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The Dirichlet boundary value problem for a nonlinear elliptic equation
with nonstandard growth conditions in the main part of operator is considered.
There is a peculiarity of this problem, which means that without a preliminary
definition of an intermediate space, where the solution is searched, a Lavrentiev
effect may be observed. Existence and uniqueness of variational solutions for
each intermediate weighted Sobolev-Orlicz space are proven.
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1. INTRODUCTION

Let Q& C R™(n > 2) be a bounded domain with Lipschitz boundary, let p: Q@ — R
be a Lebesgue measurable function such that 1 < a < p(z) < 8 < +oo for a.e. z € Q.
Let also pu: Q — R be a measurable function such that u € LY(Q), u(z) > 0 for a.e.

z € Qand plz) 7 € LI®)(Q), where 27 T gty = 1 for ae. x € Q. Here L1#)(Q) is a
well-known variable Lebesgue space.

Let LP®)(Q, udz) be a functional space which is defined as follows:

LP(”)(Q,udx) = {v: Q—R: /|U(Z’)|p(w) p(x) dr < +OO}'
Q

Unlike Lp("”)(Q), these spaces are far less known, but, nonetheless, under the given
constraints on p they have almost the same properties as LP(*)(Q): reflexivity, separability
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and completeness with respect to the Luxemburg norm [1]
lll s 2100 = i {A > 0: [ ) AP pta) do < 1}.
Q

These spaces are usually called weighted variable Lebesgue spaces or weighted Lebesgue-
Orlicz spaces. We will also take into consideration another type of spaces, namely, wei-
ghted Sobolev-Orlicz spaces, which are separable reflexive Banach spaces generally defi-
ned as follows:

Wol,p(w) (Q, pda) = {u e WH(Q) : /|Vu(x)|p(x) p(x)de < oo},
Q

HUHWOLp(z)(Q’HdI) = H|Vu”|LP(w)(Q,;Lda:)'
The aim of this paper is to establish some existence and uniqueness theorems for
the following boundary value problem (BVP)

— div (u(x) |V [P —2 Vu) = —div (u(m)ﬁ(m)) on Q,
u=0 on 09,

(1)

where F = (f1,., fn) € [L‘Z(“J)(Q,udx)}n is given, u :  — R is uknown. It is worth
mentioning that we do not state anything rigorous beforehand about the exact functional
space to which the function u belongs. To be more precise, we can only assert that
u € Wol’p(x)(ﬂ, pdx) as in the widest possible case.

The reason for such a vague explanation is based on the structure of spaces
W P@(Q, pdz) and Hy?(Q, pdx), where HyP') (€, pndz) is a closure of C§°(€) with
respect to the given norm of Wol’p(x)(Q,udx). It is obvious that H&’p(x)(Q,udx) C

WP (Q, udz), but there exist functions such that Hy*™ (Q, pda) £ Wi P™(Q, pda)
[2], which makes the boundary value problem (1) far more challenging.

Let us consider a closed subspace V of the space W01 P (Z)(Q, wdz) such that
HyP™(Q, pda) C V.

It is obvious that C3°(R) C V, but if V # Hy*(Q, pdz), then Cg°(R) is not dense in
V. It is also clear that a functional

v / ) Y fulo)o, () do = / n(@)F(2) Vo) de (2)

is an element of V* (to make sure, see Theorem 8, Section 3), a dual space of V. This
allows us to give the following definition of solutions to problem (1).

Definition 1. A function u € V is said to be a V-solution (variational solution with
respect to the space V') to the problem (1) if the integral equality

/,u(x) VP2 Vuve do = /,u(x)ﬁ(x)Vv dz (3)
Q )

holds true for allv e V.
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Similarly, another well-known definition of solutions to (1) should also be recalled.

Definition 2. A function u € Wol’p(gﬁ)(Q,udm) is said to be a weak solution to the
boundary value problem (1) if an integral equality from (3) holds true only for those v
which belong to C5°(£2).

