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We establish that finite homomorphic images of a commutative Bezout
domain are semipotent rings.
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The concept of semipotent ring is important and is of particular interest in the
modern research [2, 3]

Let R be a commutative Bezout domain, then for a € R\ {0} the factor-ring R/aR
is an exchange ring if and only if a is an avoidable element i.e. if for any b, ¢ € R such that
aR + bR + cR = R there exist elements r, s € R such that a = r - s, where rR+ bR = R,
sR+bR =R and TR+ sR = R (see [1]).

In this paper we establish that for a commutative Bezout domain R and a € R\ {0}
the factor-ring R/aR is a semipotent ring if and only if @ is a semipotent element i.e. if
for any b € R there exist elements 7, s € R such that a« = r - s, where rR + bR = R and
rR+sR=R.

All rings considered are commutative and have the identity, 1 # 0. A ring is a Bezout
ring if every its finite generated ideal is principal.

We denote by U = U(R) the group of units of R and by J(R) the Jacobson radical of
R. Recall that a ring R is a semipotent ring, also called Jy-ring by Nicholson [2], if every
its principal ideal not contained in J(R) contains a nonzero idempotent. The exampels
of such rings include the exchange rings and can be found in [2]. A ring R is an exchange
ring if for every a € R there exists an idempotent e € aR such that (1 —e) € (1 —a)R.

Definition 1. Let R be a commutative Bezout domain. An element a € R\ {0} is said
to be semipotent if for any b € R we have a = r-s, whererR+bR = R and rR+sR = R.

Theorem 1. Let R be a commutative Bezout domain. Then a is a semipotent element
if and only if R/aR is a semipotent ring.

Proof. The equality 7R + sR = R implies ru + sv = 1 for some elements u, v, 7217 = T,

527 =5for T =7+ aR and 5 = s + aR. Obviously, 7u = ¢, € = e and 1 — € = 5 7. The

© Bokhonko V., 2016



BEZOUT DOMAINS ...
ISSN 2078-3744. Bicuuxk JIpsiB. yu-ty. Cepis mex.-mar. 2016. Bumyck 81 59

equality rR+bR = R implies 1—€ € b R where b = b+aR. Since 1 —¢ is an indempotent,
R is a semipotent ring. Note that if b ¢ J(aR) then T — € is a proper indempotent. If
for b = b+ aR we have that there exist an idempotent € = € such that € € b R. Since
€% =&, we have e(1 —e) = aa for some o € R. And since € € b R, we have e — bt = as for
some elements t, s € R. Let eR + aR = dR, then e = deg, a = dag and agR + egR = R.
The equality e(l — e) = ac« implies ep(l — e) = apa. Since apR + ¢gR = R, we have
aoR 4+ eR = R. Let r = a,, s = d, then we have rR + bR = R. Since e — bt = as, then
rR + sR = R. Theorem is proved.

Since an exchange ring is a semipotent ring, we have that avoidable element is
obviously a semipotent element.

The following result connects the concept of adequate element and the concept of
semipotent ring.

Definition 2. Let R be a commutative Bezout domain. An element a € R is called
adequate for an element b if we can find elements r,s € R such that

1) a=r-s;
2) TR+bR=R;
3) for any nonunit divisor s' of s we have 'R+ bR # R. [3]

That a is adequate for b will be denoted by ,Ap.

Theorem 2. Let R be commutative Bezout domain. If element a € R is semipotent than
for any element b ¢ J(aR) there exists some element u € R that o Apy.

Proof. Let R = R/aR be a semipotent ring and b ¢ J(aR). Then there exists a nonzero
idempotent € such that € € b R. Hence, there exist some elements u,t € R such that

e — bu = at. Moreover, since €2 = €, we have (1 — e) = as for some element s € R.
Let eR + aR = dR, where e = deg, a = dag and agR 4+ egR = R. Then

eo(l —e) =aps and e+ apj =1
for some element j € R. Taking r = ag, s = d we obtain a decomposition
a=r-s

where rR+ e¢R = R and s'R + eR # R, for some nonunit divisor s’ of s. Thus, ,A. and
hence from bu = e + at we obviously conclude ,Ap,. Theorem is proved.

As a corollary of previous theorem we obtain the following.

Theorem 3. Let R be a commutative Bezout domain and a € R\ {0}. The factor-ring
R/aR is semipotent if and only if for any element b ¢ J(aR) there exists an element
u € R such that ,Ap, and bu ¢ aR.
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