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The Dirichlet boundary value problem for a nonlinear elliptic equation
with nonstandard growth conditions in the main part of operator is considered.
There is a peculiarity of this problem, which means that without a preliminary
de�nition of an intermediate space, where the solution is searched, a Lavrentiev
e�ect may be observed. Existence and uniqueness of variational solutions for
each intermediate weighted Sobolev-Orliñz space are proven.
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1. Introduction

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary, let p : Ω → R
be a Lebesgue measurable function such that 1 < α ≤ p(x) ≤ β < +∞ for a.e. x ∈ Ω.
Let also µ : Ω → R be a measurable function such that µ ∈ L1(Ω), µ(x) > 0 for a.e.

x ∈ Ω and µ(x)−
1

p(x) ∈ Lq(x)(Ω), where 1
p(x) + 1

q(x) = 1 for a.e. x ∈ Ω. Here Lq(x)(Ω) is a

well-known variable Lebesgue space.
Let Lp(x)(Ω, µdx) be a functional space which is de�ned as follows:

Lp(x)(Ω, µdx) =

{
v : Ω→ R :

∫
Ω

|v(x)|p(x)
µ(x) dx < +∞

}
.

Unlike Lp(x)(Ω), these spaces are far less known, but, nonetheless, under the given
constraints on p they have almost the same properties as Lp(x)(Ω): re�exivity, separability
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and completeness with respect to the Luxemburg norm [1]

‖u‖Lp(x)(Ω,µ dx) = inf

{
λ > 0:

∫
Ω

|u(x)/λ|p(x)
µ(x) dx ≤ 1

}
.

These spaces are usually called weighted variable Lebesgue spaces or weighted Lebesgue-
Orlicz spaces. We will also take into consideration another type of spaces, namely, wei-
ghted Sobolev-Orlicz spaces, which are separable re�exive Banach spaces generally de�-
ned as follows:

W
1,p(x)
0 (Ω, µdx) =

{
u ∈W 1,1

0 (Ω) :

∫
Ω

|∇u(x)|p(x)
µ(x) dx <∞

}
,

‖u‖
W

1,p(x)
0 (Ω,µ dx)

= ‖|∇u|‖Lp(x)(Ω,µ dx) .

The aim of this paper is to establish some existence and uniqueness theorems for
the following boundary value problem (BVP){

− div
(
µ(x) |∇u|p(x)−2∇u

)
= −div

(
µ(x)~F (x)

)
on Ω,

u = 0 on ∂Ω,
(1)

where ~F = (f1, ..., fn) ∈
[
Lq(x)(Ω, µdx)

]n
is given, u : Ω → R is uknown. It is worth

mentioning that we do not state anything rigorous beforehand about the exact functional
space to which the function u belongs. To be more precise, we can only assert that

u ∈W 1,p(x)
0 (Ω, µdx) as in the widest possible case.

The reason for such a vague explanation is based on the structure of spaces

W
1,p(x)
0 (Ω, µdx) and H

1,p(x)
0 (Ω, µdx), where H

1,p(x)
0 (Ω, µdx) is a closure of C∞0 (Ω) with

respect to the given norm of W
1,p(x)
0 (Ω, µdx). It is obvious that H

1,p(x)
0 (Ω, µdx) ⊂

W
1,p(x)
0 (Ω, µdx), but there exist functions such that H

1,p(x)
0 (Ω, µdx) 6= W

1,p(x)
0 (Ω, µdx)

[2], which makes the boundary value problem (1) far more challenging.

Let us consider a closed subspace V of the space W
1,p(x)
0 (Ω, µdx) such that

H
1,p(x)
0 (Ω, µdx) ⊂ V.

It is obvious that C∞0 (Ω) ⊂ V , but if V 6= H
1,p(x)
0 (Ω, µdx), then C∞0 (Ω) is not dense in

V . It is also clear that a functional

v 7→
∫
Ω

µ(x)

n∑
k=1

fk(x)vxk
(x) dx ≡

∫
Ω

µ(x)~F (x)∇v(x) dx (2)

is an element of V ∗ (to make sure, see Theorem 8, Section 3), a dual space of V . This
allows us to give the following de�nition of solutions to problem (1).