Remark 1. Each V-solution to (1) is also a weak solution to (1).
The main result of this paper is the following statement.

Theorem 1. Boundary value problem (1) has a unique V-solution for each intermediate
space Hé’p(x)(ﬂ,udx) CVC Wol’p(x)(Q,udx).

The proof of this theorem will be based on considering an operator equation

Au) = f, (4)

where u € V. f € V*/A: V — V* V is a Banach space, V* is a dual space. We will
show that BVP (1) is equivalent to the equation (4), which allows to apply a theorem of
existence and uniqueness of solutions to this equation [3]. This idea will be implemented
in Section 3.

To be more rigorous, we should provide a historical review and some information
about physical sense of the given problem, because it is not just abstract one and has some
important background. To start with, the boundary value problem (1) became widely
known after the paper [4] by V.V. Zhikov in 1986, which was followed by a numerous
series of researches in, for instance, articles [5, 17]. Namely, it was shown that a functional

I(u):/f(a:,Vu)dx,
Q

where the function f(z,&) : Q x R™ — R satisfies the growth conditions

—Cco +C1 |§\p§f(x,§)§co+02 |£|qa q > p,

can attain different minimums for different test function spaces. In other words, it means
that we can observe Lavrentiev phenomenon for some functional spaces. Afterwards,
the question of solvability of the corresponding Euler-Lagrange equation, which also
was considered separately as a degenerate elliptic equation, was broached in papers of
scientists such as Xian-Ling Fan, Qi-Hu Zhang [6], V.V. Zhikov, S.Ye. Pastukhova (for
instance, [9]), Yu.A. Alkhutov, O.V. Krashennikova (for instance, [10]), P. Marcellini [11],
M. Giaquinta [12], M. Ruzicka [13] and others.

Generally, the first studies on solvability of problem (1) in terms of weak solutions
(see Definition 2) were devoted to the case u(x) = 1 (see [6]). Furthermore, a series
of researches into the problem (1) was conducted by the group of Russian scientists
(V.V. Zhikov, S.Ye. Pastukhova, Yu.A. Alkhutov, O.V. Krashennikova). These researches
include both variations of problem (1) with u(x) # 1 and parabolic generalizations of
this problem, not to mention that topics of these scientists’ papers also include some case
studies of Sobolev-Orlicz spaces.

A substantial contribution to the theory of equations with variable exponents
was also brought by some Ukrainian mathematicians, mostly by M.M. Bokalo and
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O.M. Buhriy, who conducted various researches into parabolic extensions of BVP (1)
(see their latest papers [7, 8]).

The key issue of the problem (1) is that generally it may have an infinite number of
solutions. This issue is based on the fact that C§°(£2) may be either dense or not dense in
WO1 P (1)(9, dz) depending on regularity properties of p(x). There were also some studies
on the equality

Hy"™ (@, pda) = Wy (Q, pdx),
which subsequently turned out to be guaranteed by the density of C§°(£2) in the space
WP (Q, pdz). In this case, the density of Cg°(€2) in W™ (Q, idz) may be violated
not only because of the lack of regularity for p(x), but also due to violation of the
Muckenhoupt condition by u(x), which in turn is the corresponding condition for density
of C§°(Q) in WyP(, pdz) [14, p.1].

The main result of the paper is similar to those mentioned above, most of all to
Theorem 2.1 from [5], but it has a certain difference: unlike the results on BVPs for
degenerate elliptic equations in [5], the following result encompasses those cases of weight
p(z) which do not satisfy conditions from 2.2 [5].

As for the physical applicability, the BVP (1) is a certain variation of the classical
thermistor problem [15]. It can be reduced from the system of PDEs to a single equation
in the same way as it was shown in [15]. By and large, this BVP can be used for modeli-
ng electrorheological and thermoelectric characteristics of various processes [13], which
makes us ascertain of actuality of the given problem.

