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Some new examples and properties of di�erential semiring ideals are given.
Radical di�erential ideals of commutative di�erential semirings are studied.
It is shown that a radical di�erential subtractive ideal is an intersection of
prime di�erential subtractive ideals. Di�erential semirings in which the radical
of every di�erential subtractive ideal is again di�erential are characterized.
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1. Introduction and preliminaries. In 1935 Vandiver [9] introduced a notion
of semiring as a generalization of associative rings and distributive lattices. Semiring
derivations, di�erential semirings and their di�erential ideals were considered by Golan
in [4], where he gave few simple examples and properties. Thierrin [8] proved that the
semiring of languages over some alphabet forms a di�erential additively idempotent semi-
ring under the operations of union as the addition and catenation as the product. He
gave a number of other interesting examples of di�erential semirings of languages and
studied some of their properties, proving that di�erential semirings are of great interest
due to their possible applications. Recently in [2] the authors investigated some further
properties of semiring derivations and di�erential semiring ideals. This motivates a study
of di�erential semirings as semirings, not necessarily idempotent, with an abstract deri-
vation, not connected with formal languages.

The objective of this paper is to provide a study of di�erential semirings, mostly
concerning basic properties of di�erential semiring ideals. A number of new examples and
properties of di�erential semiring ideals are given. In the paper, radical di�erential ideals
of commutative di�erential semirings are investigated. It is shown that a radical di�erenti-
al subtractive ideal is an intersection of prime di�erential subtractive ideals (Theorem 2).
The paper also touches the question as to when the radical of every di�erential semiri-
ng ideal is di�erential. Theorem 3 lists conditions equivalent to the last-mentioned one.
Di�erential semirings in which the previously stated property holds for every di�erential
ideal are studied.
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For the sake of completeness some de�nitions and properties used in the paper will
be given here. For more information on semirings see [4] or [5].

Let R be a nonempty set and let + and · be binary operations on R named addition
and multiplication respectively. An algebraic system (R,+, ·) is called a semiring if (R,+)
is a commutative semigroup and (R, ·) is a semigroup such that multiplication distributes
over addition from either side. A semiring which is not a ring is called a proper semiring.
A semiring (R,+, ·) is called commutative if multiplication is commutative.

An element 0 ∈ R is called zero if a+ 0 = 0 +a = a for all a ∈ R. An element 1 ∈ R
is called identity if a · 1 = 1 · a = a for all a ∈ R. Zero 0 ∈ R is called (multiplicatively)
absorbing if a · 0 = 0 · a = 0 for all a ∈ R.

A semi�eld is a semiring in which non-zero elements form a group under multipli-
cation.

An element a ∈ R is called additively idempotent if a + a = a. An element a ∈ R
is called multiplicatively idempotent if a · a = a. Denote by I+(R) the set of all additi-
vely idempotent elements of R, and by I×(R) the set of all multiplicatively idempotent
elements of R. The set I+(R) is an ideal of R, and I×(R) is a submonoid of (R, ·), if
1 ∈ R.

A semiring R is called additively (multiplicatively) idempotent if every element of R
is additively (multiplicatively) idempotent. Additively idempotent semirings are of great
interest due to their applications. They are widely known as idempotent semirings.

A non-empty subset of R, closed under addition and multiplication, is called a
subsemiring of R. A nonempty subset I 6= ∅ of R is called a (semiring) ideal of R, if it
is closed under addition and both ra ∈ I and ar ∈ I hold for any r ∈ R and a ∈ I. Note
that according to this de�nition a semiring ideal is not necessarily proper.

An ideal I of R is called a subtractive ideal (or k-ideal) if a+ b ∈ I and a ∈ I imply
that b ∈ I. The k-closure cl(I) of an ideal I is de�ned as the set cl(I) = {a ∈ R|a+ b ∈
I for some b ∈ I}. It is an ideal of R satisfying I ⊆ cl(I) and cl(cl(I)) = cl(I). An ideal
I of R is subtractive if and only if I = cl(I).

An ideal I of the semiring R is called strong if a+ b ∈ I implies a ∈ I and b ∈ I for
every a, b ∈ R. Every strong ideal is subtractive.

