs a regular space X
such that the only continuous functions from X into Y are constant. His construction
involves the cardinality of Y , but only as the cardinality of collections of open sets whose
intersections are singletons. Thus only the most trivial modi�cations are needed in his
argument to produce a regular Hausdor� infra H-closed space. It is also easily shown
that the space constructed in this manner is not feebly compact.

Any regular lightly compact space must be a Baire space [25, Lemma 3], and thus it
is of interest to note that the space constructed in [21] can be shown to be the countable
union of nowhere dense subsets using essentially the same argument as can be used to
show it is not feebly compact.

Later we need the following technical lemma.

Lemma 3. Let n be an arbitrary positive integer and λ be an arbitrary in�nite cardinal.

Let τ be a feebly compact shift-continuous T1-topology on the semigroup I n
λ . Then for

every α ∈ I n
λ and any open neighbourhood U(α) of α in (I n

λ , τ) there exist �nitely many

α1, . . . , αk ∈ ↑4α \ {α} such that

I n
λ \I n−1

λ ∩ ↑4α ⊆ U(α) ∪ ↑4α1 ∪ · · · ∪ ↑4αk.

Proof. Suppose to the contrary that there exists a feebly compact shift-continuous T1-
topology on the semigroup I n

λ which satis�es the following property: some element α of
the semigroup I n

λ has an open neighbourhood U(α) of α in (I n
λ , τ) such that

I n
λ \I n−1

λ ∩ ↑4α * U(α) ∪ ↑4α1 ∪ · · · ∪ ↑4αk,

for any �nitely many α1, . . . , αk ∈ ↑4α \ {α}. We observe that Lemma 2 implies that
without loss of generality we may assume that U(α) ⊆ ↑4α.
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Fix such an element α of I n
λ and its open neighbourhood U(α) with the above

determined property. Then our assumption implies that there exists α1 ∈ ↑4α \ U(α)
such that the set

I n
λ \I n−1

λ ∩ ↑4α1 \ U(α)

is in�nite and �x an arbitrary γ1 ∈ I n
λ \I n−1

λ ∩ ↑4α1 \U(α). Next, by induction using
our assumption we construct sequences {αi}i∈N and {γi}i∈N of the distinct points of the
set ↑4α such that the following conditions hold:

(a) αi+1 ∈ ↑4α \
(
U(α) ∪ ↑4α1 ∪ · · · ∪ ↑4αi

)
and the set

I n
λ \I n−1

λ ∩ ↑4α ∩ ↑4α1+1 \
(
U(α) ∪ ↑4α1 ∪ · · · ∪ ↑4αi

)
is in�nite;

(b) γi+1 ∈ I n
λ \I n−1

λ ∩ ↑4α ∩ ↑4α1 \
(
U(α) ∪ ↑4α1 ∪ · · · ∪ ↑4αi

)
,

for all positive integers i.
By Lemma 2 and Theorem 14 of [4] the space ↑4α is feebly compact. Then Lemma 1

implies that the in�nite family of non-empty open subsets U = {{γi} : i ∈ N} is locally �-
nite, which contradicts the feeble compactness of ↑4α. The obtained contradiction implies
the statement of the lemma. �

Theorem 3. Let n be an arbitrary positive integer and λ be an arbitrary in�nite cardinal.

Then every shift-continuous semiregular feebly compact T1-topology τ on I n
λ is compact.

Proof. We shall prove the statement of the theorem by induction. First we observe that
for every element α of a semiregular feebly compact T1-semitopological semigroup (I n

λ , τ)
with rankα = n − 1, n the set ↑4α is compact. Indeed, by Lemma 2 for every β ∈ I n

λ

the set ↑4β is open-and-closed in (I n
λ , τ), and hence we have that I n

λ \I
n−1
λ is an open

discrete subspace of (I n
λ , τ) and using Theorem 14 of [4] we obtain that ↑4α is feebly

compact, which implies that the space ↑4α is compact.
Next we shall prove a more stronger step of induction: if for every element α of a

semiregular feebly compact T1-semitopological semigroup (I n
λ , τ) with rankα > l 6 n the

set ↑4α is compact, then ↑4β is compact for every β ∈ I n
λ with rankα = l.

Suppose to the contrary that there exists a semiregular feebly compact T1-
semitopological semigroup (I n

λ , τ) such that for some positive integer l 6 n the
set ↑4α is compact for every α ∈ I n

λ with rankα > l, but there exists β ∈ I n
λ with

rankβ = l such that the set ↑4β is not compact.
First we observe that our assumption that the set ↑4α is compact and Corolla-

ry 3.1.14 of [8] imply that the following family

Bc(α) =
{
Uα(α1, . . . , αk) = ↑4α \ (↑4α1 ∪ · · · ∪ ↑4αk) : αi ∈ ↑4α \ {α}, i = 1, . . . , k

}
is a base of topology at the point α of (I n

λ , τ) for every α ∈ I n
λ with rankα > l.