De�nition 1. A function u ∈ V is said to be a V -solution (variational solution with
respect to the space V ) to the problem (1) if the integral equality∫

Ω

µ(x) |∇u|p(x)−2∇u∇v dx =

∫
Ω

µ(x)~F (x)∇v dx (3)

holds true for all v ∈ V .
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Similarly, another well-known de�nition of solutions to (1) should also be recalled.

De�nition 2. A function u ∈ W
1,p(x)
0 (Ω, µdx) is said to be a weak solution to the

boundary value problem (1) if an integral equality from (3) holds true only for those v
which belong to C∞0 (Ω).

Remark 1. Each V -solution to (1) is also a weak solution to (1).

The main result of this paper is the following statement.

Theorem 1. Boundary value problem (1) has a unique V -solution for each intermediate

space H
1,p(x)
0 (Ω, µdx) ⊆ V ⊆W 1,p(x)

0 (Ω, µdx).

The proof of this theorem will be based on considering an operator equation

A(u) = f, (4)

where u ∈ V, f ∈ V ∗, A : V → V ∗, V is a Banach space, V ∗ is a dual space. We will
show that BVP (1) is equivalent to the equation (4), which allows to apply a theorem of
existence and uniqueness of solutions to this equation [3]. This idea will be implemented
in Section 3.

To be more rigorous, we should provide a historical review and some information
about physical sense of the given problem, because it is not just abstract one and has some
important background. To start with, the boundary value problem (1) became widely
known after the paper [4] by V.V. Zhikov in 1986, which was followed by a numerous
series of researches in, for instance, articles [5, 17]. Namely, it was shown that a functional

I(u) =

∫
Ω

f(x,∇u) dx,

where the function f(x, ξ) : Ω× Rn → R satis�es the growth conditions

−c0 + c1 |ξ|p ≤ f(x, ξ) ≤ c0 + c2 |ξ|q , q > p,

can attain di�erent minimums for di�erent test function spaces. In other words, it means
that we can observe Lavrentiev phenomenon for some functional spaces. Afterwards,
the question of solvability of the corresponding Euler-Lagrange equation, which also
was considered separately as a degenerate elliptic equation, was broached in papers of
scientists such as Xian-Ling Fan, Qi-Hu Zhang [6], V.V. Zhikov, S.Ye. Pastukhova (for
instance, [9]), Yu.A. Alkhutov, O.V. Krashennikova (for instance, [10]), P. Marcellini [11],
M. Giaquinta [12], M. R�u�zi�cka [13] and others.

Generally, the �rst studies on solvability of problem (1) in terms of weak solutions
(see De�nition 2) were devoted to the case µ(x) = 1 (see [6]). Furthermore, a series
of researches into the problem (1) was conducted by the group of Russian scientists
(V.V. Zhikov, S.Ye. Pastukhova, Yu.A. Alkhutov, O.V. Krashennikova). These researches
include both variations of problem (1) with µ(x) 6= 1 and parabolic generalizations of
this problem, not to mention that topics of these scientists' papers also include some case
studies of Sobolev-Orlicz spaces.

A substantial contribution to the theory of equations with variable exponents
was also brought by some Ukrainian mathematicians, mostly by M.M. Bokalo and
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O.M. Buhriy, who conducted various researches into parabolic extensions of BVP (1)
(see their latest papers [7, 8]).

The key issue of the problem (1) is that generally it may have an in�nite number of
solutions. This issue is based on the fact that C∞0 (Ω) may be either dense or not dense in

W
1,p(x)
0 (Ω, dx) depending on regularity properties of p(x). There were also some studies

on the equality

H
1,p(x)
0 (Ω, µdx) = W

1,p(x)
0 (Ω, µdx),

which subsequently turned out to be guaranteed by the density of C∞0 (Ω) in the space

W
1,p(x)
0 (Ω, µdx). In this case, the density of C∞0 (Ω) in W

1,p(x)
0 (Ω, µdx) may be violated

not only because of the lack of regularity for p(x), but also due to violation of the
Muckenhoupt condition by µ(x), which in turn is the corresponding condition for density

of C∞0 (Ω) in W 1,p
0 (Ω, µdx) [14, p.1].