A prime ideal of R is a proper ideal P of R in which a ∈ P or b ∈ P whenever
ab ∈ P . So P is prime if and only if for ideals A and B in R the inclusion AB ⊆ P
implies that A ⊆ P or B ⊆ P , where AB = {ab|a ∈ A and b ∈ B} ⊆ A

⋂
B.

A proper ideal I of R is called maximal if I $ J for any ideal J of R implies J = R.

In a commutative semiring R the radical of an ideal I is denoted by
√
I and de�ned

to be the set
√
I = {r ∈ R|rn ∈ I for some n ∈ N0}. According to [3] and [1] I ⊆

√
I.

If I is a subtractive ideal of R, then so is
√
I. Moreover,

√
I is an intersection of all the

prime ideals of R containing I, whenever 1 ∈ R.
An ideal I of R is said to be radical (or perfect) if I =

√
I.

Throughout the paper R denotes a commutative semiring in the above sense with
identity 1 and absorbing zero 0 6= 1, unless stated otherwise. N denotes the set of positive
integers and N0 = N

⋃
{0} the set of non-negative integers.

2. Di�erential semiring ideals and homomorphisms. Let R be a semiring, not
necessarily commutative. A map δ : R → R is called a derivation [4] on R if δ (a+ b) =
δ (a) + δ (b) and δ (ab) = δ (a) b+ aδ (b) for any a, b ∈ R. A semiring R equipped with a
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derivation δ is called di�erential with respect to the derivation δ, or a δ-semiring, and
denoted by (R, δ) [2].

An ideal I of the δ-semiring R is called di�erential [4] if δ (a) ∈ I whenever a ∈ I.
It is easily seen that {0} is a di�erential subtractive ideal of any di�erential semiring

R. As noted in [2], in a di�erential semiring R with absorbing zero the set V (R) of all
additively invertible elements forms a di�erential ideal.

Example 1. The set I+(R) of all additively idempotent elements of a di�erential semi-
ring (R, δ) is a di�erential ideal of R.

The set I×(R) of all multiplicatively idempotent elements of the commutative di-
�erential semiring (R, δ) is generally not an ideal. Moreover, I×(R) is not di�erentially
closed, but it can be easily proved that if R is a commutative di�erential semiring and
I×(R) is an ideal of R, then it is a di�erential ideal.

Example 2. In a polynomial ring R = N0 [x] together with one derivation δ = d
dx ,

de�ned by δ(n) = 0 for all n ∈ N0 and δ (x) = 1, the ideal I = (xn, n), n ∈ N, is
di�erential.

In what follows R denotes a di�erential semiring under the derivation δ.

Proposition 1. Every multiplicatively idempotent two-sided ideal I of a di�erential semi-
ring R (i. e. such that I2 = I) is di�erential.

Proof. Let (R, δ) be a di�erential semiring and I2 = I. If a ∈ I, then it is a �nite sum

a =
∑k

i=1 risi, where ri, si ∈ I. Then δ (a) =
∑k

i=1 δ (ri) si +
∑k

i=1 riδ (si) ∈ I. Hence I
is a di�erential ideal of R. �

Proposition 2. If I is a di�erential ideal of R, then its k-closure cl(I) is a di�erential
subtractive ideal of R.

Proof. It is well known that cl(I) is a subtractive ideal. If a ∈ cl(I), then there exists b ∈ I
such that a+ b ∈ I. It follows that δ(a) + δ(b) ∈ I and δ(b) ∈ I. Therefore δ(a) ∈ cl(I),
and cl(I) is di�erential ideal. �

Proposition 3. (1) An intersection of any family of subtractive di�erential ideals
of R is a subtractive di�erential ideal of R;

(2) A sum of any family of di�erential ideals of R is a di�erential ideal of R;
(3) A product of any �nite family of di�erential ideals of R is a di�erential ideal of

R.

A semiring R is called ideally di�erential if all of its ideals are di�erential.
Every additively idempotent di�erential semiring is ideally di�erential. Propositi-

on 1 implies that every multiplicatively idempotent commutative di�erential semiring is
ideally di�erential.

In what follows let R be a commutative di�erential semiring with respect to the
derivation δ.

