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Defect correction methods are based on the idea of measuring the quality
of an approximate solution to an operator equation by forming the defect, or
residual, with respect to the given problem. By an appropriate backsolving
procedure, an error estimate is obtained. This process can also be continued in
an iterative fashion. One purpose of this overview is the further dissemination
of the underlying concepts. Therefore, we first give a general and consistent
review on various types defect correction methods, and its application in the
context of discretization schemes for differential equations. After describing
the general algorithmic templates we discuss some specific techniques used in
the solution of ordinary differential equations. Moreover, new results about the
application to implicit problems are presented.

Key words: defect correction, discretization, ordinary differential equati-
ons.

1. INTRODUCTION

Defect Correction (DeC) methods (also: ‘deferred correction methods’) are based on
a particular way to estimate local or global errors, especially for differential and integral
equations. The use of simple and stable integration schemes in combination with defect
(residual) evaluation leads to computable error estimates and, in an iterative fashion,
yields improved numerical solutions.

In the first part of this article, the underlying principle is motivated and described in
a general setting, with focus on the main ideas and algorithmic templates. In the sequel,
we consider its application to ordinary differential equations in more detail. The proper
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choice of algorithmic components is not always straightforward, and we discuss some of
the relevant issues.

We are not specifying all algorithmic components in detail, e.g., concerning the requi-
red interpolation and quadrature processes. But these are numerical standard procedures
which are easy to understand and to realize. Also, exhaustive survey of the available li-
terature on the topic is no provided here.

The introductory part of this text is a revised and extended version of the overview
given in [I]. We motivate the DeC principle in a way slightly different from the classical
paper [18], with a clear focus on the underlying error estimation principles.

In addition, some recent material is included, in particular, that concerning the role
of error structures for the convergence behavior. An algorithmic version for differential
equations in implicit formulation proposed in [I9] is also presented.

We use upper indices for iteration counts and lower indices for numbering along
discrete grids.

2. UNDERLYING CONCEPTS AND GENERAL ALGORITHMIC TEMPLATES

Many iterative numerical algorithms are based on the following principle. Let an
initial value yo be given. For i =0,1,2,...:

e Compute the residual, or ‘defect’, d* of the current iterate y* with respect to the
given problem,

o backsolve for a correction €' using an approximate solver,

e apply the correction to obtain the next iterate y**! := y* — &%

Stationary iterative methods for linear systems of equations and Newton iteration for
systems of nonlinear equations are classical examples. For starting our general consi-
derations, we think of a given, original problem in form of a system of nonlinear equati-
ons,

¢(y) =0, with exact solution y = y*. (1)

2.1. Error estimation based on nonlinear approximation. We assume that some
reasonable linear or nonlinear approximation (;3 ~ ¢ is given. We consider a procedure
for the purpose of estimating the error of a given approximate solution y° to y*. To this
end we define the defect

d° = 6(y°)
of yo, i.e., the amount by which ¢(y°) fails approximate 0 = ¢(y*). Furthermore, with
y°, d° we associate the so-called neighboring problem related to (1),
d(y) =d°, with exact solution y = y°. (2)

We invoke two heuristic principles, (A) and (B) in the terminology from [18], for esti-
mating the error of y°. Originally introduced in [I8] (see also [6]), these are based on the
idea that may be considered to be closely related to , provided d° is small enough.

(A): Let § and §° be the solutions of ¢(y) = 0 and ¢(y) = d°, respectively; we
assumne that these can be formed at low computational cost. Considering original
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problem neighboring problem together with their approximations,
o(y*) =0 ¢(y") = d°
6(7) =0 (%) =d°
suggests the approximate identity
P -G~y -y
This leads to the
error estimator &% := g% — (3a)

as a computable estimate for the error e? := 4°

updated approximation y' in the form

yt=yt et =y~ (3% - p).

y® —y*. We can use it to obtain an

(3b)

