УДК 512.552.13

BEZOUT DOMAINS WHOSE FINITE HOMOMORPHIC IMAGES ARE SEMIPOTENT RINGS

Vasylyna BOKHONKO

Ivan Franko National University of Lviv, Universytetska Str., 1, Lviv, 79000 e-mail: linabokhonko@gmail.com

We establish that finite homomorphic images of a commutative Bezout domain are semipotent rings.

Key words: Bezout domain, semipotent ring.

The concept of semipotent ring is important and is of particular interest in the modern research [2, 3]

Let R be a commutative Bezout domain, then for $a \in R \setminus \{0\}$ the factor-ring R/aRis an exchange ring if and only if a is an avoidable element i.e. if for any $b, c \in R$ such that aR + bR + cR = R there exist elements $r, s \in R$ such that $a = r \cdot s$, where rR + bR = R, sR + bR = R and rR + sR = R (see [1]).

In this paper we establish that for a commutative Bezout domain R and $a \in R \setminus \{0\}$ the factor-ring R/aR is a semipotent ring if and only if a is a semipotent element i.e. if for any $b \in R$ there exist elements $r, s \in R$ such that $a = r \cdot s$, where rR + bR = R and rR + sR = R.

All rings considered are commutative and have the identity, $1 \neq 0$. A ring is a *Bezout* ring if every its finite generated ideal is principal.

We denote by U = U(R) the group of units of R and by J(R) the Jacobson radical of R. Recall that a ring R is a semipotent ring, also called J_0 -ring by Nicholson [2], if every its principal ideal not contained in J(R) contains a nonzero idempotent. The examples of such rings include the exchange rings and can be found in [2]. A ring R is an exchange ring if for every $a \in R$ there exists an idempotent $e \in aR$ such that $(1 - e) \in (1 - a)R$.

Definition 1. Let R be a commutative Bezout domain. An element $a \in R \setminus \{0\}$ is said to be semipotent if for any $b \in R$ we have $a = r \cdot s$, where rR + bR = R and rR + sR = R.

Theorem 1. Let R be a commutative Bezout domain. Then a is a semipotent element if and only if R/aR is a semipotent ring.

Proof. The equality rR + sR = R implies ru + sv = 1 for some elements $u, v, \overline{r^2 u} = \overline{r}, \overline{s^2 v} = \overline{s}$ for $\overline{r} = r + aR$ and $\overline{s} = s + aR$. Obviously, $\overline{ru} = \overline{e}, \overline{e^2} = \overline{e}$ and $\overline{1} - \overline{e} = \overline{s} \overline{v}$. The

[©] Bokhonko V., 2016

equality rR + bR = R implies $\overline{1} - \overline{e} \in \overline{b} \ \overline{R}$ where $\overline{b} = b + aR$. Since $\overline{1} - \overline{e}$ is an indempotent, \overline{R} is a semipotent ring. Note that if $\overline{b} \notin J(aR)$ then $\overline{1} - \overline{e}$ is a proper indempotent. If for $\overline{b} = b + aR$ we have that there exist an idempotent $\overline{e}^2 = \overline{e}$ such that $\overline{e} \in \overline{b} \ \overline{R}$. Since $\overline{e}^2 = \overline{e}$, we have $e(1 - e) = a\alpha$ for some $\alpha \in R$. And since $\overline{e} \in \overline{b} \ \overline{R}$, we have e - bt = as for some elements $t, s \in R$. Let eR + aR = dR, then $e = de_0$, $a = da_0$ and $a_0R + e_0R = R$. The equality $e(1 - e) = a\alpha$ implies $e_0(1 - e) = a_0\alpha$. Since $a_0R + e_0R = R$, we have $a_0R + eR = R$. Let $r = a_o$, s = d, then we have rR + bR = R. Since e - bt = as, then rR + sR = R. Theorem is proved.

Since an exchange ring is a semipotent ring, we have that avoidable element is obviously a semipotent element.

The following result connects the concept of adequate element and the concept of semipotent ring.

Definition 2. Let R be a commutative Bezout domain. An element $a \in R$ is called adequate for an element b if we can find elements $r, s \in R$ such that

- 1) $a = r \cdot s;$
- 2) rR + bR = R;
- 3) for any nonunit divisor s' of s we have $s'R + bR \neq R$. [3]

That a is adequate for b will be denoted by $_aA_b$.

Theorem 2. Let R be commutative Bezout domain. If element $a \in R$ is semipotent than for any element $b \notin J(aR)$ there exists some element $u \in R$ that $_aA_{bu}$.

Proof. Let $\overline{R} = R/aR$ be a semipotent ring and $b \notin J(aR)$. Then there exists a nonzero idempotent \overline{e} such that $\overline{e} \in \overline{b} \ \overline{R}$. Hence, there exist some elements $u, t \in R$ such that e - bu = at. Moreover, since $\overline{e}^2 = \overline{e}$, we have (1 - e) = as for some element $s \in R$.

Let eR + aR = dR, where $e = de_0$, $a = da_0$ and $a_0R + e_0R = R$. Then

$$e_0(1-e) = a_0 s$$
 and $e + a_0 j = 1$

for some element $j \in R$. Taking $r = a_0$, s = d we obtain a decomposition

$$a = r \cdot s$$

where rR + eR = R and $s'R + eR \neq R$, for some nonunit divisor s' of s. Thus, ${}_{a}A_{e}$ and hence from bu = e + at we obviously conclude ${}_{a}A_{bu}$. Theorem is proved.

As a corollary of previous theorem we obtain the following.

Theorem 3. Let R be a commutative Bezout domain and $a \in R \setminus \{0\}$. The factor-ring R/aR is semipotent if and only if for any element $b \notin J(aR)$ there exists an element $u \in R$ such that ${}_{a}A_{bu}$ and bu $\notin aR$.

References

- Kuznitska B. M., Zabavsky B. V. Azoidable rings / Kuznitska B. M., Zabavsky B. V. // Mat. Stud. - 2015. - Vol. 43. - P. 153-155.
- Nickolson W. K. Lifting idempotents and exchange rings / Nickolson W. K. // Tran. Amer. Math. Soc. - Vol. 229, 1977. - P. 269-278.

Vasylyna BOKHONKO ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2016. Випуск 81

 Zabavsky B. V. Diagonal reduction of matrices over rings / Zabavsky B.V. // Mat. Studies Monograph Series - Vol. 16. - 2012. - P. 251.

> Стаття: надійшла до редколегії 12.03.2016 прийнята до друку 08.06.2016

КОМУТАТИВНІ ОБЛАСТІ БЕЗУ, СКІНЧЕННІ ГОМОМОРФНІ ОБРАЗИ ЯКИХ Є НАПІВПОТУЖНИМИ КІЛЬЦЯМИ

Василина БОХОНКО

Львівський національний університет імені Івана Франка, вул. Університетська, 1, Львів, 79000 e-mail: linabokhonko@gmail.com

Визначено умови, коли скінченно гомоморфні образи комутативної області Безу є напівпотужними кільцями.

Ключові слова: область Безу, напівпотужні кільця.

60