Lemma 1. If I is a radical di�erential subtractive ideal of R and ab ∈ I, then δ (a) b ∈ I
and aδ (b) ∈ I.
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Proof. It is clear that δ (ab) = δ (a) b+aδ (b) ∈ I. Moreover, δ(a)b ∈ R. By multiplicative
commutativity we have that δ(a)b · δ(ab) = (δ(a)b)2 + ab · δ(a)δ(b) ∈ I. Since I is an

ideal of R, ab ∈ I implies ab · δ (a) δ (b) ∈ I, and by subtractiveness (δ(a)b)
2 ∈ I. Hence

δ(a)b ∈ I. As a result, the subtractiveness of I implies aδ(b) ∈ I. �

Proposition 4. If I is a radical di�erential subtractive ideal of R and A is an arbitrary
nonempty subset of R, then

(I : A) = {r ∈ R |ra ∈ I for all a ∈ A}
is a radical di�erential subtractive ideal of R.

Proof. Under given conditions (I : A) is an ideal of R [5]. If r ∈ (I : A), then ra ∈ I for

all a ∈ A. Therefore δ(ra) = δ (r) a + rδ (a) ∈ I. It follows δ (r) a · δ (ra) = (δ (r) a)
2

+
ra · δ (r) δ (a) ∈ I. It is clear that ra · δ (r) δ (a) ∈ I. Since the ideal I is subtractive, we

have (δ (r) a)
2 ∈ I, and δ (r) a ∈ I for all a ∈ A. Therefore δ (r) ∈ (I : A). Hence (I : A)

is a di�erential ideal of R.
Let rn ∈ (I : A) for some r ∈ R, n ∈ N. Then rna ∈ I for all a ∈ A. It follows

that (ra)
n

= (rna) an−1 ∈ I. Since I is radical, we have ra ∈ I for all a ∈ A. Hence
r ∈ (I : A), and (I : A) is radical.

Let r, r+ s ∈ (I : A). Then ra ∈ I and (r+ s)a ∈ I for all a ∈ A. By subtractiveness
of I, ra+ sa ∈ I and ra ∈ I follow sa ∈ I. Hence s ∈ (I : A), so (I : A) is a subtractive
ideal of R. �

A subset A of R is called di�erentially closed, if a ∈ A implies δ(a) ∈ A. Di�erential
ideals are di�erentially closed.

Proposition 5. Let (R, δ) be a di�erential semiring, not necessarily commutative. If I
is a di�erential subtractive left ideal of R and A ⊆ R is a nonempty di�erentially closed
subset of R, then (I : A) = {r ∈ R |ra ∈ I } is a di�erential subtractive left ideal of R.

Proof. Under given conditions (I : A) is a subtractive left ideal of R [5]. Let r ∈ (I : A).
Then ra ∈ I for all a ∈ A. Since I and A are di�erentially closed δ(a) ∈ A and δ(ra) =
δ(r)a + rδ(a) ∈ I. It follows that δ(r)a ∈ I, since I is subtractive and rδ(a) ∈ I. Hence
δ(r) ∈ (I : A), and (I : A) is di�erential. �

Let A ⊆ R be a non-empty subset of a semiring R. The annihilator ideal of A is
de�ned as the set (0 : A) = {r ∈ R |ra = 0 for all a ∈ A}.

Corollary 1. Let (R, δ) be a di�erential semiring, not necessarily commutative. If A ⊆ R
is a nonempty di�erentially closed subset of R, then (0 : A) is a di�erential subtractive
ideal of R.

For an element a ∈ R denote a(0) = a, a′ = δ(a), a′′ = δ(δ(a)), . . . a(n) = δ(a(n−1)),
n ∈ N0, and a

(∞) = {a(n)|n ∈ N0}. The set a(∞) of all derivatives of a ∈ R is di�erentially
closed in R, so we have the following result.

Corollary 2. Let (R, δ) be a di�erential semiring, not necessarily commutative. If I
is a di�erential subtractive left ideal of R and a ∈ R, then

(
I : a(∞)

)
is a di�erential

subtractive left ideal of R.

Note the following properties, which are straightforward to prove.
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Proposition 6. Let (R, δ) be a di�erential semiring, not necessarily commutative.

(1) If I ⊆ J , then
(
I : a(∞)

)
⊆
(
J : a(∞)

)
for any a ∈ R.

(2)
(
I : a(∞)

)
⊆ (I : a) for any a ∈ R.

(3)
((
I : a(∞)

)
: b(∞)

)
=
(
I : (ab)(∞)

)
for any a, b ∈ R.