(B): Consider the truncation error £ = qg(y*), the amount by which y* fails to

satisfy the approximate equation ¢(y
approximate identity

d(y™) — 0(y°) ~ o(y") — d(y°),
e, (*—d°~—d°,
suggests to choose the

truncation error estimator \Y :=d% — d°

0. With d° := ¢(y°), considering the

(4a)

ie., A0 = (¢ — ¢)(y°), as a computable estimate for the truncation error. Note
that —d® = ¢(y*) — d° is the truncation error of y* with respect to (2). In the

case y° = 7, i.e., d(y°) = 0, we have \0 = —d° ~ £*.
We can use A to obtain an updated approximation y' by solving

oy') = A",
which also provides an estimate for the error: €0 := 30 — y! ~ 90 — y*
Eq. (4b]) can also be written in terms of the error estimate as
Qz(yo - 50) = )‘Oa

approximating the error equation ¢(y° — %) = £*.

In general, (A) and (B) are not equivalent. However, if ¢~)(y) = P y—cis an affine mapping,
it is easy to check that (A) and (B) result in the same error estimate €Y, which can be

directly obtained as the solution of the correction equation
P&’ =4d°,

and the corresponding truncation error estimate is \° = (Py° —¢) — d°.

(5)
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2.2. Iterated Defect Correction (IDeC). Both approaches (A) and (B) are designed
for a posteriori error estimation, and they can also be used to design iterative soluti-
on algorithms, involving updated versions of the neighboring problem in course of the
iteration. This leads in straightforward way to two alternative versions the method of
Iterated Defect Correction (IDeC), starting from an initial approximation y°. Of course,

yO = g is a natural choice.

IDeC (A):: Solve ¢(3) =0

Fori=0,1,2,..:

— Compute d* := ¢(y?)

— Solve ¢(j') = d?

— Set & :==G' —

— Update y*t! := g — &t

The corrections ¢’ play the role of successive estimates for the errors e’ =
Yy —yr. ~
IDeC (B):: Set A~1 := ¢(3°)
Fori=0,1,2,...:
— Compute d* := ¢(y?)
— Update X' := X—1 —(d?
— Solve @(yit1) =\
The X! evolve from accumulated defects, A\ = ¢(y°) —d°® — ... — d?, playing
the role of successive approximations to the truncation error ¢* = qﬁ(y*)
An equivalent reformulation reads
Fori=0,1,2,...:
— Compute d?:= ¢(y)
— Solve ¢(y"*') = (¢ — ¢)(y")
Remarks.

e Nonlinear IDeC has the form of a ‘full approximation scheme’, where we directly
solve for the new approximation in each step. If ¢ is affine, IDeC (A) and IDeC (B)
are again equivalent and can be reformulated as a correction scheme in terms of
linear backsolving steps for the correction &' = ' — 7, as in (3.

e IDeC (B) can also be rewritten in the spirit of (4c).

e Note that y* is a fixed point of an IDeC iteration since d* := ¢(y*) = 0.

For systems of algebraic equations, choosing q~$ to be nonlinear is usually not very relevant
from a practical point of view. Rather, such a procedure turns out to be useful in a more
general context, where ¢ represents an operator between functions spaces (typically a
differential or integral operator), and where <;~5 is a discretization of ¢. This leads us to
the class of DeC methods for differential or integral equations.
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3. APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS (ODES)

We mainly focus on IDeC (A), the ‘classical’ IDeC method originally due to [20].
IDeC (B) can be realized in a similar way, and we will remark on this where appropriate.

3.1. A basic version: IDeC (A) based on forward Euler. Let us identify the original
problem ¢(y) = 0 with an initial value problem (IVP) for a system of n ODEs,

& y@) = f(@.y@), ylzo) =y, (6a)
with exact solution y*(z) € R™. This means
$(y)(2) = L y(z) = f(z,y(2)), (6b)

with fixed initial condition y(xzg) = yo. More precisely, the underlying function spaces
and the initial condition y(z¢) = yo are part of the complete problem specification.
Furthermore, we identify the problem ¢(y) = 0 with a discretization scheme for
@; at the moment we assume that a constant stepsize h is used, with grid points x; =
a+lh,1=0,1,2,.... Consider for instance the first order accurate forward Euler scheme
Yo, - Y0
% = f(z,Y;°), 1=0,1,2,..., (7a)
and associate it with the operator ¢ acting on continuous functions y(x) satisfying the
initial condition y(z¢) = yo,

