ISSN 2078-3744. Bicuux Jlveis. yu-my. Cepisa mex.-mam. 2016. Bunyck 82. C. 109-127
Visnyk of the Lviv Univ. Series Mech. Math. 2016. Issue 82. P. 109—127

YIK 512.534.5

ON THE MONOID OF MONOTONE INJECTIVE PARTIAL
SELFMAPS OF Ni WITH COFINITE DOMAINS AND IMAGES, II

Oleg GUTIK, Inna POZDNIAKOVA

Ivan Franko National University of Luiv,
Universytetska Str., 1, 79000, Luviv,
e-mails: o_ gutik@franko.lviv.ua,
ovgutik@yahoo.com, pozdnyakova.inna@gmail.com

Let Ni be the set N? with the partial order defined as the product of usual
order < on the set of positive integers N. We study the semigroup Y0 (Ni) of
monotone injective partial selfmaps of Ni having cofinite domain and image.
We describe the natural partial order on the semigroup 20.,(N2) and show
that it coincides with the natural partial order which is induced from symmetric
inverse monoid #yxn over the set N x N onto the semigroup P05 (Né) ‘We
proved that the semigroup %0 (NZ%) is isomorphic to the semidirect product
P01 (N2) x Zs of the monoid 220 (N2) of orientation-preserving monotone
injective partial selfmaps of Né with cofinite domains and images by the cyclic
group Zz of the order two. Also we describe the congruence o on the semi-
group P05 (NZ) which is generated by the natural order < on the semigroup
P05 (N2): acf if and only if o and B are comparable in (20 (N2),<).
We prove that the quotient semigroup Z0 (NZ)/U is isomorphic to the free
commutative monoid 2AMi,, over an infinite countable set and show that the
quotient semigroup 0 (N%) /o is isomorphic to the semidirect product of the
free commutative monoid A9, by the group Z,.

Key words: Semigroup of bijective partial transformations, natural parti-
al order, semidirect product, minimum group congruence, free commutative
monoid.

We shall follow the terminology of [2] and [10].

In this paper we shall denote the first infinite cardinal by w and the cardinality of
the set A by |A|. We shall identify every set X with its cardinality |X|. By Zs we shall
denote the cyclic group of order two. Also, for infinite subsets A and B of an infinite
set X we shall write AC*B if and only if there exists a finite subset Ay of A such that
A\ Ao C B.
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An algebraic semigroup S is called inverse if for any element x € S there exists a
unique z~! € S such that zz~ 'z = 2 and 2 'zz~! = 27!, The element 2! is called
the inverse of x € S.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If
S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to
E(S) a band (or the band of S). If the band E(S) is a non-empty subset of S, then the
semigroup operation on S determines the following partial order < on E(S): e < f if and
only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice
is a commutative semigroup of idempotents.

If «: X =Y is a partial map, then by dom o and ran o we denote the domain and
the range of «, respectively.

Let ., denote the set of all partial one-to-one transformations of an infinite set
X of cardinality A together with the following semigroup operation: z(af) = (za)f if
x € dom(af) = {y € doma | ya € dom 5}, for «, 5 € .#\. The semigroup .#, is called
the symmetric inverse semigroup over the set X (see [2, Section 1.9]). The symmetric
inverse semigroup was introduced by Vagner [18] and it plays a major role in the theory
of semigroups. An element « € %, is called cofinite, if the sets A \ dom« and A \ ran «
are finite.

Let (X, <) be a partially ordered set (a poset). For an arbitrary 2 € X we denote

te={yeX:z<y}.

We shall say that a partial map a: X — X is monotone if x < y implies (z)a < (y)a for
z,y € doma.

Let N be the set of positive integers with the usual linear order <. On the Cartesian
product N x N we define the product partial order, i.e.,

(i,m) < (4,n) if and only if (i<j) and (m < n).
Later the set N x N with so defined partial order will be denoted by Ni.