Proposition 7. An intersection of an arbitrary family of radical (resp. subtractive)
di�erential ideals of R is a radical (resp. subtractive) di�erential ideal of R.

Proof. In any di�erential semiring R an intersection of an arbitrary family of (subtractive)
di�erential ideals of R is a (subtractive) di�erential ideal of R by Proposition 3. In any
commutative semiring R an intersection of any family of radical semiring ideals is a
radical ideal of R. �

Let A be a subset of R. Denote the smallest di�erential ideal containing the set A
by [A], the smallest radical di�erential ideal containing A by {A}, the smallest di�erenti-
al subtractive ideal containing the set A by |A|, and the smallest radical di�erential
subtractive ideal containing A by 〈A〉 .

Lemma 2. For any element r ∈ R and any subset A of R, r〈A〉 ⊆ 〈rA〉.

Proof. By Proposition 4, (〈rA〉 : r) is a radical di�erential subtractive ideal of R. Since
rA ⊆ 〈rA〉, then A ⊆ (〈rA〉 : r). It follows 〈A〉 ⊆ (〈rA〉 : r). Hence r〈A〉 ⊆ 〈rA〉. �

Lemma 3. For any subsets A and B of R, 〈A〉〈B〉 ⊆ 〈AB〉.

Proof. By Lemma 2, A ⊆ (〈AB〉 : 〈B〉) = {x ∈ R|x〈B〉 ⊆ 〈AB〉}. By Proposition 4,
(〈AB〉 : 〈B〉) is a radical di�erential subtractive ideal of R. It all implies that 〈A〉 ⊆
(〈AB〉 : 〈B〉). Hence 〈A〉〈B〉 ⊆ 〈AB〉. �

Theorem 1. Let S be a multiplicatively closed subset of R (0 /∈ S). If I is a radical
di�erential subtractive ideal of R maximal among radical di�erential subtractive ideals
disjoint from S, then I is prime.

Proof. Let S ⊆ R be a multiplicatively closed subset of R and let I be a radical di�erential
ideal of R maximal among those not meeting S. Suppose that there exist a, b ∈ R such
that a · b ∈ I, a /∈ I and b /∈ I. Then I & 〈I, a〉 and I & 〈I, b〉, moreover 〈I, a〉

⋂
S 6= ∅

and 〈I, a〉
⋂
S 6= ∅. Thus there exist u, v ∈ S such that u ∈ 〈I, a〉 and v ∈ 〈I, b〉. Thus

uv ∈ 〈I, a〉〈I, b〉 ⊆ I by Lemma 3. Therefore I
⋂
S 6= ∅, which is a contradiction. �

Corollary 3. Let S ⊆ R be a multiplicatively closed subset of R and let I be any radi-
cal di�erential subtractive ideal disjoint from S. Then there exists a prime di�erential
subtractive ideal P containing I which is disjoint from S.

A semiring ideal I of R is called quasi-prime if it is maximal among the di�erential
ideals disjoint from some multiplicatively closed subset S of R.

Every prime di�erential ideal is quasi-prime.

Theorem 2. If I is a radical di�erential subtractive ideal of R, then it is an intersection
of all the prime di�erential subtractive ideals containing I.
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Proof. Let I be a radical di�erential subtractive ideal of R. It is clear that any radical
di�erential subtractive ideal is contained in the intersection of all the prime di�erential
subtractive ideals containing it.

To prove the inclusion
⋂

I⊆P P ⊆ I take some a /∈ I and denote S = {an|n ∈ N0}.
Since I is radical, S

⋂
I = ∅. There exists some radical di�erential subtractive ideal P

of R which is maximal among radical di�erential subtractive ideals disjoint from S. By
Theorem 1, P is a prime di�erential subtractive ideal of R containing I and S

⋂
P = ∅.

It follows that an /∈ P for any n ∈ N0, and therefore a /∈ P . Hence a /∈
⋂

I⊆P P . �

Corollary 4. Let A be a non-empty subset of R. Then 〈A〉 is the intersection of all the
prime di�erential subtractive ideals P containing A.

A map f : R1 → R2 is called a semiring homomorphism if f(a + b) = f(a) + f(b)
and f(ab) = f(a) · f(b) for all a, b ∈ R. The kernel of f is de�ned as the set Ker f = {r ∈
R|f(r) = 0R2}, and the image of f is the set Im f = {r ∈ R2 : ∃s ∈ R1 f(s) = r}.