Sy = LTI g gy =0 (1)

Choose a continuous function y°(z) interpolating the Y, at the grid points x;. The
standard choice is a continuous piecewise polynomial interpolant of degree p over p + 1
successive grid points, i.e., piecewise interpolation over subintervals I; of length ph. In

the corresponding piecewise-polynomial space P,, y°(x) is the solution of (Z&(y) = 0. The
defect d° := ¢(y°) is well-defined,

d°(z) = ¢(y°)(x) = £ v°(2) - f(2,9°(2)), (8a)
and y°(z) is the exact solution of the neighboring IVP
i y(@) = f(@,y(@) +d°(@),  y(zo) = yo- (8b)

We now consider a correction step yO — yl of type (A),

Solve ¢(5°) = d°,

followed by y'(z) := y°(z) — (§° — y°)(2).
This means that §° € P, is to be understood as the interpolant of the discrete values
Y;? obtained by the solution of

v -y

h
which is the forward Euler approximation to , with additional pointwise evaluation
of the defect at the grid points z;.

According to our general characterization of IDeC (A), this process is to be continued
to obtain further iterates y*(x). If we use m IDeC steps in the first subinterval Iy = [a, a4+

= f(z, ;") +d%x), 1=0,1,2,...,
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ph], we can restart the process at the starting point a + ph of the second subinterval I,
with the new initial value y(a + ph) = y™(a + ph). This is called local, or active mode.
Alternatively, one may integrate with forward Euler over a longer interval I encompassing
several of the I, and perform IDeC on I, where each individual y*(z) is forwarded over
the complete interval. This is called global, or passive mode.

Remark. The exact solution y* is not in the scope of the iteration, since the y* live
in the space P,. But there is a fixed point § € P, related to y*: It is characterized by
the property d := o(g) =0, ie., % §(x;) = f(z, 9(a;)) for all I. This means that § is
a collocation polynomial, and IDeC based on the Euler scheme can be regarded as an
iterative method to approximate collocation solutions. In fact, this means that, instead
of @, the system of collocation equations ¢(4)(z;) = % g(x;) — f(z,9(z1)) = 0 at the
collocation nodes z; is rather to be considered as the effective original problem.

3.2. IDeC based on higher order schemes (;NS Remarks on convergence theory.
For IDeC applied to IVPs, any basic scheme ¢ may be used instead of forward Euler.
E.g., in the pioneering paper [20] a classical Runge-Kutta (RK) scheme of order 4 was
used. Using RK in the correction steps means that in each individual evaluation of the
right hand side the pointwise value of the current defect is to be added (RK applied
to [NP]). Many other authors have also considered and analyzed IDeC versions based on
RK schemes.

Despite the natural idea behind IDeC, the convergence analysis is not strai-
ghtforward. Obtaining a full higher order of convergence asymptotically for h — 0
requires

— a sufficiently well-behaved, smooth problem,

— a sufficiently high degree p for the local interpolants y'(x),

— sufficient smoothness of these interpolants, in the sense of boundedness of a

certain number of derivatives of the y’(z), uniformly for h — 0.
A typical convergence result reads as follows:

If the sequence of grids is equidistant and the wunderlying scheme

has order q, then m IDeC steps result in an error y™(x) — y*(z) =

O(hmindp,mady for b — 0, where p is the degree of interpolation.
The achievable order p is usually identical to the approximation order of the fixed point
U € Pp, which corresponds to a collocation polynomial in a generalized sense.

Naturally, IDeC can also be applied to boundary value problems (BVPs). For second

order two-point boundary value problems, the necessary algorithmic modifications have
first been described in [9]. Here, special care has to be taken at the end points of the
interpolation intervals I;, where an additional defect terms arises due to jumps in the
derivatives of the local interpolants.

