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Semitopological interassociates %, » of the bicyclic semigroup % (p, q) are
studied. In particular, we show that for arbitrary non-negative integers m, n
and every Hausdorff topology 7 on €y, such that (6m,n, 7) is a semitopological
semigroup, is discrete. Also, we prove that if an interassociate of the bicyclic
monoid %,y is a dense subsemigroup of a Hausdorff semitopological semigroup
(S,-) and I = S\ Gm,n # @ then I is a two-sided ideal of the semigroup S
and show that for arbitrary non-negative integers m, n, any Hausdorff locally
compact semitopological semigroup ‘5,91,” = Gm,n U {0} is either discrete or
compact.
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We shall follow the terminology of [9] 10, 14, 27]. In this paper all spaces will be
assumed to be Hausdorff. By Ny and N we denote the sets of non-negative integers and
positive integers, respectively. If A is a subset of a topological space X then by clx(A)
and intx (A) we denote the closure and interior of A in X, respectively.

A semigroup is a non-empty set with a binary associative operation.

The bicyclic semigroup (or the bicyclic monoid) € (p,q) is the semigroup with the
identity 1 generated by two elements p and ¢ subject only to the condition pg = 1. The
bicyclic monoid € (p,q) is a combinatorial bisimple F-inverse semigroup (see [23]) and
it plays an important role in the algebraic theory of semigroups and in the theory of
topological semigroups. For example the well-known O. Andersen’s result [I] states that
a (0-)simple semigroup is completely (0-)simple if and only if it does not contain the
bicyclic semigroup. The bicyclic semigroup cannot be embedded into the stable semi-
groups [22].
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An interassociate of a semigroup (S, ) is a semigroup (.9, ) such that for all a,b, c €
S,a-(bxc)=(a-b)+xcand ax(b-c) = (axb)-c. This definition of interassociativity was
studied extensively in 1996 by Boyd et al [§]. Certain classes of semigroups are known to
give rise to interassociates with various properties. For example, it is very easy to show
that if S'is a monoid, every interassociate must satisfy the condition a *b = acbh for some
fixed element ¢ € S (see [8]). This type of interassociate was called a variant by Hickey
[20]. In addition, every interassociate of a completely simple semigroup is completely
simple [§]. Finally, it is relatively easy to show that every interassociate of a group is
isomorphic to the group itself.

In the paper [16] the bicyclic semigroup €' (p, ¢q) and its interassociates are investi-
gated. In particular, if p and ¢ are generators of the bicyclic semigroup %(p, q) and m
and n are fixed nonnegative integers, the operation a #,, , b = ag™p"b is known to be an
interassociate. It was shown that for distinct pairs (m,n) and (s,t), the interassociates
(€D, q), *mn) and (€ (p,q), *s,) are not isomorphic. Also in [I6] the authors generalized
a result regarding homomorphisms on € (p, ¢) to homomorphisms on its interassociates.

Later for fixed non-negative integers m and n the interassociate (€ (p,q), *m.n) of
the bicyclic monoid € (p, ¢) will be denoted by €y 1.

A (semi)topological semigroup is a topological space with a (separately) continuous
semigroup operation.

The bicyclic semigroup admits only the discrete semigroup topology and if a
topological semigroup S contains it as a dense subsemigroup then %(p,q) is an open
subset of S [13]. Bertman and West in [7] extend this result for the case of Hausdorff
semitopological semigroups. Stable and I'-compact topological semigroups do not contain
the bicyclic semigroup [2), 21]. The problem of an embedding of the bicyclic monoid into
compact-like topological semigroups studied in [5] [6l [19]. Also in the paper [15] it was
proved that the discrete topology is the unique topology on the extended bicyclic semi-
group %z such that the semigroup operation on %7 is separately continuous. Amazing
dichotomy for the bicyclic monoid with adjoined zero €° = € (p, ¢) U {0} was proved in
[18]: every Hausdorff locally compact semitopological bicyclic semigroup with adjoined
zero €V is either compact or discrete.

In this paper we study semitopological interassociates (€' (p, ¢), *m,») of the bicyclic
monoid €'(p, q) for arbitrary non-negative integers m and n. Some results from [7 13}, [18]
obtained for the bicyclic semigroup are extended to its interassociate (€'(p, q), *m.n). In
particular, we show that for arbitrary non-negative integers m, n and every Hausdorff
topology 7 on %, ,, such that (%, 7) is a semitopological semigroup, is discrete. Also,
we prove that if an interassociate of the bicyclic monoid %, is a dense subsemigroup of
a Hausdorff semitopological semigroup (S,-) and I = S\ 6, , # @ then [ is a two-sided
ideal of the semigroup S and show that for arbitrary non-negative integers m, n, any
Hausdorff locally compact semitopological semigroup €5, ,, (67 ,, = €mnU{0}) is either
discrete or compact.

