УДК 512.582

EXTENDING MONOMORPHIC FUNCTORS WITH FINITE SUPPORTS

Taras BANAKH, Viktoriia BRYDUN

Ivan Franko National University of Lviv 1, Universitetska Str., 79000, Lviv, Ukraine e-mails: tbanakh@yahoo.com, v frider@yahoo.com

We prove that each monomorphic functor with finite supports $F: \mathbf{Comp} \to \mathbf{Comp}$ has a unique extension $\bar{F}: \mathbf{TYCH} \to \mathbf{TYCH}$ to the category \mathbf{TYCH} of Tychonoff spaces and their arbitrary maps such that $\bar{F}|\mathbf{Tych} = F_{\beta}$ where $F_{\beta}: \mathbf{Tych} \to \mathbf{Tych}$ is the extension of the functor F to the category \mathbf{Tych} of Tychonoff spaces and their continuous maps, constructed by Chigogidze.

 $Key\ words\colon$ monomorphism, monomorphic functor, finite support, extension of functor

In this article we describe a general construction of an extension of a monomorphic functor $F: \mathbf{Comp} \to \mathbf{Comp}$ with finite supports in the category \mathbf{Comp} of compact Hausdorff spaces and their continuous maps to a functor $\bar{F}: \mathbf{TYCH} \to \mathbf{TYCH}$ in the category \mathbf{TYCH} whose objects are Tychonov spaces and morphisms are arbitrary (not necessarily continuous) maps between Tychonoff spaces. More information on functors in the category \mathbf{Comp} can be found in the book [4].

We shall say that a functor $F : \mathbf{Comp} \to \mathbf{TYCH}$

- is monomorphic if F preserves monomorphisms, which means that for any injective continuous map $f: X \to Y$ between compact Hausdorff spaces the map $Ff: FX \to FY$ is injective;
- has finite supports if for each compact Hausdorff space X and each $a \in FX$ there is a finite subset $A \subset X$ such that $a \in Fi_{A,X}(FA)$ where $i_{A,X} : A \to X$ is the identity inclusion.

More information on monomorphic functors with finite supports can be found in the paper [1].

Given a functor $F : \mathbf{Comp} \to \mathbf{TYCH}$ we first extend F to a functor $F_{\beta} : \mathbf{Tych} \to \mathbf{TYCH}$ defined on the category \mathbf{Tych} of Tychonoff spaces and their continuous maps. Given a Tychonoff space X let βX be the Stone-Čech compactification of X and $\mathcal{K}(X)$ be the family of all compact subsets of X. For each compact subset $K \in \mathcal{K}(X)$ let

 $^{2010\} Mathematics\ Subject\ Classification \colon 18A22$

[©] Banakh T., Brydun V., 2017

 $i_{K,\beta X}: K \to X \subset \beta X$ be the identity inclusion of K into the Stone-Čech compactification of X. Applying the functor F to the inclusion $i_{K,\beta X}: K \to \beta X$, we get a map $Fi_{K,\beta X}: FK \to F(\beta X)$.

Now let

$$F_{\beta}X := \bigcup_{K \in \mathcal{K}(X)} Fi_{K,\beta X}(FK).$$

For any continuous function $f: X \to Y$ between Tychonoff spaces let $\beta f: \beta X \to \beta Y$ be the Stone-Čech extension of f and $F_{\beta}f: F_{\beta}X \to F_{\beta}Y$ be the restriction of the map $F\beta f$ to $F_{\beta}X$. In such way we define the extension $F_{\beta}: \mathbf{Tych} \to \mathbf{TYCH}$ of the functor F to the category \mathbf{Tych} . For functors $F: \mathbf{Comp} \to \mathbf{Comp}$ the extension F_{β} was introduced and studied by Chigogidze in [2].

Now assuming that the functor $F: \mathbf{Comp} \to \mathbf{TYCH}$ is monomorphic and has finite supports, we shall further extend the functor F_{β} to a functor $\bar{F}: \mathbf{TYCH} \to \mathbf{TYCH}$ defined on the category \mathbf{TYCH} of Tychonoff spaces and their arbitrary (not necessarily continuous) maps. For a Tychonoff space X let $[X]^{<\omega}$ be the family of all finite subspaces of X

Proposition 1. If a functor $F : \mathbf{Comp} \to \mathbf{TYCH}$ has finite supports, then

$$F_{\beta}X = \bigcup_{A \in [X]^{<\omega}} Fi_{A,\beta X}(FA).$$

Proof. The inclusion $\bigcup_{A\in[X]^{<\omega}} Fi_{A,\beta X}(FA) \subset F_{\beta}X$ follows from the inclusion $[X]^{<\omega} \subset \mathcal{K}(X)$. To prove the reverse inclusion, fix any element $a\in F_{\beta}X$ and find a compact subset $K\subset X$ such that $a\in Fi_{K,\beta X}(FK)$. Find an element $b\in FK$ such that $a=Fi_{K,\beta X}(b)$. Since F has finite supports, there exists a finite subset $A\subset K$ such that $b\in Fi_{A,K}(FA)$ and hence $b=Fi_{A,K}(c)$ for some $c\in FA$. Since $i_{A,\beta X}=i_{K,\beta X}\circ i_{A,K}$, we get

$$\begin{split} a &= Fi_{K,\beta X}(b) = \\ &= Fi_{K,\beta X}(Fi_{A,K}(c)) = \\ &= F(i_{K,\beta X} \circ i_{A,K})(c) = \\ &= Fi_{A,\beta X}(c) \in Fi_{A,\beta X}(FA). \end{split}$$

Now we are able to prove the main result of this note.