3.3. The influence of a nonequidistant grid. As mentioned above, the smoothness
of the global error is essential for the successful performance of an IDeC iteration. A
technical tool to assure the latter smoothness property are asymptotic expansions of the
global discretization error § — y* for the underlying scheme, which have been proved to
exist for RK methods over constant stepsize sequences. A convergence result for IDeC
derived in this way is, e.g., given in [I0]; see also [1I7].
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FiG. 1. Error behavior of an Euler solution, equidistant grid (left) and
nonequidistant grid (right).

The assumption of a constant stepsize appears quite restrictive, but it is sufficient to
assume that the stepsize h be kept fixed over each interpolation interval. We note that for
IDeC algorithms, this requirement is indeed necessary, as has been demonstrated in [3].
Otherwise the error § — y* usually lacks the required smoothness properties, despite its
asymptotic order.

To illustrate this fact, let us consider the forward Euler scheme applied to the
simple ODE y/(z) = y(z) — (sinz + cosz). For y(0) = 1, the solution of the IVP is
y*(z) = cosx. We apply on the interval = € [0, 1] and take 20 integration steps with
constant stepsize h = 1/20. Then we repeat the procedure on on a nonequidistant grid,
where the stepsizes h; are small relative random perturbations of the original stepsize
h. Fig. [1f shows the behavior of the error (lower curve) and its first difference quotients
over the grid (upper curve) for both cases. In the right plot the irregular variation of
the error is clearly visible, and this effect becomes even more significant if we consider
higher difference quotients. This is not difficult to explain theoretically, see [19]. As a
consequence, higher derivatives of the associated interpolants y‘(x) are not uniformly
bounded, which would be required in the convergence theory of IDeC schemes.

3.4. Reformulation in terms of integral equations. IQDeC (A) and IQDeC (B)
(‘spectral IDeC’). An ODE can be transformed into an integral equation. Taking the
integral means of over the interval spanned by two successive grid points gives

_ Ti41
o) =0 [ (o)) )
h 2

We observe that the left-hand side is of the same type as in the Euler approximation .
Therefore it appears natural to consider @ instead of @ as the original problem. In
addition, for numerical evaluation the integral on the right-hand side has to be approxi-
mated, typically by polynomial quadratures using the p+1 nodes available in the current
working interval I; 5 ;. The coefficients depend on the location of x; within I;.

Using @ as a generic symbol for these quadratures we obtain the computationally
tractable, modified original problem replacing the ODE , defined over the grid {z;}
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as
Yz — Yy
o)) = YELZIE) )y = 0, (102

or, more precisely, its effective version restricted to y € P,. Up to quadrature error,
is an ‘exact finite difference’ scheme exactly satisfied by y*. The treatment of the leading
derivative term ¢’ is the same in and in , which turns out to be advantageous.
leads to an alternative definition of the defect at the evaluation points x;, namely

d'(z1) = o(y')(x) (10b)

= L=V gy .

This may be interpreted in the sense that the original, pointwise defect d(x) is “precondi-
tioned’ by applying local quadrature. All other algorithmic components of IDeC remain
unchanged, with correspondingly defined neighboring problems.

In [3], this version is introduced and denoted as IQDeC (type (A)). Variants in the
spirit of IQDeC of type (B) have also been developed; this is often called ‘spectral defect
correction’ and has first been described in [8]. For a convergence proof, see [12].

Remarks.

e With appropriate choice of defect quadrature, the fixed point of IQDeC is
the same as for IDeC. In fact, the equation d = ¢(4) = 0 turns out to
be closely related to a reformulation of the associated collocation equations
9’ (x;) = f(a;,9(xz;)) in the form of an exact finite difference scheme approxi-
mated via quadrature. The latter is closely related to the implicit Runge-Kutta
(IRK) reformulation of the collocation equations.

e There are several motivations for considering IQDeC. The major point is that, as
demonstrated in [3], its convergence properties are much less affected by irregular
distribution of the x;. This is due to the close relationship between ¢~> and o,
see ([7a) and . In the forward Euler case, for instance, the normal order
sequence 1,2, 3, ... shows up, in contrast to classical IDeC.