For arbitrary m,n € N we denote
%;m = {qn+kpm,+l € G kil € No}.

The semigroup operation #,, ,, of €, ,, implies that €7, , is a subsemigroup of €, .
We need the following trivial lemma.
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Lemma 1. For arbitrary non-negative integers m and n the subsemigroup €y, ,, of €
is isomorphic to the bicyclic semigroup € (p, q) under the map v: €(p,q) — €, . q'pt —
qn-ﬁ-ipm—i-j’ 27.7 € NO'

Proof. Tt is sufficient to show that the map ¢: €(p,q) — %, is a homomorphism,

m,n

because ¢ is bijective. Then for arbitrary i, j, k,l € Ny we have that
i ko [ oud IR, i<k [ gt < Ry
L(q p] qp ) - { L(qipj_k'H), ifj >k - qn-‘ripm-‘rj—kt-‘rl’ ifj >k

and
Ud'P?) #mn (@"D') = ¢ g T =
— gnipmt L gmpn . gtkpm
T R e
_ { gt ig < gy
qn‘i’lperj*kJrl’ ifj > k,
which completes the proof of the lemma. O

Lemma I.1 from [I3] and the definition of the semigroup operation in %, ,, imply
the following:

Lemma 2. For arbitrary non-negative integers m and n and for each elements a,b €
Cm,n both sets

{z € Cmn: a*pnyx =0} and {x € Cmn: T *mna=>}
are finite; that is, both left and right translation by a are finite-to-one maps.

The following theorem generalizes the Eberhart—Selden result on semigroup
topologization of the bicyclic semigroup (see [13] Corollary 1.1]) and the corresponding
statement for the case semitopological semigroups in [7].

Theorem 1. For arbitrary non-negative integers m, n, every Hausdorff semitopological
semigroup (Gmn,T) is discrete.

Proof. By Proposition 1 of [7] every Hausdorff semitopological semigroup % (p, q) is di-
screte. Hence Lemma [I} implies that for any element x € %, ,, there exists an open
neighbourhood U(z) of the point z in (€., 7) such that U(x) N%,,, = {z}. Fix
an arbitrary open neighbourhood U(¢"p™) of the point ¢"p™ in (€pn,T) such that
U(¢"p™) N, , ={q"p™}. Then the separate continuity of the semigroup operation in
(Gm.n,T) implies that there exists an open neighbourhood V(¢"p™) C U(g"p™) of the
point ¢"p™ in the space (G n, 7) such that
V(@"p") #ma ¢"p™ CU(¢"P™)  and ¢ "p"™ ko V(g"P™) S U(¢"P™).
Suppose to the contrary that the neighbourhood V' (¢"p™) is an infinite set. Then at least
one of the following conditions holds:
(1) there exists a non-negative integer iy < n such that the set A = {qiopl: le N} N
V(g™p™) is infinite;
(i) there exists a non-negative integer jo < m such that the set B = {¢'p™: l € N}n
V(¢™p™) is infinite.
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In case (i) for arbitrary ¢p! € A we have that

n,m, m,n_ ig n,n_ ig

4P Fmn 0P = q"p" g™ P 0P = q"p"g"p =
= g"pniot! ¢ U(q"p™) for sufficiently large I;

and similarly in case (i7) we obtain that

m,n mn_ m

@' kmn ¢"p™ = gD ¢ P = ¢ p g™ =
= gmdotlym ¢ U(g"p™)  for sufficiently large I;

for each ¢'p’® € B, which contradicts the separate continuity of the semigroup operation
in (Gmn, 7). The obtained contradiction implies that ¢"p™ is an isolated point in the
space (Cmn, 7).

Now, since the semigroup %, ., is simple (see [16, Section 2]) for arbitrary a,b € G, n
there exist z,y € €. such that zay = b. The above argument implies that for arbitrary
element u € €, ,, there exist xy, Yy € €m,n such that z,uy, = ¢"p™. Now, by Lemma
we get that the equation x,zy, = ¢"p"" has finitely many solutions. This and the separate
continuity of the semigroup operation in (%, n,7) imply that the point u has an open
finite neighbourhood in (%, ,7), and hence, by the Hausdorfiness of (%, ,7), u is an
isolated point in (%, 7). Then the choice of v implies that all elements of the semigroup
©Gm.n are isolated points in (€, n, 7). O

The following theorem generalizes Theorem 1.3 from [13].