Then the Alexander Subbase Theorem (see [1, Theorem 1] or [8, p. 221, 3.12.2(a)])
and Lemma 2 imply that there exists a base B of the topology τ on I n

λ with the following
properties:

(i) B =
⋃
{B(γ) : γ ∈ I n

λ } and for every γ ∈ I n
λ the family B(γ) is a base at the

point γ;
(ii) U(γ) ⊆ ↑4γ for any U(γ) ∈ B(γ);
(iii) B(γ) = Bc(γ) for every γ ∈ I n

λ with rank γ > l;
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(iv) there exists a cover U of the set ↑4β by members of the base B which has not
a �nite subcover.

We claim that the subspace ↑4β of (I n
λ , τ) contains an in�nite closed discrete

subspace X. Indeed, let U0 be a subfamily of U such that

{β} ∪
(
↑4β ∩I n

λ \I n−1
λ

)
⊆
⋃

U0.

Since the set ↑4β is not compact and ↑4γ is compact for any γ ∈ ↑4β \ {β}, without
loss of generality we may assume that there exists k > rankβ such that the following
conditions hold:

(a) there exist in�nitely many elements ζ ∈ ↑4β with rank ζ = k such that ζ /∈
⋃

U0;
(b) ς ∈

⋃
U0 for all ς ∈ ↑4β with rank ς < k.

It is obvious that the set

X = ↑4β \
(⋃

U0 \
⋃{
↑4ς : rank ς > k

})
is requested.

Fix an arbitrary regular open neighbourhood U(β) of the point β in (I n
λ , τ) such

that U(β) ∩X = ∅. By Lemma 3 there exist �nitely many β1, . . . , βs ∈ ↑4β such that

I n
λ \I n−1

λ ∩ ↑4β ⊆ U(β) ∪ ↑4β1 ∪ · · · ∪ ↑4βs.
It is obvious that the set X \(↑4β1∪· · ·∪↑4βs) is in�nite. For every δ ∈ X the set ↑4δ is
compact and open, and moreover by Lemma 1 the set ↑4δ \

(
↑4β1 ∪ · · · ∪ ↑4βs

)
contains

in�nitely many points of the neighbourhood U(β). This implies that intIn
λ

(
clIn

λ
(U(β))

)
∩

X 6= ∅, which contradicts the assumption that U(0)∩X = ∅. The obtained contradiction
implies that the subspace ↑4β of (I n

λ , τ) is compact, which completes the proof of the
theorem. �
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Ìè âèâ÷à¹ìî ñëàáêî êîìïàêòíi T1-òîïîëîãi¨ íà ñèìåòðè÷íié iíâåðñíié
íàïiâãðóïi I n

λ ñêií÷åííèõ ïåðåòâîðåíü ðàíãó 6 n, ÿêi ïåðåòâîðþþòü ¨¨ â
íàïiâòîïîëîãi÷íó íàïiâãðóïó. Äëÿ äîâiëüíîãî íàòóðàëüíîãî ÷èñëà n > 2 i
äëÿ êîæíîãî íåñêií÷åííîãî êàðäèíàëà λ ïîáóäîâàíà ãàóñäîðôîâà çëi÷åííî
ïðàêîìïàêíà íåêîìïàêòíà òîïîëîãiÿ íà íàïiâãðóïi I n

λ , ÿêà ïåðåòâîðþ¹ ¨¨
â íàïiâòîïîëîãi÷íó íàïiâãðóïó. Äîâåäåíî, ùî äëÿ äîâiëüíîãî íàòóðàëüíîãî
÷èñëà n i äëÿ äîâiëüíîãî íåñêií÷åííîãî êàðäèíàëà λ äëÿ T1-òîïîëîãi¨ τ íà
íàïiâãðóïi I n

λ òàêi óìîâè ¹ åêâiâàëåíòíèìè: (i) τ � çëi÷åííî ïðàêîìïàêò-
íà; (ii) τ � ñëàáêî êîìïàêòíà; (iii) τ � d-ñëàáêî êîìïàêòíà; (iv) ïðîñòið
(I n

λ , τ) ¹ H-çàìêíåíèì; (v) ïðîñòið (I n
λ , τ) ¹ Nd-êîìïàêòíèì äëÿ äèñêðåò-

íîãî çëi÷åííîãî ïðîñòîðó Nd; (vi) ïðîñòið (I n
λ , τ) ¹ R-êîìïàêòíèì; (vii)

ïðîñòið (I n
λ , τ) ¹ iíôðà H-çàìêíåíèì. Òàêîæ äîâåäåíî, ùî äëÿ äîâiëüíîãî

íàòóðàëüíîãî ÷èñëà n i äëÿ äîâiëüíîãî íåñêií÷åííîãî êàðäèíàëà λ êîæíà
íàïiâðåãóëÿðíà ñëàáêî êîìïàêòíà T1-òîïîëîãiÿ íà I n

λ , ÿêà ïåðåòâîðþ¹ ¨¨
â íàïiâòîïîëîãi÷íó íàïiâãðóïó, ¹ êîìïàêòíîþ.

Êëþ÷îâi ñëîâà: íàïiâãðóïà, iíâåðñíà íàïiâãðóïà, íàïiâòîïîëîãi÷íà
íàïiâãðóïà, êîìïàêòíèé, çëi÷åííî êîìïàêòíèé, çëi÷åííî ïðàêîìïàêòíèé,
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