We also refer to [2] for a motivation and explanation of the IQDeC technique
in the context of semilinear problems.

e IQDeC is also closely related to the concept of exact difference schemes, see, e.g.,
[11, 15]: Eq. (9) represents an exact difference scheme (EDS) satisfied by the
true solution y*. In the context of IQDeC, the defect is taken with respect this
EDS, using an appropriate quadrature formula for evaluation of the right-hand
side. However, this way of ‘truncating’ the EDS not the same as in [11} [15], where
compact schemes are constructed and defect correction is typically not considered
as an algorithmic option.

Similar remarks apply to second order problems (which are also considered
in Sec. || below). To our opinion, the combination of compactly truncated EDS
schemes with defect correction will be worth considering as an alternative to
simple fixed point iterations or more intricate Newton-like schemes applied to an
EDS.
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e For a related approach in the context of second order two-point boundary value
problems, also permitting variable mesh spacing, see [[].

e Another modification can be used to construct superconvergent IDeC methods:
In [3] (‘IPDeC’) and in [16], use of an equidistant basic grid is combined with
defect evaluation at Gaussian nodes, in a way that the resulting iterates converge
to the corresponding superconvergent fixed point (collocation at Gaussian nodes).

3.5. Stiff and singular problems. For stiff systems of ODEs, DeC methods have been
used with some success. However, as for any other method, the convergence properti-
es strongly depend on the problem at hand. The main difficulty for DeC is that the
convergence rate may be rather poor for error components associated with stiff eigendi-
rections. An overview and further material on this topic can be found in [4] or [§]. Similar
remarks apply to problems with singularities.

3.6. Boundary value problems (BVPs) and ‘deferred correction’. Historically,
one of the first applications of a type (B) truncation error estimator appears in the
context of finite-difference approximations to a BVP

L y(@) = Fey(a), Ryl u(B) =0, ()

posed on an interval [a,b] (with boundary conditions represented by the function R),
or higher order problems. (A classical text on the topic is [14].) For a finite-difference
approximation of y'(x;), e.g. as in , asymptotic expansion of the truncation error ¢*
is straightforward using Taylor series and using :

Cm) = b)) = L)L

1 d> 1d®
§@y(o:l)+6@y(l’l)+ (12)

The idea is to approximate the leading term dd—; y*(x;) by a second order difference
quotient involving three successive nodes. This defines an approximate truncation error
associated with an approximate original problem, which corresponds to a higher order
discretization of . The corresponding estimator A° is obtained by evaluating the
approximate truncation error at a given y = %°. This is used in the first step of an
IDeC (B) procedure (see (#a)—(4c)). In this context, updating the (approximate) [OP] in
course of the iteration is natural, involving difference approximations of the higher order
terms in , to be successively evaluated at the iterates y°.

IDeC (B) versions of this type are usually addressed as deferred correction techni-
ques, and they have been extensively used, especially in the context of boundary value
problems. The analysis heavily relies on the smoothness properties of the error. Piecewise
equidistant meshes are usually required. A difficulty to be coped with is the fact that
the difference quotients involved increase in complexity and have to be modified near the
boundary and at points where the stepsize is changed.

3.7. Defect-based error estimation and adaptivity. In practice, the DeC principle
is also applied — in the spirit of our original motivation — for estimating the error of
a given numerical solution with the purpose of adapting the mesh. A typical case is
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described and analyzed in [5]: Assume that y° is a piecewise polynomial collocation
solution to the BVP . Collocation methods are very popular and have favorable
convergence properties. By definition of ¢, its pointwise defect d°(z) = d%yo(x) —
f(z,y°(z)) vanishes at the collocation nodes which are, e.g., chosen in the interior of
the collocation subintervals I;. Therefore, information about the quality of y° is to be
obtained by evaluating d°(x) at another nodes, e.g., the endpoints of the I;.