The main result of the paper is similar to those mentioned above, most of all to
Theorem 2.1 from [5], but it has a certain di�erence: unlike the results on BVPs for
degenerate elliptic equations in [5], the following result encompasses those cases of weight
µ(x) which do not satisfy conditions from 2.2 [5].

As for the physical applicability, the BVP (1) is a certain variation of the classical
thermistor problem [15]. It can be reduced from the system of PDEs to a single equation
in the same way as it was shown in [15]. By and large, this BVP can be used for modeli-
ng electrorheological and thermoelectric characteristics of various processes [13], which
makes us ascertain of actuality of the given problem.

2. Some Preliminary Results

Theorem 2. The space W
1,p(x)
0 (Ω, µdx) is continuously imbedded into the space

W 1,1
0 (Ω); in other words,

∀u ∈W 1,p(x)
0 (Ω, µdx) : ‖u‖W 1,1

0 (Ω) ≤ K
∗ ‖u‖

W
1,p(x)
0 (Ω,µ dx)

,

where K∗ = const > 0.

Proof. Firstly, by de�nition, W
1,p(x)
0 (Ω, µdx) ⊂ W 1,1

0 (Ω), which implies that for arbi-

trarily chosen u ∈ W 1,p(x)
0 (Ω, µdx) we have ‖u‖W 1,1

0 (Ω) =
∫
Ω

|∇u(x)| dx < ∞. Secondly,

by the H�older inequality for variable Lebesgue spaces [16, p.14] we obtain∫
Ω

|∇u| dx =

∫
Ω

|∇u|µ1/p(x) · µ−1/p(x) dx ≤ K
∥∥∥µ1/p(x) |∇u|

∥∥∥
Lp(x)(Ω)

∥∥∥µ−1/p(x)
∥∥∥
Lq(x)(Ω)

.

Since∥∥∥µ 1
p(x) |∇u|

∥∥∥
Lp(x)(Ω)

= inf

λ > 0 :

∫
Ω

∣∣∣∣∣µ
1

p(x) (x) |∇u|
λ

∣∣∣∣∣
p(x)

dx ≤ 1

 =

= inf

λ > 0 :

∫
Ω

∣∣∣∣∇uλ
∣∣∣∣p(x)

µ(x) dx ≤ 1

 = ‖|∇u|‖Lp(x)(Ω,µ dx) ,
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then

‖u‖W 1,1
0 (Ω) ≤ K

∥∥∥µ−1/p(x)
∥∥∥
Lq(x)(Ω)︸ ︷︷ ︸

K∗

‖|∇u|‖Lp(x)(Ω,µ dx) = K∗ ‖u‖
W

1,p(x)
0 (Ω,µ dx)

,

which provides an imbedding W
1,p(x)
0 (Ω, µdx) ↪→W 1,1

0 (Ω). �

Theorem 3. The space W
1,p(x)
0 (Ω, µdx) is a separable re�exive Banach space with

respect to the given norm.

Proof. The normability of W
1,p(x)
0 (Ω, µdx) is almost obvious. The next step is to verify

the completeness, re�exivity and separability for this space. To start with, we draw our
attention to the completeness property. With that in mind, we consider a fundamental
sequence {uk}+∞k=1 and substantiate its convergence.

Firstly, by the H�older inequality for variable Lebesgue spaces, since

‖u‖[L1(Ω)]n =

∫
Ω

|u(x)| dx,

then ∫
Ω

|∇uk −∇um| dx ≤ K ‖uk − um‖W 1,p(x)
0 (Ω,µ dx)

∥∥∥µ−1/p(x)
∥∥∥
Lq(x)(Ω)

, (5)

which implies that {∇uk}+∞n=1 is fundamental in
[
L1(Ω)

]n
. The space

[
L1(Ω)

]n
is

complete, that is why there exists ψ ∈
[
L1(Ω)

]n
such that ∇uk → ψ strongly in[

L1(Ω)
]n
. In addition, as {uk}+∞k=1 is fundamental in W

1,p(x)
0 (Ω, µdx), therefore, the

sequence {∇uk}+∞k=1 is fundamental with respect to
[
Lp(x)(Ω, µdx)

]n
, thereby, due to

completeness we establish an existence of a function ψ′ ∈
[
Lp(x)(Ω, µdx)

]n
with a

property ∇uk → ψ′. Thus, as
[
Lp(x)(Ω, µdx)

]n
↪→
[
L1(Ω)

]n
by (5), then it follows that

ψ = ψ′.