2. SOME PRELIMINARY RESULTS

Theorem 2. The space Wol’p(w)(Q,udx) is continuously imbedded into the space
Wy (); in other words,

1,p(z *
Vu € W, P )(Q,de) : ||U||wg11(9) <K ”“”WJ’P(I)(Q,;LM) '
where K* = const > 0.

Proof. Firstly, by definition, Wol’p(x)(Q,udx) - Wol’l(Q), which implies that for arbi-
trarily chosen u € Wi ™) (Q, udz) we have [ullyr ) = J [Vu(@)] dz < co. Secondly,
Q

by the Holder inequality for variable Lebesgue spaces [16, p.14] we obtain

— Up(@) |, =1/p() 4 < H 1/p(=) ‘ H ~1/p(x) _
/|Vu| dz /\Vu\,u 1 de < K ||u |Vul Lo (@) 1 Lo ()
Q Q
Since
5 ) (vl [
1 p(x
H”WW”" — inf /\>0:/u dr <1y =
Lr(=)(Q) A
Q
— inf A>o:/\A p@) dz <15 = |1Vl o goy
Q
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then
Il oy < B [P MV @eany = K Tl @00y
R
which provides an imbedding Wol’p(x)(Q, pdz) — Wy (). O

Theorem 3. The space Wol’p(x)(ﬂ,,udx) is a separable reflerive Banach space with
respect to the given norm.

Proof. The normability of W, ") (€, dz) is almost obvious. The next step is to verify
the completeness, reflexivity and separability for this space. To start with, we draw our
attention to the completeness property. With that in mind, we consider a fundamental
sequence {uk};;“i and substantiate its convergence.

Firstly, by the Holder inequality for variable Lebesgue spaces, since

Juller e = [ fute)] da.
Q

then
— _ —1/p(x)
/ [Vt~ Vit e < K [~ 100 00 1 o O
Q
which implies that {Vuy} 2] is fundamental in [L'(Q)]". The space [L'(Q)]" is

complete, that is why there exists ¢ € [Ll(Q)}n such that Vug — 9 strongly in
[L1(2)]". In addition, as {ur};25 is fundamental in Wol’p(z)(Q,ud:r), therefore, the
sequence {Vu}; %S is fundamental with respect to [LT’(””)(Q,,udx)]n, thereby, due to
completeness we establish an existence of a function ¢/ € [LP(*)(Q,pdz)]" with a
property Vu, — v’. Thus, as [Lp(x)(ﬂ,udx)}n — [Ll(Q)]n by (5), then it follows that
Y=

Secondly, basing on imbedding Wol’p(x)(ﬂ,ud:v) < Wy (Q) (by Theorem 2) we
infer that 1) is a weak gradient for some function v € LP®)(Q, udx). In conclusion, as
every function {uk};::i has a zero trace, it indicates that u also has zero trace, from where
we state that {u,}>5 converges to u in the space W, ' (). Since {Vuy}, =5 is convergent
to Vu with respect to [LP*) (€, udx)]", we conclude that u € Wy ®(Q, pdz) to finish
the proof of completeness for W™ (Q, i dz).

Now let us prove reflexivity and separability for I/VO1 P (x)(Q,udx). In order to
establish these statements, we define a function

F W@ pdz) = M ¢ [170)(Q, ) "

where f(u) = Vu, M is an image of Wol’p(m)(ﬂ,udx). The next stage is to show that
f is an injective operator. We assume to the contrary that for distinct uy # ug €
Wol’p(m)(Q,udx) an equality Vu; = Vus holds true. If it holds, then u; = us + C, but
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also uy € Wy (), which is contrary to ug € W' (Q), hence, we arrive at contradiction.
The operator f is also surjective by the definition. Moreover, since

HUH[Lp(w)(Q,de)]" = |||u|||LP(r)(Q,pdm)7

Hul - u2||W01’p(m)(Q“u,dz) = ||VU/1 - V’U’QH [LP(”J)(Q”udm)]n ’
that is why f is an isometry. As Wol’p(l)(Q7 pdz) is a complete space, then the image M
is closed in [Lp("”)(Q,,udx)]n. The space [LP(*)(Q, ,udx)]n is separable and reflexive [1],

and because of the fact that f is an isometry, Wol’p(‘r) (Q, ndz) is a separable reflexive
space by the properties of isometry. O