Theorem 2. If m and n are arbitrary non-negative integers, the interassociate 6,
of the bicyclic monoid € (p,q) is a dense subsemigroup of a Hausdorff semitopological
semigroup (S,-), and I = S\ G # @ then I is a two-sided ideal of the semigroup S.

Proof. Fix an arbitrary element y € I. If -y = z ¢ I for some « € &, ,, then there exists
an open neighbourhood U(y) of the point y in the space S such that {z} - U(y) = {z} C
G m.n- The neighbourhood U (y) contains infinitely many elements of the semigroup .,
which contradicts Lemma [2] The obtained contradiction implies that z -y € I for all
2 € G, and y € I. The proof of the statement that y-2 € I for all z € €,,, , and y € 1
is similar.

Suppose to the contrary that x -y = w ¢ I for some z,y € I. Then w € %,
and the separate continuity of the semigroup operation in S implies that there exist
open neighbourhoods U(z) and U(y) of the points z and y in S, respectively, such that
{z} - U(y) = {w} and U(z) - {y} = {w}. Since both neighbourhoods U(z) and U(y)
contain infinitely many elements of the semigroup %, ,, both equalities {z} - U(y) =
{w} and U(z) - {y} = {w} contradict the mentioned above part of the proof, because
{z} - (U(y) N Gm,n) C I. The obtained contradiction implies that z -y € I. O

We recall that a topological space X is said to be:

compact if every open cover of X contains a finite subcover;

countably compact if each closed discrete subspace of X is finite;

feebly compact if each locally finite open cover of X is finite;

pseudocompact if X is Tychonoff and each continuous real-valued function on X
is bounded,;
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e locally compact if every point = of X has an open neighbourhood U(z) with the
compact closure clx (U(x));

o Cech-complete if X is Tychonoff and there exists a compactification ¢X of X
such that the remainder of X is an F,-set in cX.

According to Theorem 3.10.22 of [14], a Tychonoff topological space X is feebly compact
if and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly
compact if and only if every locally finite family of non-empty open subsets of X is finite.
Every compact space and every sequentially compact space are countably compact, every
countably compact space is feebly compact (see [4]).

A topological semigroup S is called I'-compact if for every x € S the closure of
the set {z,2?,23,...} is compact in S (see [21]). Since by Lemma the semigroup €.
contains the bicyclic semigroup as a subsemigroup the results obtained in [2], [5], [6],
[19], [21] imply the following corollary

Corollary 1. Let m and n be arbitrary non-negative integers. If a Hausdorff topological
semigroup S satisfies one of the following conditions:
(1) S is compact;
(#) S is T'-compact;
(#it) the square S x S is countably compact; or
(iv) the square S x S is a Tychonoff pseudocompact space,

then S does not contain the semigroup G, r,.

Proposition 1. Let m and n be arbitrary non-negative integers. Let S be a Hausdorff
topological semigroup which contains a dense subsemigroup €, . Then for every c €
Cm,n the set

D. = {(l’,y) € Cgm,n X (gm,nl TH*mn Y = C}

is an open-and-closed subset of S x S.

Proof. By Theorem (1} %, , is a discrete subspace of S and hence Theorem 3.3.9 of
[14] implies that %, . is an open subspace of S. Then the continuity of the semigroup
operation of S implies that D, is an open subset of S x .S for every ¢ € €y, 1.

Suppose that there exists ¢ € €,.n such that D. is a non-closed subset of § x S.
Then there exists an accumulation point (a,b) € S x S of the set D.. The continuity
of the semigroup operation in S implies that a - b = c. But €, , X €, is a discrete
subspace of S x S and hence by Theorem [2| the points a and b belong to the two-sided
ideal I = S\ %n,» and hence the product a-b € S\ ,,,,, cannot be equal to the element
c. O

Theorem 3. Let m and n be arbitrary non-negative integers. If a Hausdorff topological
semigroup S contains €, , as a dense subsemigroup then the square S x S is not feebly
compact.

Proof. By Proposition for every ¢ € G, the square S x S contains an open-and-closed
discrete subspace D.. In the case when ¢ = ¢"p™, the subspace D, contains an infinite
subset { (¢"p™*%,¢"T"p™) : i € Ny} and hence D, is infinite. This implies that the square
S x S is not feebly compact. O
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For arbitrary non-positive integers m and n by €0 = we denote the interassociate

m,n

©m.n With an adjoined zero 0 of the bicyclic monoid € (p, q), i.e., €y, ,, = Gm.n U{0}.