Secondly, basing on imbedding W
1,p(x)
0 (Ω, µdx) ↪→ W 1,1

0 (Ω) (by Theorem 2) we

infer that ψ is a weak gradient for some function u ∈ Lp(x)(Ω, µdx). In conclusion, as

every function {uk}+∞k=1 has a zero trace, it indicates that u also has zero trace, from where

we state that {uk}+∞k=1 converges to u in the spaceW
1,1
0 (Ω). Since {∇uk}+∞k=1 is convergent

to ∇u with respect to
[
Lp(x)(Ω, µdx)

]n
, we conclude that u ∈W 1,p(x)

0 (Ω, µdx) to �nish

the proof of completeness for W
1,p(x)
0 (Ω, µdx).

Now let us prove re�exivity and separability for W
1,p(x)
0 (Ω, µdx). In order to

establish these statements, we de�ne a function

f : W
1,p(x)
0 (Ω, µdx)→M  

[
Lp(x)(Ω, µdx)

]n
,

where f(u) = ∇u, M is an image of W
1,p(x)
0 (Ω, µdx). The next stage is to show that

f is an injective operator. We assume to the contrary that for distinct u1 6= u2 ∈
W

1,p(x)
0 (Ω, µdx) an equality ∇u1 = ∇u2 holds true. If it holds, then u1 = u2 + C, but
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also u1 ∈W 1,1
0 (Ω), which is contrary to u2 ∈W 1,1

0 (Ω), hence, we arrive at contradiction.
The operator f is also surjective by the de�nition. Moreover, since

‖u‖[Lp(x)(Ω,µ dx)]
n = ‖|u|‖Lp(x)(Ω,µ dx) ,

‖u1 − u2‖W 1,p(x)
0 (Ω,µ dx)

= ‖∇u1 −∇u2‖[Lp(x)(Ω,µ dx)]
n ,

that is why f is an isometry. As W
1,p(x)
0 (Ω, µdx) is a complete space, then the image M

is closed in
[
Lp(x)(Ω, µdx)

]n
. The space

[
Lp(x)(Ω, µdx)

]n
is separable and re�exive [1],

and because of the fact that f is an isometry, W
1,p(x)
0 (Ω, µdx) is a separable re�exive

space by the properties of isometry. �

Theorem 4. Let u ∈ Lp(x)(Ω, µdx). Then the following inequality holds true

min
{
‖u‖α , ‖u‖β

}
≤ ρp,µ(u) ≤ max

{
‖u‖α , ‖u‖β

}
,

where

ρp,µ(u) =

∫
Ω

|u(x)|p(x)
µ(x) dx,

‖u‖ = ‖u‖Lp(x)(Ω,µ dx) .

Proof. If u = 0, then the inequality is obvious. To start with, we mention that if ‖u‖ =
a 6= 0, then ρp,µ

(
u
a

)
= 1 ([16, p.4]). To proceed, let ‖u‖ ≥ 1. Then

1

aβ
ρp,µ(u) ≤ ρp,µ

(u
a

)
≤ 1

aα
ρp,µ(u),

which implies that

‖u‖α ≤ ρp,µ(u) ≤ ‖u‖β .

The inequality

‖u‖β ≤ ρp,µ(u) ≤ ‖u‖α ,

if 0 < ‖u‖ < 1, can be con�rmed in the same way. Now, if we combine these inequalities,
then the given result is obvious. �

De�nition 3 ([3, p. 182]). Let V be a Banach space. An operator A : V → V ∗ is said
to be coercive if

lim
‖u‖→∞

〈A(u), u〉V ∗,V

‖u‖V
= +∞.