For estimating the global error €°(z) = (y° — y*)(z) one can use the type (A) error
estimator based on a low-order auxiliary scheme QNS, e.g., an Euler or box scheme,
over the collocation grid. Replacing the pointwise defect d° by the modified defect d°,
analogously as in , is significantly advantageous, because this version is robust with
respect to the lack of smoothness of y° which is only a C' function. In [5] it has been
proved that such a procedure leads to a reliable and asymptotically correct error estimator
of QDeC type.

With an appropriately modified version of d°, closely related to the defect definition
from [7], the QDeC estimator can also be extended to second (or higher order) problems.

4. EXTENSIONS

In this section we describe recent extensions of the I*DeC technique (version A) to
regular implicit first and second order initial value problems in more detail. Numerical
results for selected test examples are also presented. Clearly, these versions can also be
applied to the special case of explicit ODEs.

4.1. IQDeC (A) for implicit first order ODEs — IIQDeC. Consider a first order
initial value problem of the type

F(2.y(@), £ y(@)) =0, y(wo) = yo- (13)

The IIQDeC algorithm for the solution of is an extension of the IQDeC approach
explained in Sec. For the numerical solution of we introduce a grid comprising
several subintervals I, I, ..., where the relative position of the grid points within the I;
is determined by m + 1 parameters 0 < ¢g < ¢1 < ... < ¢m—1 < ¢y < 1, and the absolute
position is given by

mj,l:Xjfl'i‘clhj, j=12,..., [=0...m,

where h; denotes the length of the subinterval I;. On this grid, a first approximation

onl, using the backward Euler scheme as basic discretization, is computed, i.e., we solve

0 _yo
P (50,70, 2000 ) <o, (14)

starting from Y’ = yo at z1,0 = 0. The Y} and, later on, the Y}, (i = 1,2,...) are
interpolated by polynomials pg(x) of degree < m, which define the piecewise polynomial
function p’(z) = p(x). The pointwise defect of p(x) with respect to is given by
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Now we define the locally integrated defect, an extension of (10b)) to the implicit case,

by
Zj,1 .
/ dj(z)dx
o YTt

d;,l = Z A d;(xj,u) ~
pn=1

The oy, are the weights of the corresponding interpolatory quadrature formulas with
nodes cy, . . ., ¢, and degree of exactness m—1. With the basic discretization scheme ,
and the defect , the discretized neighboring problem reads

15
Tj1— Tj1-1 ( )

o Vi,V =
F(l‘j,l,yf,la T?H) =dju; (16)

starting from 171")0 = yo at 1,0 = xo. With the solution of , the improved approxi-
mations are defined by

Vie=Yi— (G0 =Y, =12 (a7)

For a convergence proof of the IIQDeC method, see [19].
Example 1. Consider the implicit scalar nonlinear test problem

V'@ 4 of (2) + y(2) (18a)

—sinz

=ce + cosx —sinx,
1,

y(0) =
with exact solution y*(x) = cos z. The numerical solution is computed over a sequence of
subintervals of length h, each of them divided into a nonequidistant grid with 4 ‘randomly’
chosen nodes (¢; = 0.1234, ¢o = 0.5054, ¢3 = 0.7134, ¢4 = 1), in order to demonstrate
the robustness of IQDeC with respect to varying stepsizes.

We choose the integration interval z € [0, 3]. The resulting global errors with respect
to the exact solution at the endpoint x = 3 are displayed in Table [1| together with the
observed convergence orders. Results are given for the basic scheme (BEUL), 4 IIQDeC
iterates working in passive mode, and the fixed point of the IIQDeC iteration (COLL,
corresponding to collocation at the points where the defect is evaluated).

(18b)

4.2. IPDeC (A) for implicit second order ODEs — ITPDeC2-DQ2. Here we
present a new superconvergent [*DeC algorithm for implicit initial value problems of
second order. Consider a problem of the type

F(z,y(a), & y(@), & y())
y(wo) = vo, & y(wo) = v}, (19b)

The ITPDeC 2 algorithm for the solution of is an extension of the IPDeC approach
mentioned at the end of Sec.[3:4] It is based on a combination of an equidistant grid
{1, 1 = 0...m} with constant inner stepsize h in each interval I;, and another grid
{Zjk, k=1...m} ("h =m — 1) based on Lobatto nodes (with parameters é).