Example 1. On the semigroup ‘@”,9”1 we define a topology 7ac in the following way:

(i) every element of the semigroup %, » is an isolated point in the space (6, ,,: 7ac);
(i) the family 2(0) = {U C €2, ,,: U 30 and € \ U is finite} determines a base
of the topology 7ac at zero 0 € €7°

m,n’
i.e., Tac is the topology of the Alexandroff one-point compactification of the discrete
space Gm,n with the remainder {0}. The semigroup operation in (€}, ,,, Tac) is separately
continuous, because all elements of the interassociate %, of the bicyclic semigroup
% (p, q) are isolated points in the space (€, s TAc) and the left and right translations in

m
the semigroup %, are finite-to-one maps (see Lemma.

Remark 1. By Theorem [1] the discrete topology 74 is a unique Hausdorff topology on
the interassociate %, of the bicyclic monoid € (p,q), m,n € Ny, such that &, .
is a semitopological semigroup. So Tac is the unique compact topology on %ﬂm such
that (%,%m, Tac) is a Hausdorff compact semitopological semigroup for any non-negative

integers m and n.
The following theorem generalized Theorem 1 from [18].

Theorem 4. Let m and n be arbitrary non-negative integers. If (‘57?%”, T) s a Hausdorff
locally compact semitopological semigroup, then T is either discrete or T = Tac.

Proof. Let 7 be a Hausdorff locally compact topology on €, ,, such that (4}, ,,,7) is a
semitopological semigroup and the zero 0 of €0 , is not an isolated point of the space

m,n
(€9.,,7)- By Lemmathe subsemigroup %7, ,, of Gpnn, is isomorphic to the bicyclic semi-

group %(p, q) and hence the subsemigroup (%’fm)o =6, , U{0} of 6, ,, is isomorphic
to the bicyclic semigroup with adjoined zero €° = €'(p, q) LU {0}. Theorem [1|implies that
Gm,n is a dense discrete subspace of (%0 T), so it is open by Corollary 3.3.10 of [14].

m,n’

This Corollary also implies that the subspace (CK;‘L’“)O of (%0

m,n?’

We claim that for every open neighbourhood V(0) of zero 0 in (%))

m,n>’

T) is locally compact.
7') the
set V(0) N (‘5;;7”)0 is infinite. Suppose to the contrary that there exists an open nei-

ghbourhood V(0) of zero 0 in (¢ ,,,7) such that the set V(0) N (%;’n)o is finite.

m,n>
Since the space ((@%mn’) is Hausdorff, without loss of generality we may assume that

V() n (‘5;%")0 = {0}. Then by the separate continuity of the semigroup operation
of (¢ ,,7) there exists an open neighbourhood W (0) of zero in (¢}, ,,,7) such that

m,n’ m,n’

wW(0) C V(0) and
(@"p™ *m.n W(0)) U (W(0) %, ¢"p™) C V(0).

Since 0 is a non-isolated point of (‘50

(a) the set W(0)N {¢'p/: i€ No,j=0,1,...,m— 1} is infinite;
(b) the set W (0) N {qipj: i=0,1,....n—1,j € Ng} is infinite.

T), at least one of the following conditions holds:
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If (a) holds then the neighbourhood W (0) contains infinitely many elements of the
form ¢'p’, where j < m, for which we have that
qipj *rmon qnpm _ qz’p]qmpnqnpm =q qumpm _ qz ]+m m c %*
Similarly, if (b) holds then the neighbourhood W(0) contains infinitely many elements
of the form ¢'p’, where i < n, for which we have that

" Fmm d'D = """ Y =" Y =" €6,
The above arguments imply that the set V(0) N (‘ﬁ,fm) is infinite. Hence we have that

the zero 0 is a non-isolated point in the subspace (CK;“L) of (€., 7).
By Lemmathe subsemigroup %, ,, of €y, n is isomorphic to the bicyclic semigroup

and hence by Theorem 1 from [18] we obtain that the space (%;

m’n)o is compact. Then
for every open neighbourhood U(0) of the zero 0 in (%% ,,7) we have that the set
(‘Kﬁl’n)o \ U(0) is finite.