By 20,,(NZ) we denote the semigroup of injective partial monotone selfmaps of N2
with cofinite domains and images. Obviously, 20, (N2 ) is a submonoid of the symmetric
inverse semigroup .#,, and 20, (N%) is a countable semigroup.

Furthermore, we shall denote the identity of the semigroup Qﬁm(Né) by I and the
group of units of P20, (NZ) by H(T).

For any positive integer n and an arbitrary a € F0 (Ni) we denote:

V" ={(n,j): j €N} H™ = {(j,n): j € N};
goma = Vn N dOHlOt; V?ana - Vn M ran Q)
H:lloma =H"Ndoma; H:Lana =H" Nrana,
and
(ia[*7j]7ja[i7*]) = (i,j)Oé, for every (Z,]) € dom a.

It well known that each partial injective cofinite selfmap f of A induces a
homeomorphism f*: \* — A\* of the remainder A* = S\ A of the Stone-Cech compacti-
fication of the discrete space A. Moreover, under some set theoretic axioms (like PFA or
OCA), each homeomorphism of w* is induced by some partial injective cofinite selfmap
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of w (see [I2]-[I7]). So, the inverse semigroup #<' of injective partial selfmaps of an
infinite cardinal A with cofinite domains and images admits a natural homomorphism
h: I — (N to the homeomorphism group ##(A\*) of A* and this homomorphism
is surjective under certain set theoretic assumptions.

In the paper [9] algebraic properties of the semigroup ﬂ/\Cf are studied. It is showed
that .#{! is a bisimple inverse semigroup and that for every non-empty chain L in F(.#{")
there exists an inverse subsemigroup S of .#{! such that S is isomorphic to the bicyclic
semigroup and L C F(S), the Green relations on .Z{ are described and it is proved that
every non-trivial congruence on f)‘ff is a group congruence. Also, the structure of the
quotient semigroup fff /o is described, where o is the least group congruence on ﬂ/\Cf.

The semigroups .#4 (N) and .#{ (Z) of injective isotone partial selfmaps with cofinite
domains and images of positive integers and integers are studied in [7] and [8], respecti-
vely. It was proved that the semigroups .#¢ (N) and .#{ (Z) have similar properties to the
bicyclic semigroup: they are bisimple and every non-trivial homomorphic image .#¢ (N)
and .#{(Z) is a group, and moreover the semigroup .#4 (N) has Z(+4) as a maximal
group image and .#4 (Z) has Z(+) x Z(+), respectively.

In the paper [6] we studied the semigroup #0..(Z},,) of monotone injective partial
selfmaps of the set of L, Xex Z having cofinite domain and image, where L,, X|ex Z
is the lexicographic product of n-elements chain and the set of integers with the usual
linear order. In this paper we described Green’s relations on #04(Z},, ), showed that the
semigroup S#0, (Z],) is bisimple and established its projective congruences. Also, we
proved that S0, (Z}., ) is finitely generated, every automorphism of .#0,,(Z) is inner and
showed that in the case n > 2 the semigroup .#0(Z], ) has non-inner automorphisms. In
[6] we also proved that for every positive integer n the quotient semigroup S0 (Zi.,)/o,
where ¢ is a least group congruence on £0.(Z}., ), is isomorphic to the direct power
(Z(+))*". The structure of the sublattice of congruences on .#@, ( ) that are contained
in the least group congruence is described in [4].

In the paper [5] we studied algebraic properties of the semigroup ﬂﬁm(Né). We
described properties of elements of the semigroup gzﬁoo(Ni) as monotone partial bijecti-
on of Ni and showed that the group of units of Y0, (Ni) is isomorphic to the cyclic
group of order two. Also in [5] the subsemigroup of idempotents of F0 (Ni) and the
Green relations on Z0,, (Ni) are described. In particular, here we proved that ¥ = ¢
in 20, (Ni)