0, (19a)
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[» | BEUL |11QDeC/1 |11QDeC/2 | 11QDeC/3 | COLL |
0.1 6.31E-03 | 1.14E-04 | 1.02E-06 | 3.83E-09 | 3.98E-09

0.05 3.16 E-03 | 2.90E-05 1.31E-07 2.69E-10 | 2.43E-10
0.025 1.58E-03 | 7.30E-05 1.66E-08 1.77E-11 | 1.50E-11
0.0125 || 7.91E-04 | 1.83E-06 2.09E-09 1.14E-12 | 9.31E-12

0.1

0.05 1.00 1.98 2.96 3.83 4.04
0'025 1.00 1.99 2.98 3.92 4.02
0.0125 1.00 1.99 2.99 3.96 4.01

TABLE 1. Numerical results for Example 1

The equidistant grid {z;;} is used for realizing a second order basic discretization
(DQ2) based on symmetric finite differences according to

Yi,1-% —y
F(m1,07y07y67 hTO> = 0,
Forj>1,1>1:

0 0 0 0 0
Fleg., vo Yo —Yiio1 Y =250\ _ .
7,05 Al 2h ) h2 )

Forj>1,1=1:
0 0
] 0 Yii-Y1mo
F(I]_17m,Y}71,m, h )

3’]91—232071,m,+3’]°71,m71> —0
A2 =Y

The Lobatto grid {Z;;} is used for the computation of an interpolated defect. This is
realized as follows:

e First, after interpolating the current iterate and defining the defect in the usual
way, the defect is evaluated at the Z; 1,

djy, = 50 (@in) = f(@' ' (a50)), k=10,

e Next, after interpolating the d;k by a piecewise polynomial function d(z) we
define the modified defect
Cif()i = Cii($170)7 df’i = %pi(fﬂl,o) - Y03
Forj>1,1>0: d, := di(x));
(20a)
For j >1,1=0:

d d
i i geP i)t grp(Eioam) o
dj70 - F(x],lvp_j,m 2 77]‘70
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with the ‘jump defect’

2 . 2 .
i d= D (Ei0) + g P (i 1m)
’Y]O T 2

d i d i (20b)
I dz P (Ij,o) — P (xj—l,m)
h

Then we solve the corresponding discretized neighboring problem

i
Yi1-v0

F(m,o,yo,yé-i—cif{)i, — —%(y6+df(3i)) _ f}éi§
Forj>1,1>1:

F(:L.jyl7?7%l7 %il+12_}1}7j¢’l717 ?yiyl+1_2§,l+%ilfl) — A]i,l;
Forj>1,1=1:

F(xj—l,m,f/}i_l,m; }7;1 21’:1 m—l7 }73‘1 2)7].’i71h¢;+?j571 m—l) — A]i707

and proceed as before (cf. (17)).

The purpose of the modified defect definition is, like for classical explicit first
order IPDeC from [3], to modify the iteration in such a way that its fixed point is given by
a higher-order superconvergent collocation scheme, in our case of Lobatto type. In fact,
Lobatto collocation at the nodes 2 ; ; means that the defect of the collocation polynomial
vanishes at these nodes, and thus, this collocation polynomial is a fixed point of our
iteration. This lets us expect that after several defect correction steps a superconvergent
iterate is obtained; see Example 2 for numerical evidence.

1. Remark. In (20a)), a defect with respect to the initial condition for the first
derivative is also taken into account. Furthermore, the discontinuity of the first derivati-
ve of p(x) at the endpoints of the intervals I; (p‘(x;)) enforces to include the jump
defect 47, see ([20)), see also [9].