Theorem 4. Let u € LP*)(Q, udx). Then the following inequality holds true

min {[[ul* ull”} < ppu() < max {Jlul® [lul "}
where

P () = / ()P () da,
Q

lull = llell Lo ) -

Proof. If u = 0, then the inequality is obvious. To start with, we mention that if ||u| =
a # 0, then p,,, (%) =1 ([16, p.4]). To proceed, let ||u|| > 1. Then

1 < u < 1
a?ﬁp,#(u) = Pp,p (g) = ajpp,u(u)a
which implies that
[ull* < ppu(w) < Jlufl”.
The inequality
lall” < ppupu) < [lull,

if 0 < ||lu|| < 1, can be confirmed in the same way. Now, if we combine these inequalities,
then the given result is obvious. (]

Definition 3 ([3, p. 182]). Let V' be a Banach space. An operator A :V — V* is said
to be coercive if

(A(u), u)v=v

1m = +400.
J[uf| o0 [l

Definition 4 ([3, p. 168]). Let V' be a Banach space. An operator A :V — V* is said
to be hemicontinuous if a function

f) = (A(u+ M), w)y- v

is continuous on R for all u,v,w € V.
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3. EXISTENCE AND UNIQUENESS OF VARIATIONAL SOLUTIONS
To prove the main theorem of this paper, we will use the following statement.

Theorem 5 ([3, p. 182]). Let V' be a separable reflexive Banach space, let V* be a dual
space of V and let A: V — V* be a bounded hemicontinuous coercive monotone operator.
Then for every f € V* an equation A(u) = f has a solution. If the operator is strictly
monotone, then this solution is unique.

Before proving the main theorem, we provide some additional theorems in order to
make the proof clearer.

Theorem 6. Every intermediate space V is a separable reflexive Banach space equipped

with the norm |H|W01*”<“)(Q,udz)'

Proof. By definition, V is a closed linear manifold in the space W()l’p(z)(ﬁudx), which
is a separable reflexive Banach space, therefore, V' is also a separable reflexive Banach
space. O

Let us consider a form
a(u,v) = /u(x) |Vu|p(x)_2 VuVuvdz, wu,veV. (6)
Q
Theorem 7. The form a(-,-) : V. xV — R (see (6)) is well defined and the following
inequality
Jaw,0)] < K olly max { g™ July} Ve e v
holds, where K = const > 0.

Proof. By the Holder inequality, we have

/u(g;) IVuP@ 1 Vo) de < K Huﬁ V|

’ule) |VU|P(I)—1‘

Lr(=) () H

Lq(l‘)(Q)
Q
By the arguments from Theorem 2,
1
@ |V ’ = ) 7
T 190 = Dol (™)
Let us show that
1
@ P(m)*l‘ < { a—1 571}
et gt < Koma {7 ®)
We will take into account the following chain of transformations:
p(z)
p(z)—1 1 |p@-T
B p(x) v p(m) 1
Huﬁ V) 1’ — inf /\>o:/ p 0 (z) [Vl dr <1y =
La@) () A
Q
. . |VU|P($)
=inf< A>0: Wﬂ(x)dxgl

Q
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If u = 0, then the inequality (8) holds true. Assuming that |[u[|,, = C < +o0, let us
demonstrate that infimum in the last block of equalities is finite. In order to substantiate
it, we consider two cases: C' > 1,0 < C < 1. In the first case let A = C#~1. Hence,

p(x) p(z)
|VU| N(x) dr = /C(|VU|M($) dz <

pYCH 1) 25 =
Q Q

| V[P |Vu[P@)
< | ——————plx)dz = | ———p(z)dz =1 =
*/ o122 (@) cr@ M)