The present paper is a continuation of [5]. We describe the natural partial order < on
the semigroup 0, (Ni) and show that it coincides with the natural partial order which
is induced from symmetric inverse monoid #yxn over the set N x N onto the semigroup
P05 (NZ). We proved that the semigroup P20, (N%) is isomorphic to the semidirect
product P01 (NZ) x Zy of the monoid 20 (NZ) of orientation-preserving monotone
injective partial selfmaps of Né with cofinite domains and images by the cyclic group Z-
of the order two. Also we describe the congruence o on the semigroup @ﬁw(Ni), which
is generated by the natural order < on the semigroup &0, (N%): ao if and only if v and
f3 are comparable in (P04 (Ni), <). We prove that the quotient semigroup 205 (Ni)/a
is isomorphic to the free commutative monoid 209, over an infinite countable set and
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show that quotient semigroup @ﬁw(Ni) /o is isomorphic to the semidirect product of
the free commutative monoid A9, by the group Zs.

The following proposition implies that the equations of the form a -z = b and
- ¢ = d in the semigroup @ﬁm(Ni) have finitely many solutions. This property holds
for the bicyclic monoid, many its generalizations and other semigroups (see corresponding
results in [, (3] 6] [7, 8, @]).

Proposition 1. For every o, 3 € @ﬁm(Ni), both sets

{xe 20..(NY) | a-x =5} and {xe 20..(N2) | x-a =7}
are finite. Consequently, every right translation and every left translation by an element
of the semigroup gzﬁoo(Ni) is a finite-to-one map.
Proof. We consider the case of the equation a-xy = . In the case of the equation y-a = (3
the proof is similar.

The definition of the semigroup 0, (Ni) and the equality « - x =  imply that
dom 8 C dom « and ran y C ran . Since any element of the semigroup £0,, (Ni) has a
cofinite domain and a cofinite image in N x N, we conclude that if an element y, satisfies
the equality « - x = 8 then for every other root x of the equation « - y = (3 there exist
finitely many (4,7) € (N x N) \ ran 8 such that one of the following conditions holds:

(1) (&, 5)x # (i, 7)x05

(2) (i,7)x is determined and (4, j)xo is undetermined;

(3) (4,7)x0 is determined and (7, j)x is undetermined.
This implies that the equation a -y = 8 has finitely many solutions, which completes the
proof of the proposition. O

Later we shall describe the natural partial order “<” on the semigroup ,@ﬁw(Ni).
For o, B € @ﬁw(Ni) we put
axp if and only if o = fe for some ¢ € E(@ﬁm(Ni)).
We need the following proposition from [I1].
Proposition 2 ([I1, p. 387, Corollary]). For any semigroup S and its natural partial
order < the following conditions are equivalent:
(i) a < b;
(ii) a = wb = bz, az = a for some w,z € S';
(iii) a = xb= by, ra = ay = a for some x,y € S*.
Proposition 3. The relation < is the natural partial order on the semigroup @ﬁm(Ni).

Proof. Suppose that a = e for some idempotent ¢ € E(@ﬁm(Né)). Then we have that

ae = (fe)e = f(ee) = Be = a.
Let ¢: dom(Be) — dom(Be) be the identity map of the set dom(Be). Then ¢ €
E(P0+(NZ)) and the definition of the semigroup &0, (N%) implies that dom(Se) =
dom(tf3), because ¢ is an idempotent of P20, (N2 ). This implies that (4, j)i3 = (i,)pe
for each (i,7) € dom(¢f3) and hence we get that o = fe = 5. Next we apply Propositi-
on [2 (]
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Remark 1. Proposition [3| implies that the natural partial order on the semigroup
@ﬁm(Ni) coincides with the natural partial order which is induced from symmetric
inverse monoid Hyxn over the set N x N onto the semigroup £0,, (Ni)

We define a relation o on the semigroup #0 (Ni) in the following way:
aof if and only if there exists € € BE(P0y (Ni)) such that ae = fe,
for o, f € PO, (N2).