A homomorphism of di�erential semirings f : R1 → R2 is called a di�erential
homomorphism if f (δ (r)) = δ (f (r)) for all r ∈ R1.

Proposition 8. Let R1 and R2 be di�erential semirings, and let f : R1 → R2 be a
di�erential semiring homomorphism. Then

(1) Ker f is a di�erential subtractive ideal of R1;
(2) Im f is a di�erential subsemiring of R2;
(3) If I is a di�erential ideal of R1, then I

e is a di�erential ideal of R2;
(4) If I is a di�erential subtractive ideal of R2, then Ic is a di�erential subtractive

ideal of R1.

Proof. (1) Clearly, if r ∈ Ker f , then f (r) = 0R2
and f (δ(r)) = δ (f(r)) = δ(0R2

) = 0R2
.

Hence δ(r) ∈ Ker f , and Ker(f) is di�erential.
(2) If r ∈ Im f then there exists s ∈ R1 such that f(s) = r. It follows that δ(r) =

δ (f(s)) = f (δ(s)) ∈ Im f .

(3) If r ∈ Ie then r =
∑k

i=1 rif (si), si ∈ I. Then we have δ(r) = δ (
∑n

i=1 rif (si)) =∑n
i=1 (δ(ri) · f (si) + ri · f (δ (si))) ∈ Ie, because si ∈ I.
(4) If r ∈ Ic then f (r) ∈ I. Since δ (f (r)) = f (δ(r)) ∈ I, then δ(r) ∈ Ic. �

Corollary 5. Let R1 and R2 be di�erential semirings. If f : R1 → R2 is a di�erenti-
al semiring homomorphism and P is a prime di�erential subtractive ideal of R2, then
f−1(P ) is a prime di�erential subtractive ideal of R1.

Proof. Follows by [3, Proposition 3.2].

The following proposition is straightforward to prove.

Proposition 9. Let R1 and R2 be di�erential semirings, and let f : R1 → R2 be
a di�erential semiring homomorphism. Then f induces a di�erential isomorphism
f̄ : R1/Ker f → Im f for which f̄(r + Ker f) = f(r) for all r ∈ R1.
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3. Di�erential semirings in which the radical of each di�erential ideal is

di�erential. For a subset A of R we de�ne its di�erential A# to be the set

A# =
{
a ∈ R

∣∣∣a(n) ∈ A for alln ∈ N0

}
.

Proposition 10. Let A, B, Ai, i ∈ I, be subsets of R. Then ( )# has the following
properties:

(1) A# ⊆ A;
(2) (A#)# = A#;

(3) A# = A if and only if A is di�erentially closed in R;
(4) If A ⊆ B then A# ⊆ B#;

(5)
(⋂

i∈I Ai

)
#

=
⋂

i∈I (Ai)#;

(6)
⋃

i∈I (Ai)# ⊆
(⋃

i∈I Ai

)
#
;

(7) A# +B# ⊆ (A+B)#;

(8) A# ·B# ⊆ (AB)#.

Proposition 11. The operator ( )# has the following properties.

(1) If I is an ideal of R, then I# is a di�erential ideal of R.
(2) If I is a strong ideal of R, then I# is a di�erential strong ideal of R.
(3) If I is a subtractive ideal of R, then I# is a di�erential subtractive ideal of R.
(4) If I is a subsemiring of R, then I# is a di�erential subsemiring of R.
(5) If I is a di�erential ideal of R, then I# = I.

Proof. (1) Let a, b ∈ I#. Then a(n) ∈ I and b(n) ∈ I for any n ∈ N0, thus (a+ b)
(n)

=

a(n) + b(n) ∈ I. Hence a+ b ∈ I#. If a ∈ I# and r ∈ R then a(k) ∈ I for any k ∈ N0. By

the Leibnitz rule, (ra)
(n)

=
∑n

k=0 C
k
nr

(n−k)a(k) ∈ I. It means that ra ∈ I#. Hence I# is
an ideal of R. The ideal I# is di�erential since I# is di�erentially closed for any subset
I of R.

(2) Suppose that a+ b ∈ I#. Then (a+ b)(n) = a(n) + b(n) ∈ I for any n ∈ N0. The

ideal I being strong implies that a(n) ∈ I and b(n) ∈ I. Thus a ∈ I# and b ∈ I#, so I#
is strong.