Theorem 1. Each monomorphic functor $F : \mathbf{Comp} \to \mathbf{TYCH}$ with finite supports has a unique extension $\bar{F} : \mathbf{TYCH} \to \mathbf{TYCH}$ such that $\bar{F} | \mathbf{Tych} = F_{\beta}$.

Proof. For any Tychonoff space X put $\bar{F}X = F_{\beta}X$. Given any function $f: X \to Y$ between Tychonoff spaces and any $a \in \bar{F}X = F_{\beta}X$, find a finite subspace $A_1 \subset X$ such that $a \in Fi_{A_1,\beta X}(FA_1)$. Such subspace exists by Proposition 1. Find an element $a_1 \in FA_1$ such that $a = Fi_{A_1,\beta X}(a_1)$. Applying the functor F_{β} to the continuous map $f_1 = f|A_1: A_1 \to Y$, we get a map $F_{\beta}f_1: FA_1 \to F_{\beta}Y$. Finally, put

$$\bar{F}f(a) := F_{\beta}f_1(a_1) \in F_{\beta}Y = \bar{F}Y.$$

Let us show that the value $\bar{F}f(a) = F_{\beta}f_1(a_1)$ depends only on a (but not on A_1 or a_1).

Let $A_2 \subset X$ be a finite set such that $a \in Fi_{A_2,\beta X}(FA_2)$ and $a_2 \in FA_2$ be an element such that $a = Fi_{A_2,\beta X}(a_2)$. Consider the finite set $A = A_1 \cup A_2$, and for $i \in \{1,2\}$ let $i_{A_i,A}: A: A_i \to A$ denote the identity inclusion. Let $\tilde{a}_i = Fi_{A_i,A}(a_i) \in FA$ and observe that

$$a = Fi_{A_i,\beta X}(a_i) = Fi_{A,\beta X} \circ Fi_{A_i,A}(a_i) = Fi_{A,\beta X}(\tilde{a}_i).$$

Since the functor F is monomorphic, the map $Fi_{A,\beta X}$ is injective and hence $\tilde{a}_1 = \tilde{a}_2$. Then

$$F_{\beta}f_1(a_1) = F_{\beta}(f|A) \circ Fi_{A_1,A}(a_1) = F_{\beta}(f|A)(\tilde{a}_1) = F_{\beta}(f|A)(\tilde{a}_2) = F_{\beta}(f|A_2)(a_2),$$
 so the map $\bar{F}: \bar{F}X \to \bar{F}Y$ is well-defined.

Thus, we obtain an extension of the functor $F: \mathbf{Comp} \to \mathbf{TYCH}$ to the functor $\bar{F}: \mathbf{TYCH} \to \mathbf{TYCH}$ such that $\bar{F}|\mathbf{Tych} = F_{\beta}$. To see that this extension is unique, observe that for any function $f: X \to Y$ between Tychonoff spaces and any $a \in \bar{F}X = F_{\beta}X$, we can apply Proposition 1 and find a finite set $A \subset X$ with $a \in Fi_{A,\beta X}FA$ and an element $a_1 \in FA$ such that $a = Fi_{A,\beta X}(a_1)$. Let $B = f(A) \subset Y$. Applying the functor \bar{F} to the equality $f|A = f \circ i_{A,X}$ we obtain the equality $F_{\beta}(f|A) = \bar{F}(f|A) = \bar{F}f \circ \bar{F}i_{A,X} = \bar{F}f \circ F_{\beta}i_{A,X}$, which implies that the value $\bar{F}f(a) = \bar{F}f \circ F_{\beta}i_{A,X}(a_1) = F_{\beta}(f|A)(a_1)$ is uniquely determined.

Theorem 1 allows us to aks the following problem which will be considered in subsequent publications.

Problem 1. Detect monomorphic functors $F: \mathbf{Comp} \to \mathbf{TYCH}$ with finite support whose extension $\bar{F}: \mathbf{TYCH} \to \mathbf{TYCH}$ preserves certain property \mathcal{P} of functions between Tychonoff spaces.

In the role of the property \mathcal{P} we can consider one of properties of generalized continuity, listed in the survey [3].

REFERENCES

- 1. T. Banakh, M. Martynenko, and M. Zarichnyi. On monomorhic topological functors with finite supports, Carpathian Math. Publ. 4 (2012), no. 1, 4-12.
- A. Chigogidze, Extension of normal functors, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1984), 23–26.
- 3. O. Karlova, Classification of analogues of continuous functions, Chernivtsi Nat. Univ., Chernivtsi, 2015, Preprint.
- A. Teleiko and M. Zarichnyi. Categorical topology of compact Hausdorff spaces, VNTL Publ., Lviv, 1999.

Стаття: надійшла до редколегії 02.06.2017 прийнята до друку 13.11.2017

ПРОДОВЖЕННЯ МОНОМОРФНОГО ФУНКТОРА ЗІ СКІНЧЕННИМИ НОСІЯМИ

Тарас БАНАХ, Вікторія БРИДУН

Львівський національний університет ім. Івана Франка, вул. Університетська, 1, 79000, Львів e-mails: tbanakh@yahoo.com, v_frider@yahoo.com

Доведено, що кожен мономорфний функтор зі скінченними носіями $F: \mathbf{Comp} \to \mathbf{Comp}$ має продовження $\bar{F}: \mathbf{TYCH} \to \mathbf{TYCH}$ на категорію \mathbf{TYCH} тихонівських просторів і довільних відображень (не обов'язково неперервних). Причому $\bar{F}|\mathbf{Tych}=F_{\beta}$, де $F_{\beta}: \mathbf{Tych} \to \mathbf{Tych}$ – побудоване Чігогідзе продовження функтора F на категорію \mathbf{Tych} тихонівських просторів і неперервних відображень.

Kлючові слова: мономорфізм, мономорфний функтор, скінченний носій, продовження функтора.