De�nition 4 ([3, p. 168]). Let V be a Banach space. An operator A : V → V ∗ is said
to be hemicontinuous if a function

f(λ) = 〈A(u+ λv), w〉V ∗,V

is continuous on R for all u, v, w ∈ V .
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3. Existence and Uniqueness of Variational Solutions

To prove the main theorem of this paper, we will use the following statement.

Theorem 5 ([3, p. 182]). Let V be a separable re�exive Banach space, let V ∗ be a dual
space of V and let A : V → V ∗ be a bounded hemicontinuous coercive monotone operator.
Then for every f ∈ V ∗ an equation A(u) = f has a solution. If the operator is strictly
monotone, then this solution is unique.

Before proving the main theorem, we provide some additional theorems in order to
make the proof clearer.

Theorem 6. Every intermediate space V is a separable re�exive Banach space equipped
with the norm ‖·‖

W
1,p(x)
0 (Ω,µ dx)

.

Proof. By de�nition, V is a closed linear manifold in the space W
1,p(x)
0 (Ω, µdx), which

is a separable re�exive Banach space, therefore, V is also a separable re�exive Banach
space. �

Let us consider a form

a(u, v) =

∫
Ω

µ(x) |∇u|p(x)−2∇u∇v dx, u, v ∈ V. (6)

Theorem 7. The form a(·, ·) : V × V → R (see (6)) is well de�ned and the following
inequality

|a(u, v)| ≤ K ‖v‖V max
{
‖u‖α−1

V , ‖u‖β−1
V

}
∀u, v ∈ V,

holds, where K = const > 0.

Proof. By the H�older inequality, we have∫
Ω

µ(x) |∇u|p(x)−1 |∇v| dx ≤ K
∥∥∥µ 1

p(x) |∇v|
∥∥∥
Lp(x)(Ω)

∥∥∥µ 1
q(x) |∇u|p(x)−1

∥∥∥
Lq(x)(Ω)

.

By the arguments from Theorem 2,∥∥∥µ 1
p(x) |∇v|

∥∥∥
Lp(x)(Ω)

= ‖v‖V . (7)

Let us show that∥∥∥µ 1
q(x) |∇u|p(x)−1

∥∥∥
Lq(x)(Ω)

≤ K max
{
‖u‖α−1

V , ‖u‖β−1
V

}
. (8)

We will take into account the following chain of transformations:

∥∥∥µ 1
q(x) |∇u|p(x)−1

∥∥∥
Lq(x)(Ω)

= inf

λ > 0 :

∫
Ω

∣∣∣∣∣µ
p(x)−1
p(x) (x) |∇u|p(x)−1

λ

∣∣∣∣∣
p(x)

p(x)−1

dx ≤ 1

 =

= inf

λ > 0 :

∫
Ω

|∇u|p(x)

λq(x)
µ(x) dx ≤ 1

 .
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If u = 0, then the inequality (8) holds true. Assuming that ‖u‖V = C < +∞, let us
demonstrate that in�mum in the last block of equalities is �nite. In order to substantiate
it, we consider two cases: C ≥ 1, 0 < C < 1. In the �rst case let λ = Cβ−1. Hence,∫

Ω

|∇u|p(x)

λq(x)
µ(x) dx =

∫
Ω

|∇u|p(x)

C(β−1)
p(x)

p(x)−1

µ(x) dx ≤

≤
∫
Ω

|∇u|p(x)

C(p(x)−1)
p(x)

p(x)−1

µ(x) dx =

∫
Ω

|∇u|p(x)

Cp(x)
µ(x) dx = 1 =⇒

=⇒ inf

λ > 0 :

∫
Ω

|∇u|p(x)

λq(x)
µ(x) dx ≤ 1

 ≤ Cβ−1 = ‖u‖β−1
V .

In the second case 0 < C < 1, that is why we take λ = Cα−1 and use the same idea
as for the �rst case with C ≥ 1 to show that

inf

λ > 0 :

∫
Ω

|∇u|p(x)

λq(x)
µ(x) dx ≤ 1

 ≤ Cα−1 = ‖u‖α−1
V .