(3) Follows from (2) since every strong ideal is subtractive. (4) Follows from (1). (5)
follows from Proposition 10. �

Proposition 12. Let I be an arbitrary subtractive semiring ideal of R and let A be a
di�erentially closed subset of R. Then the following equality holds:

(I : A)# = (I# : A).

Proof. Suppose r ∈ (I : A)#. Then r(n) ∈ (I : A) for all n ∈ N0, so r
(n)a ∈ I for all

a ∈ A. Since A is di�erentially closed, then ra′ ∈ I. Therefore (ra)′ = r′a+ ra′ ∈ I. By
induction we obtain that (ra)(n) ∈ I for all n ∈ N0. Hence r ∈ (I# : A).

Conversely, let r ∈ (I# : A). Then (ra)(n) ∈ I for all a ∈ A, n ∈ N0, i. e. ra ∈ I,
(ra)′ = r′a+ra′ ∈ I, (ra)′′ = r′′a+2r′a′+ra′′ ∈ I, . . . , (ra)(n) =

∑n
k=0 C

k
nr

(n−k)a(k) ∈ I.
Since A is di�erentially closed, by subtractiveness of I, (ra)′ ∈ I and ra′ ∈ I imply
r′a ∈ I. We may infer by induction that r(n)a ∈ I for all a ∈ A, n ∈ N0. It follows that
r(n) ∈ (I : A), i. e. r ∈ (I : A)#. �
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Corollary 6. If I is a subtractive ideal of R and A is a di�erentially closed subset of R,
then (I# : A) is a di�erential subtractive ideal of R.

Corollary 7. Let I be an arbitrary subtractive ideal of R and a ∈ R. Then
(
I : a(∞)

)
#

=(
I# : a(∞)

)
.

Proposition 13. Let R1 and R2 be di�erential semirings, and let f : R1 → R2 be a
di�erential semiring homomorphism. Then ( )# has the following properties:

(1) If A is a subset of R1, then f (A#) ⊆ (f (A))#;

(2) If A is a subset of R1 and f : R1 → R2 is a di�erential semiring monomorphism,
then f (A#) = (f (A))#;

(3) If B is a subset of R2 and f : R1 → R2 is a di�erential semiring epimorphism,
then f−1 (B#) =

(
f−1 (B)

)
#
.

Proposition 14. In any di�erential semiring R for any prime ideal P of R the di-
�erential ideal P# is quasi-prime.

Proof. Suppose P is a prime ideal of R and S = R \P . Then S is multiplicatively closed,
and, by Propositions 10 and 11, P# is a di�erential ideal of R disjoint from S. If I is
any di�erential ideal disjoint from S, then I ⊆ P . Thus I = I# ⊆ P#. Hence P# is
quasi-prime. �

It is known even in the case of di�erential rings that the radical of a di�erential
ideal is not necessarily di�erential. This is also true for semirings. For example, for an
ideal (xn, n) of the semiring N0[x] its radical is not di�erential.

Theorem 3. The following conditions are equivalent:

(1) If I is a di�erential subtractive ideal of R, then so is
√
I;

(2) If S ⊆ R is a multiplicatively closed subset of R (0 /∈ S) and I is a di�erential
subtractive ideal of R disjoint from S, then every di�erential subtractive ideal of
R which is maximal among di�erential subtractive ideals containing I and not
meeting S is prime.

(3) If I is a prime subtractive ideal of R, then I# is a di�erential prime subtractive
ideal of R.

(4) Any prime subtractive ideal, minimal over some di�erential subtractive ideal, is
di�erential.

(5) If A is any subset of R then 〈A〉 =
√
|A|.

(6) Any quasi-prime subtractive ideal I in R is prime.
(7) Any quasi-prime subtractive ideal I in R is radical.