Example 2. Consider the implicit scalar nonlinear test problem

'@ 4y (2) + y(2) (21a)
e ST L1 4 sing + cosz,
y(0)=1, y'(0) =1, (21b)

with exact solution y*(z) = 1+sinz. The numerical solution is computed over a sequence
of subintervals of length h, each of them divided into 6 equidistants nodes and 5 Lobatto
nodes (&, =0, ¢ = 1 — 2L gy — L. o — 1L V3L o ),

We choose the integration interval « € [0, 3]. The resulting global errors with respect
to the exact solution at the endpoint © = 3 are displayed in Table [2| together with the
observed convergence orders. Results are given for the basic scheme (DQ2), 4 IIPDeC 2
iterates working in passive mode, and the fixed point of the ITPDeC 2 iteration (L-COLL,
corresponding to Lobatto collocation of degree i = 5 at the nodes £, ; where the defect
is interpolated). Note that the convergence order of the Lobatto collocation scheme is
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[n [ pQ2 |uPDeC2/1]I11PDeC2/2 [ IIPDeC2/3 | L-COLL |

0.1 2.30E-05 1.93E-09 9.62E-14 6.07E-16 | 6.32E-16
0.05 5.75E-06 1.21E-10 1.51E-15 2.37E-18 2.47E-18
0.025 1.44E-06 7.54E-12 2.36E-17 9.24E-21 9.63E-21
0.0125 || 3.59E-07 | 4.71E-13 3.69E-19 3.61E-23 | 3.76E-23

0.1

0.05 2.00 4.00 5.99 8.00 8.00
0'025 2.00 4.00 6.00 8.00 8.00
0.0125 2.00 4.00 6.00 8.00 8.00

TABLE 2. Numerical results for Example 2.

O(h?"=2) = O(h®), and the same convergence order is realized after only 3 IIPDeC 2
iteration steps.

10.

11.

12.

13.
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METOAN KOPEKIIII JE®PEKTY, KJIACUYHI TA HOBI

Bindping AVIIIHTEP!, Pokcosana CTOJIAPUYYK?,
Mapria TYTIT!

! Bidenvevruti mexnivnutl yrisepcumen,
Bidnep 'aynmwmpacce, 8-10, 1040 Bidenv, Ascmpia
2 Hayionanvnut ynisepcumem “JTveiscora Ilosimeznira”,
eys. C. Bandepu 12, 79013, JIveis, Ykpaina

Metomu Kopexriil edekTy I'PYHTYIOTHCS Ha i€l OIMIHKN TOYHOCTI HAabInKe-
HOI'O PO3B’3Ky 3a ZomoMoroio dhopmysBanud gedekTy, ad0 3a/UIIKy, CTOCOBHO
10 MaHol 337a4i. 3a JOMOMOTOIO IMPOIEYyPH 3BOPOTHHOTO PO3B’si3yBaHHS OTPH-
Mmyemo oriukKy moxubkwm. Ileit mporec MOXKHA TIPOMOBXKUTH iTepaTtuBHO. Merta
OBOr0 OISy — HOZAJIbLIE LIOMUPEHHS KOHIEMIl, 10 PO3IVIAIA€ThCd. Db
TOTO, BIIEpIIE MOJAHO 3arajibHUM 1 Y3TOMKEHUH OISl PI3HUX THUIIB METOIIB
KOpeKIIil medekTy, IXHE 3aCTOCYBaHb B KOHTEKCTi JTUCKPETU3AIINHNX CXEM I
mudepenmianbaux piBHAHb. Ilic/s onmcy 3arajpbHOrO aJropuTMy 0OrOBOPHMO
JesiKi creniajbHi TeXHOJIOTT, siki BUKOPUCTOBYIOTEHCS /sl PO3B’SI3yBaHHS 3BU-
JaliHnX qudepeHIiaabHuX PIBHAHDB. TaK0XK MIPeICTaB/IeH] HOBI Pe3yIbTaTh CTO-
COBHO 3aCTOCYBAHHS 10 HEABHUX 33/a4.

Karowosi crosa:  xopekiia gedexry, quckpernsaiis, 3Budaiini audepen-
miaJIbHI PIBHAHHL.
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