Thus, the inequality (8) holds true, since we may combine two cases by choosi-
ng maximum value between them. Ultimately, after combining (8) and (7) we draw a
conclusion that the statement of this theorem holds. �

It is clear that by �xing an argument u ∈ V the form from Theorem 7 can be
restricted to the domain V , whereby we de�ne a functional v 7→ a(u, v), v ∈ V , which
is also linear and continuous on V . Therefore, we have operator A : V → V ∗ de�ned by
the rule

〈A(u), v〉V ∗,V = a(u, v) ∀u, v ∈ V. (9)

Theorem 8. The operator A : V → V ∗ is bounded, coercive, hemicontinuous and strictly
monotone.

Proof. From Theorem 7 we have

‖A(u)‖V ∗ ≤ K max
{
‖u‖α−1

V , ‖u‖β−1
V

}
,

hence, the operator A is bounded.
The next step of the proof is to con�rm that the operator A is coercive. Owing to

the equality

〈A(u), u〉V ∗,V =

∫
Ω

µ(x) |∇u(x)|p(x)
dx,

and De�nition 3, we ensure that

lim
‖u‖→∞

〈A(u), u〉V ∗,V

‖u‖V
= lim
‖u‖→∞

∫
Ω

µ(x) |∇u|p(x)
dx

‖u‖V
= lim
‖u‖→∞

ρp,µ(|∇u|)
‖u‖V

≥

≥ lim
‖u‖→∞

min
{
‖u‖αV , ‖u‖

β
V

}
‖u‖V

= lim
‖u‖→∞

min
{
‖u‖α−1

V , ‖u‖β−1
V

}
= +∞,
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because α, β > 1. In the last line we have applied an inequality from Theorem 4.
Now, we prove that the operator A is hemicontinuous. In order to ensure hemiconti-

nuity, it is su�cient to make sure of the equality

lim
λ→0
〈A(u+ λv), w〉V ∗,V = 〈A(u), w〉V ∗,V ∀u, v, w ∈ V. (10)

Without the loss of generality, we may consider λ ∈ [−1, 1]. By de�nition,

〈A(u+ λv), w〉V ∗,V =

∫
Ω

µ(x) |∇u+ λ∇v|p(x)−2∇ (u+ λv)∇w dx.

The integrated expression can be estimated as follows:∣∣∣µ(x) |∇u+ λ∇v|p(x)−2∇ (u+ λv)∇w
∣∣∣ ≤ µ(x) |∇u+ λ∇v|p(x)−1 |∇w| ≤

≤ µ(x) (|∇u|+ |∇v|)p(x)−1 |∇w| ∈ L1(Ω),

where the last statement may be con�rmed by the same arguments as those used in
Theorem 7 while proving the �rst inequality. Hence, since

|∇u+ λ∇v|p(x)−2∇ (u+ λv)∇wµ(x)→ |∇u|p(x)−2∇u∇wµ(x) a.e. in Ω ∀u, v, w ∈ V,
then (by the Lebesgue dominated convergence theorem) the operator A is hemiconti-
nuous.

Finally, it remains to guarantee that the operator A is strictly monotone.
Let r ∈ R be an arbitrary number such that r > 1. It is well-known that the function

s 7→ |s|r−2
s : R→ R is strictly monotone, i.e.,(

|s1|r−2
s1 − |s2|r−2

s2

)(
s1 − s2

)
> 0 ∀s1, s2 ∈ R, s1 6= s2.

With this in mind, we can deduce that

|ξ|r + |η|r > |ξ| |η|
(
|ξ|r−2

+ |η|r−2
)
∀ξ, η ∈ Rn : |ξ| , |η| 6= 0, |ξ| 6= |η| .

By the Cauchy-Schwarz inequality, ξη ≤ |ξ| |η|, which can be applied to the previous
inequality:

|ξ|r + |η|r > ξη
(
|ξ|r−2

+ |η|r−2
)

=⇒

=⇒
(
|ξ|r−2

ξ − |η|r−2
η, ξ − η

)
> 0 ∀ξ, η ∈ Rn : |ξ| , |η| 6= 0, |ξ| 6= |η| .