Q Q
Vu|P(®) B
= inf¢A>0: %u(m) de<1%<cP1= ||u||‘ﬁ/ L
Q

In the second case 0 < C < 1, that is why we take A = C®~! and use the same idea
as for the first case with C' > 1 to show that
: Ivu‘p(x) a—1 a—1
inf /\>0:/W,u(m)dx§1 <C =l
Q
Thus, the inequality (8) holds true, since we may combine two cases by choosi-

ng maximum value between them. Ultimately, after combining (8) and (7) we draw a
conclusion that the statement of this theorem holds. ]

It is clear that by fixing an argument u € V the form from Theorem 7 can be
restricted to the domain V', whereby we define a functional v — a(u,v), v € V, which
is also linear and continuous on V. Therefore, we have operator A : V — V* defined by
the rule

(A(u),v)y= v = a(u,v) Yu,veV. (9)

Theorem 8. The operator A : V. — V* is bounded, coercive, hemicontinuous and strictly
monotone.

Proof. From Theorem 7 we have
Al < K mae {57 1)

hence, the operator A is bounded.
The next step of the proof is to confirm that the operator A is coercive. Owing to
the equality

() w)y-y = [ uta) [Fu@)P da,
Q
and Definition 3, we ensure that

p(@) [Vul"'? da
Ay _ 4 RGN

1im —_— = m =
lull—oo  [|ully lful|—o0 llwlly lull—oo  flully,

o {flg el
. = T min {[uly " Jullg 7} = e,
o Tl el
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because «a, 8 > 1. In the last line we have applied an inequality from Theorem 4.
Now, we prove that the operator A is hemicontinuous. In order to ensure hemiconti-
nuity, it is sufficient to make sure of the equality

)l\irrb<A(u + ), w)y- v = (Aw), w)y~ v VYu,v,w e V. (10)
—
Without the loss of generality, we may consider A € [—1, 1]. By definition,

(A(u+ Av),w)y- vy = /u(a:) [Vu + )\Vv|p(x)_2 V (u+ Av) Vw dz.

Q
The integrated expression can be estimated as follows:

1(z) [Vu + AVoPP 72V (4 + Ao) V| < pz) [Vu + AVo[P@ V| <

< (@) (IVul + [Vo))" ! [Vl € L1(9),
where the last statement may be confirmed by the same arguments as those used in
Theorem 7 while proving the first inequality. Hence, since

IV + AV 72V (u 4 ) Vwu(z) — |[Vu?™ 72 VuVwu(z) ae. in Q Vu,v,w €V,

then (by the Lebesgue dominated convergence theorem) the operator A is hemiconti-
nuous.

Finally, it remains to guarantee that the operator A is strictly monotone.

Let r € R be an arbitrary number such that » > 1. It is well-known that the function
s |s|""%s: R — R is strictly monotone, i.e.,

(|51\T_2 51 — |82|T_2 s2)(s1—52) >0 Vsy, 80 € R, 51 # so.
With this in mind, we can deduce that

67+ nl" > Il Inl (16772 + 10"™2)  Ve,m € R [el, Il # 0, [€] # ol

By the Cauchy-Schwarz inequality, £ < |£| |n|, which can be applied to the previous
inequality:

&+ Inl" > &n (16" + 1) =

= (I =" me—n) >0 Ve nER" ¢l Inl £0, €] # In].
Now let &, n € R™ : |¢] = |n| = p > 0 and £ # +n. Then it is clear that

(I = Il n.g—n) = " +Inl" — &n (167> + 1nl") =

=2p" = 26np" " =2p"(1 = &'7y'), (11)
where ¢ = p~1¢, ' = p~!n). From here we infer that |¢/| = || = 1 and &’ # +7/. Hence,
it is obvious that

€ =\ >0 VAER,
because otherwise in the case & = Ao’ for some \g € R, we have \g = %1, which is
impossible. As a result, this implies that

L=2X7"+ X2 >0 VAER,
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guaranteeing that D = 4(¢'n')? —4 < 0 and &'n’ < 1, which provides that the expression
(11) is always positive. The same holds true for n = —¢ as well as when one of these
vectors is zero.