Now, the semigroup operation of ‘50 », implies that

m,_m,n i i—n

p" *mnqp —pqpqp —pqp =4q pj
and
4V fmn " = 4P = 4P =g,

for arbitrary element ¢'p’ € €, ,,. This and the definition of €}, ,, imply that

P i Gy = {d "D i 20,5 = m}
and

(gv;kzn m,n q" = {qipj_mi t2n, g2 m}
Thus the set 60, \ (pm *mon (‘é’;’n)o U (%,",‘m)o *m.n q”) is finite, and hence the above
7) has
7) is compact and

arguments imply that every open neighbourhood U(0) of the zero 0 in (%),

m,n?
a finite complement in the space (€2 ,,7). Thus the space (65,

m,n? m,n?
by Remark [1| the semitopological semigroup %gm is topologically isomorphic to the
semitopological semigroup (%&7n,TAC). (]

Since by Corollary |1 the interassociate %, of the bicyclic monoid € (p,q) does
not embed into any Hausdorff compact topological semigroup, Theorem [4] implies the
following corollary.

Corollary 2. If m and n are arbitrary non-negative integers and Cgﬁl n 18 a Hausdorff

locally compact topological semigroup, then €°

m.n 18 discrete.

The following example shows that a counterpart of the statement of Corollary
does not hold when %,% » 18 a Cech-complete metrizable topological semigroup for any
non-negative integers m and n.

Example 2. Fix arbitrary non-negative integers m and n. On the semigroup %,%’n we
define a topology 7 in the following way:

(1) every element of the interassociate %, , of the bicyclic monoid is an isolated
point in the space (%), ,,.71);
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(74) the family %;(0) = {Us: s € Ny}, where
Us={0} U{g""p" T €4 10,5 > s},
is a base of the topology 71 at the zero.

It is obvious that (%) ,,71) is first countable. Then the definition of the semigroup

operation of %), , and the arguments presented in [17, p. 68] show that (%), ,,,71) is a
Hausdorff topological semigroup.

First we observe that each element of the family %, (0) is an open-and-closed subset
of (¢}, ,,7), and hence the space (4}, ,,,71) is regular. Since the space €, , is countable
and first countable, it is second countable and hence by Theorem 4.2.9 from [I4] it is
metrizable. Also, by Theorem 4.3.26 from [14] the space (€2 ,,,71) is Cech-complete, as

m,n?
a completely metrizable space.

Also the following example presents an interassociate of the bicyclic semigroup with
adjoined zero €° = €'(p, q) L {0} for which a counterpart of the statements of Theorem
and of Corollary [2] do not hold.

Example 3. The interassociate of the bicyclic semigroup with adjoined zero ¥ with
the operation a*xb=a-0-bis a countable semigroup with zero-multiplication. It is well
known that this semigroup endowed with any topology is a topological semigroup (see
[9] Vol. 1, Chapter 1]).

Later we shall need the following notions. A continuous map f: X — Y from a
topological space X into a topological space Y is called:

e quotient if the set f~1(U) is open in X if and only if U is open in Y (see [26]
and [14] Section 2.4]);

e hereditarily quotient or pseudoopen if for every B C Y the restriction f|g: f~(B)
— B of f is a quotient map (see [24] 25 3] and [14] Section 2.4]);

e closed if f(F) is closed in Y for every closed subset F' in X;

o perfect if X is Hausdorff, f is a closed map and all fibers f~!(y) are compact
subsets of X (see [28] and [14] Section 3.7]).

Every closed map and every hereditarily quotient map are quotient [14]. Moreover, a
continuous map f: X — Y from a topological space X onto a topological space Y is
hereditarily quotient if and only if for every y € Y and every open subset U in X which
contains f~!(y) we have that y € inty (f(U)) (see [14}, 2.4.F]).

We need the following trivial lemma, which follows from separate continuity of the
semigroup operation in semitopological semigroups.

Lemma 3. Let S be a Hausdorff semitopological semigroup and I be a compact ideal
in S. Then the Rees-quotient semigroup S/I with the quotient topology is a Hausdorff
semitopological semigroup.

The following theorem generalizes Theorem 2 from [I8§].