Now let ξ, η ∈ Rn : |ξ| = |η| = ρ > 0 and ξ 6= ±η. Then it is clear that(
|ξ|r−2

ξ − |η|r−2
η, ξ − η

)
= |ξ|r + |η|r − ξη

(
|ξ|r−2

+ |η|r−2
)

=

= 2ρr − 2ξηρr−2 = 2ρr(1− ξ′η′), (11)

where ξ′ = ρ−1ξ, η′ = ρ−1η. From here we infer that |ξ′| = |η′| = 1 and ξ′ 6= ±η′. Hence,
it is obvious that

|ξ′ − λη′| > 0 ∀λ ∈ R,
because otherwise in the case ξ′ = λ0η

′ for some λ0 ∈ R, we have λ0 = ±1, which is
impossible. As a result, this implies that

1− 2λξ′η′ + λ2 > 0 ∀λ ∈ R,
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guaranteeing that D = 4(ξ′η′)2 − 4 < 0 and ξ′η′ < 1, which provides that the expression
(11) is always positive. The same holds true for η = −ξ as well as when one of these
vectors is zero.

Taking into account all these arguments, we draw a conclusion that(
|ξ|r−2

ξ − |η|r−2
η, ξ − η

)
> 0 ∀ξ, η ∈ Rn : ξ 6= η. (12)

To show that the operator A is also strictly monotone, we �rst recall the condition of
monotonicity:

〈A(u)−A(v), u− v〉V ∗,V > 0 ∀u, v ∈ V, u 6= v.

If u, v ∈ V : u 6= v, then there exists a positive measure set E ⊂ Ω such that
∇u(x) 6= ∇v(x) for x ∈ E ⊂ Ω and ∇u(x) = ∇v(x) for x ∈ Ω \ E. Since p(x) > 1 and
µ(x) > 0 for almost all x ∈ Ω, then from this and (12) it follows

〈A(u)−A(v), u− v〉V ∗,V =

=

∫
E

µ(x)
(
|∇u(x)|p(x)−2∇u(x)− |∇v(x)|p(x)−2∇v(x),∇u(x)−∇v(x)

)
dx > 0,

from where we ascertain that operator A is strictly monotone. �

Now we de�ne functional f : V → R by the following rule:

v 7→ f(v) =

∫
Ω

µ(x)~F (x)∇v(x) dx, v ∈ V. (13)

Theorem 9. This functional f : V → R is well de�ned, linear and continuous, that is,
f ∈ V ∗, and also f(v) = 〈f, v〉V ∗,V , v ∈ V .

Proof. Indeed, after using again the H�older inequality, we get∣∣∣∣∣∣
∫
Ω

µ(x)~F (x)∇v(x) dx

∣∣∣∣∣∣≤
∫
Ω

µ(x)
∣∣∣~F (x)

∣∣∣ |∇v(x)| dx≤K
∥∥∥∣∣∣~F (x)

∣∣∣∥∥∥
Lq(x)(Ω,µ dx)

‖v‖V . (14)

From the last inequality we may infer that f : V → R is a bounded functional. Since f
is linear, hence, it is also continuous, that is, f ∈ V ∗. �

Proof of Theorem 1. After the previous de�nitions and statements we may make
conclusion that the de�nition of V -solution to the problem (1) is correct, and this problem
is equivalent to abstract equation (4), where

H
1,p(x)
0 (Ω, µdx) ⊆ V ⊆W 1,p(x)

0 (Ω, µdx),

V ∗ is dual to V , and f ∈ V ∗, A : V → V ∗ are de�ned above. To this operator equation we
can apply Theorem 5. Therefore, by Theorem 5, the equation (4) has a unique solution,
which in turn is equivalent to the existence of a unique V -solution to the BVP (1). �



206
Pavlo Tkachenko

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2016. Âèïóñê 82

Consequently, we have proven that the boundary value problem (1) has a unique
V -solution with respect to each intermediate space

H
1,p(x)
0 (Ω, µdx) ⊆ V ⊆W 1,p(x)

0 (Ω, µdx).
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