Proof. (1)⇒ (2) Let the radical of each di�erential subtractive ideal of R be di�erential.
Suppose S ⊆ R is a multiplicatively closed subset of R (0 /∈ S), I is a di�erential
subtractive ideal of R such that I ∩ S = ∅, and K is an arbitrary di�erential ideal of
R such that I ⊆ K, K ∩ S = ∅, and for any di�erential subtractive ideal L such that
K ⊆ L we have K = L. Under given conditions

√
K is a di�erential subtractive ideal of

R. Moreover, I ⊆ K ⊆
√
K. Since K is maximal, we have K =

√
K. Thus K is a radical

di�erential subtractive ideal of R, maximal with respect to the exclusion of S. Hence, by
Theorem 1, K is prime.
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(2) ⇒ (3) Suppose S ⊆ R is a multiplicatively closed subset of R (0 /∈ S), I is a
di�erential subtractive ideal of R such that I ∩ S = ∅, and every di�erential subtractive
ideal K of R, maximal among those containing I and not meeting S is prime. Let P be
any prime subtractive ideal. Under given conditions S = R\P is a multiplicatively closed
subset of R and {0} is a di�erential subtractive ideal disjoint from S. Moreover, P# ⊆ P
follows S ∩P# = ∅. Thus P# is a di�erential subtractive ideal of R disjoint from S. If I
is an arbitrary di�erential subtractive ideal of R such that P# ⊆ I and I ∩ S = ∅, then
I ⊆ P . It follows that I = I# ⊆ P#. Thus P# is prime.

(3) ⇒ (4) Let I be an arbitrary di�erential subtractive ideal of R, and let P be
a prime subtractive ideal of R minimal among those containing I. Then we have I =
I# ⊆ P# ⊆ P . Since P is prime, moreover it is minimal among prime subtractive ideals
containing I, P# is prime by assumption and P# = P . Thus P is di�erential.

(4) ⇒ (1) Follows from Theorem 2 and Proposition 3. Let I be an di�erential
subtractive ideal of R. The radical of each di�erential subtractive ideal is the intersection
of all prime di�erential subtractive ideals containing it, moreover this intersection is a
prime ideal and it is minimal over I. It follows by assumption that

√
I is di�erential.

(1)⇔ (5) If a radical of each di�erential subtractive ideal is a di�erential subtracti-

ve ideal, then the same holds for the di�erential subtractive ideal |A|. Then
√
|A| is

di�erential and obviously coincides with 〈A〉. Conversely, let I be a di�erential ideal.

Then 〈I〉 =
√
|I| =

√
I is a di�erential ideal of R.

(3) ⇔ (6) Obviously, since (0) is a di�erential subtractive ideal contained in any
other di�erential subtractive ideal not meeting S.

(6)⇔ (7) Obviously follows from de�nition and Theorem 2. �

A di�erential semiring satisfying one of the equivalent conditions stated in the
Theorem 3 is called a dmsp-semiring. Note that di�erential rings in which the radical
of each di�erential ideal is di�erential were studied in 1973 by H. Gorman, who coined
the term of a d-MP -ring; rings satisfying the same property were studied by Keigher
[6] in 1977, who named them special rings. Nowadays in di�erential algebraic geometry
the term of a Keigher ring is generally used instead. It is therefore easy to see that in a
dmsp-semiring maximal among di�erential subtractive ideals are prime. Every di�erenti-
ally trivial semiring is a dmsp-semiring. {0} is a dmsp-semiring. Any di�erential semi�eld
is a dmsp-semiring. Any Keigher ring is a dmsp-semiring.

Corollary 8. In a dmsp-semiring the radical of an arbitrary di�erential subtractive ideal
is the intersection of all the prime di�erential subtractive ideals containing I.

Proof. Since I is di�erential by Theorem 3 (5) we have 〈I〉 =
√
|I| =

√
I. From Theorem

2, 〈I〉 =
⋂

I⊆P P , and the result follows. �

Note that this corollary can be proved directly using the argument similar to the
proof of Theorem 2.

Let I be an ideal of a semiring R and let a, b ∈ R. De�ne the equivalence a ∼ b if
and only if there exist x, y ∈ I such that a+x = b+ y. Then ∼ is an equivalence relation
on R. Let [a]RI or [a] be the equivalence class of a ∈ R. Then R/I = {[a]RI |a ∈ R} is a
semiring under the binary operations de�ned as follows: [a]+[b] = [a+b] and [a][b] = [ab]
for all a, b ∈ R. This semiring is called the Bourne factor semiring of R by I.
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Let (R, δ) be a di�erential semiring and let I be a di�erential semiring ideal of R.
Then it can be easily proved that the Bourne factor semiring R/I is a di�erential semiring
under the derivation d : R/I −→ R/I given by d

(
[a]RI

)
= [d(a)]RI for any a ∈ R.