Theorem 5. Let (‘5,{1,”,7) be a Hausdorff locally compact semitopological semigroup,
‘5,5”1 = CmnUI and I is a compact ideal of ‘57{1” Then either (€L ., 7) is a compact

m,n’
semitopological semigroup or the ideal I is open.
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Proof. Suppose that I is not open. By Lemma |3| the Rees-quotient semigroup anIzn/I
with the quotient topology 74 is a semitopological semigroup. Let 7: %Jin — %”T{m/l
be the natural homomorphism, which is a quotient map. It is obvious that the Rees-
quotient semigroup %7, ,, /I is isomorphic to the semigroup %), , and the image () is
zero of 6}, ,,/I. Now we shall show that the natural homomorphism w: € . — €/, /I
is a hereditarily quotient map. Since m(%n,,) is a discrete subspace of (67, ,,/I,7q),
it is sufficient to show that for every open neighbourhood U(I) of the ideal I in the
space (%1 ,,,7) the image m(U([)) is an open neighbourhood of the zero 0 in the space
(6} /1, 7q). Indeed, €}, ,, \ U(I) is an open subset of (¢}, ,,,7), because the elements of
the semigroup %, are isolated points of the space (‘Knl%n, 7). Also, since the restriction
Tt CGmm — T(pmp) of the natural homomorphism 7 : €7, ,, — €1, ,,/I is one-to-one,
m(€},,, \U(I)) is a closed subset of (¢} ,/I,7q). So m(U(I)) is an open neighbourhood
of the zero 0 of the semigroup (67, ,/I,74), and hence the natural homomorphism
T Gl — €L.,./1 is a hereditarily quotient map. Since I is a compact ideal of the
semitopological semigroup (%}, ,,7), 7 !(y) is a compact subset of (¢, ,,,7) for every

€ ¢}.,/1. By Din’ N’e T’ong’s Theorem (see [12] or [14, 3.7.E]), (6}, ,./1,7q) is a
Hausdorff locally compact space. Since I is not open, by Theorem [] the semitopological
semigroup (%}, ,,/1,7q) is topologically isomorphic to (€, ,,, 7ac) and hence it is compact.
We claim that the space (47, ,,,7) is compact. Indeed, let % = {U,: a € #} be an arbi-
trary open cover of the topological space (€7 ,,7). Since I is compact, there exists a
finite family {Us,, ..., Ua, } C % such that I C Uy, U---UU, . Put U = Uy, U+ --UU,, .
Then %, ,, \ U is a closed-and-open subset of (%} ,,7). Also, since the restriction
T4t Cmm — T(Gm,n) of the natural homomorphism 7 is one-to-one, w (%7, ,, \U([)) is
an open-and-closed subset of (4}, ,,/I,7q), and hence the image 7 (%7, ,, \ U(I)) is finite,
because the semigroup (%7, ,,/1,7q) is compact. Thus, the set €7, ,, \ U is finite as well

and hence the space (¢} ,,,7) is also compact. O

Corollary 3. If (‘ﬁ,{hn,r) is a Hausdorff locally compact topological semigroup, ?a”,wa =
G U and I is a compact ideal of €L, ., then the ideal I is open.

n
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BuBgaeMo HamiBTOIOIOTIYHI iHTEPACOUIATHBHOCTI Gy, GIIMK/IIYHOIO MO-
noina €(p,q). Joseneno, mwo s AOBUIbHUX HEBIX€MHUX LIMX 9HCEJ M, 7
KOXKHA, raycaopdoBa TOMoNOria T Ha Gp,n TaKa, MO (Gm,n,T) — HAIBTOIIOJIO-
ridHa HAMmBrPyma, € AUCKPETHO. /l0BeJeHo Take: sIKIIO IHTEPACOIATUBHICTD
GIIMKJTITHOTO MOHOIA Gy, € IIIJIHHOIO MiTHAMIBIPYITOI0 raycaopdoBoi HarmiB-
Tomosioriunoi Hamisrpynu (S, ) ta I = S\ Gm,n # &, To I — nBOGIYHMIA inean B
S, a TakoK, M0 JJid JOBLILHAX HEBLJ €EMHMX IJIUX Y9UCE M, 1 KOXKHA rayCI0p-
¢ oBa JTOKATHLHO KOMITAKTHA HAIIBTOMOJIOTITHA, HATIBIPYTIA %Si,n = Gm,n U {O}
€ abo JIUCKPETHOI0, a00 KOMITAKTHOIO.

Karowosi crosa: HaIiBrpyIa, iHTepacOmiaTUBHICTH HAIIBIPYIN, HAIIIBTOIO-
JIOTIYHA HAIIBIPyIa, TOMOIOTIYHA HAMIBIPYIIA, OIMUK/IIIHIN MOHOIT, JTOKAJIHHO
KOMIAKTHHI IIPOCTIP, AUCKPETHHUI LIPOCTIP, HAPICT.