Taking into account all these arguments, we draw a conclusion that

(I =1 ne—n) >0 VeneR g4 (12)

To show that the operator A is also strictly monotone, we first recall the condition of
monotonicity:

(A(u) — A(),u —v)y=y >0 Yu,v € V,u#w.

If u,v € V : u # v, then there exists a positive measure set £ C 2 such that
Vu(z) # Vu(z) for x € E C Q and Vu(z) = Vu(z) for x € Q\ E. Since p(z) > 1 and
p(z) > 0 for almost all z € Q, then from this and (12) it follows

(A(w) — A(w),u —v)y= v =

= / (@) (V)PP 72 Vu(z) — |Vo(2) |72 Vo(z), Vu(z) — Vo(z)) dz > 0,

from where we ascertain that operator A is strictly monotone. O

Now we define functional f : V — R by the following rule:

v f(v) = /u(m)ﬁ(m)Vv(ac) dz, veVW (13)

Q

Theorem 9. This functional f: V — R is well defined, linear and continuous, that is,
fev* and also f(v) = (f,v)v-yv, veEV.

Proof. Indeed, after using again the Hdélder inequality, we get

[vlly - (14)

/,u(a:)ﬁ(x)Vv(x) dx S/M(UC) ‘ﬁ(m)‘ |Vo(z)| de<K H‘ﬁ(m)“ Lale) (@, dr)

Q Q

From the last inequality we may infer that f: V' — R is a bounded functional. Since f
is linear, hence, it is also continuous, that is, f € V*. O

Proof of Theorem 1. After the previous definitions and statements we may make
conclusion that the definition of V-solution to the problem (1) is correct, and this problem
is equivalent to abstract equation (4), where

HYPY(Q, pda) CV C WP (Q, pdz),

V*isdualtoV,and f € V* A:V — V* are defined above. To this operator equation we
can apply Theorem 5. Therefore, by Theorem 5, the equation (4) has a unique solution,
which in turn is equivalent to the existence of a unique V-solution to the BVP (1). O
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Consequently, we have proven that the boundary value problem (1) has a unique

V-solution with respect to each intermediate space

10.

11.

12.

13.

14.

15.

16.

17.

HyP"(Q, pda) CV C WP (Q, pdz).
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ITPO ICHYBAHHS TA € IUHICTH BAPIAIIINHUX PO3’SI3KIB
SAJAYI AIPIXJIE JJId HEJITHIMHOI'O EJIIIITUYHOTI'O
PIBHAHHA 3 HECTAHJAPTHUMUW YMOBAMM 3POCTAHHA

ITasio TKAYEHKO

Lninponemposcoruti Hayionasvhul yrwisepcumem wm. O. I'onwapa,
npocnexm Lazapina, 72, Aninpo, Yxpaina
e-mail: cool.phenom@mail.ru

PosrisayTo 3amaqy ipixire s HEMHIAHOTO eTIITUYHOTO PIBHIHHS 3 He-
CTAaHJAPTHAMH yMOBAaMU 3DOCTAHHS B FOJIOBHIN dacTuHi oneparopa. Icaye oco-
OIMBICTD ITET 3a/7a9i, BOHA TIOJISITA€ B TOMY, IO 6€3 MOMEepeTHbOTO 3a3HAYEH-
ug npocropy CoboneBa-Opiiva, B SKOMYy NIYKAEMO PO3B’A30K, MPOCTEKYETHCA
edekT JlaBperTbeBa. /loBereHO iCHYBAaHHS Ta €IMHICTH BapianiiHuIX PO3B’A3KiB
Autst poMizkHEX npocTopiB Cobomesa-Opirita.

Karowoei caosa: HemiHiiiHe eIiNTHHE DIBHSAHHS, 3MIHHII TOKA3HUK, e eKT
JlaBpenTtneBa, mpoctip CoboseBa-Opitiga.