Proposition 15. If R is a dmsp-semiring and I is a di�erential subtractive ideal of R,
then R/I is a dmsp-semiring.

Proof. The statement follows easily from the structure of prime ideals of the Bourne
factor semiring R/I and the de�nition of dmsp-semiring. �

Proposition 16. If I is a radical di�erential subtractive ideal of the dmsp-semiring R,
then I# is a radical di�erential subtractive ideal of R.

Proof. Let I be a radical di�erential subtractive ideal of R. By Theorem 2, I coincides
with the intersection of all prime di�erential subtractive ideals of R which contain it.
Thus I =

⋂
I⊆P P . By Propositions 10 and 11 the operator ( )# preserves intersections,

inclusion and subtractive ideals. Therefore ( )# also preserves radical ideals. �

Proposition 17. If R1 is a dmsp-semiring and f : R1 → R2 is a di�erential semiring
epimorphism, then R2 is a dmsp-semiring.

Proof. Denote A = {P ∈ SpecR1 | Kerf ⊆ P} ⊆ R1. It is clear that the di�erential
epimorphism f : R1 → R2 induces a di�erential isomorphism f̄ = f |A : A → SpecR2

between prime ideals P of R1, containing the kernel of the homomorphism Kerf and
prime ideals of R2.

Let Q ∈ SpecR2. Since R1 is a dmsp-semiring and f̄−1 (Q) = f−1 (Q) ∈ A is a prime
subtractive ideal of R1 by Corollary 5, then so is f−1 (Q)#. It follows from the properties

of ( )# (Proposition 13) that Q# = f̄
(
f̄−1 (Q#)

)
= f̄

((
f̄−1 (Q)

)
#

)
. Therefore Q# is

a prime di�erential subtractive ideal of R2. Hence R2 is a dmsp-semiring. �

Proposition 18. Let R1, . . . , Rn be di�erential semirings and let R = R1 × · · · × Rn.
Then R is a dmsp-semiring if and only if Ri is a dmsp-semiring for each i.

Proof. Let R be a dmsp-semiring. Then for every i the canonical projection πi : R→ Ri

is a di�erential epimorphism. By Proposition 17, every Ri is a dmsp-semiring.
Conversely, suppose all Ri are dmsp-semirings and P is a prime subtractive ideal

of R. Consider the canonical projections πi : P → Pi for all i = 1, 2, . . . , n. It follows
that πk(P) = Pk is a prime subtractive ideal of Rk for some k, k ∈ {1, 2, . . . , n}, and
πj(P) = Rl for l 6= k. Then π−1k (Pk) = P. Therefore P# = (π−1k (Pk))# = π−1k ((Pk)#).

Since π−1k ((Pk)#) is a prime subtractive ideal of R by Corollary 5, so is P#. Hence R is
a dmsp-semiring. �
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Íàâåäåíî íîâi ïðèêëàäè òà âëàñòèâîñòi äèôåðåíöiàëüíèõ iäåàëiâ ó íà-
ïiâêiëüöÿõ. Äîñëiäæó¹ìî ðàäèêàë äèôåðåíöiàëüíîãî iäåàëó êîìóòàòèâíîãî
äèôåðåíöiàëüíîãî íàïiâêiëüöÿ. Äîâåäåíî, ùî ðàäèêàëüíèé äèôåðåíöiàëü-
íèé íàïiâñòðîãèé iäåàë ¹ ïåðåòèíîì ïåðâèííèõ äèôåðåíöiàëüíèõ íàïiâ-
ñòðîãèõ iäåàëiâ. Ïîäàíî õàðàêòåðèçàöiþ äèôåðåíöiàëüíèõ íàïiâêiëåöü, â
ÿêèõ ðàäèêàë êîæíîãî äèôåðåíöiàëüíîãî íàïiâñòðîãîãî iäåàëó ¹ äèôåðåí-
öiàëüíèì.

Êëþ÷îâi ñëîâà: äèôåðåíöiàëüíå íàïiâêiëüöå, äèôåðåíöiàëüíèé iäåàë
íàïiâêiëüöÿ, ðàäèêàëüíèé äèôåðåíöiàëüíèé iäåàë.