Proposition 4. For o, € @ﬁoo(Ni) the following conditions are equivalent:

(i) acB;

there exist s,v € E(P0 (N2)) such that as = fu;

2
<
there exist s, v € E(P0(N%)) such that as = vf;

)
)
(iv) there exists 1 € E(@ﬁw(Ni)) such that 1o = 13;
) there exist s, v € E(P0x(NZ)) such that s = vf3.
o

is a congruence on the semigroup P0s(NZ).

Proof. Implication (i) = (44) is trivial.

(i1) = (i) If we have that as = Sv for some ¢,v € E(P0,(N%)) then ag(sv) =
Bu(sv). Since Wﬁoo(Ni) is a subsemigroup of the symmetric inverse monoid .#|yxxj,
the idempotents in the semigroup #0,(NZ) commute and hence a(sv) = B(sv). This
implies that aof.

(i1) = (iii) Suppose that as = Sv for some ¢, v € E(P0(NZ)). Let 1= dom(fv) —
dom(fv) be the identity map of the set dom(Bv). Then ¢ € E(#05(NZ)) and the
definition of the semigroup 220, (N%) implies that dom(Sv) = dom(sf), because v is an
idempotent of P20, (NZ). This implies that (4, )13 = (i, j)Bv for each (i,7) € dom(.3)
and hence we get that ag = fv = 1.

(#11) = (ii) Suppose that as = vf for some ¢, v € E(P0x(NZ)). Let ¢: ran(vf) —
ran(vf3) be the identity map of the set ran(v3). Then « € E(20,,(N%)) and the definition
of the semigroup P20, (NZ) implies that ran(vf3) = ran(ft), because v is an idempotent
of ,@ﬁm(Ni). Since all elements of the semigroup ,@ﬁm(Ni) are partial bijections of
N x N we get that dom(vs) = dom(S8e). This implies that (i,7)8t = (¢,7)v8 for each
(i,4) € dom(fBe) and hence we get that ag = v = S..

The proofs of equivalences (iii) < (iv) and (iv) < (v) are similar.

It is obvious that o is a reflexive and symmetric relation on Z0,, (N2 ). Suppose that
aof3 and fovy in PO, (NZ). Then there exist ¢,v € E(F0,(N%)) such that ac = f¢
and fv = yv. This implies that acv = Bsv and fvs = yvg, and since the idempotents
in 20, (Ni) commute we get that agv = fcv = fus = yug, and hence aov.

Suppose that acfB for some o, € @ﬁoo(Né). Then by (iv) there exists ¢ €
E(P0,(N2)) such that tov = 3. This implies that oy = 7y for each v € P0,(N%)
and hence by item (iv) we get that (ay)o(57). The proof of the statement that (ya)o(v53)
for each v € ﬁﬁm(Ni) is similar, and hence o is a congruence on the semigroup
POso(N2). O
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Corollary 1. For a, 3 € @ﬁm(Ni) the following condition are equivalent:
(i) aop;
(ii) awopfw;
(#i1) waowf.
Proof. (i) & (it) If acB in PO (Ni) then by Proposition |4 there exists ¢ €
E(@ﬁw(Ni)) such that va = 5. This implies that taw = (fw and hence (aw)o(Bw).
Conversely, if (aw)o(fw) then by Proposition 4] we have that vaw = vBw for some
Ve E(@ﬁw(Ni)), and hence va = vaww = vBww = v/, which implies that acf3.
The proof of (i) < (i) is similar. O
Also the definition of the congruence o on the semigroup gzﬁoo(Ni) implies the
following simple property of o-equivalent elements of Z0,, (Ni):

Corollary 2. Let a, 8 be elements of the semigroup f@ﬁoo(Ni) such that acB. Then the
following assertions hold:

(i) (Hioma)CH' if and only if (Hiom 5)BCH;

(i1) (Hioma)aCV" if and only if (H}om 5)BCV".
We define
POL(NL) = {a € PO, (NZ): (Higma)o CH'}.

Then Lemma 3 and Theorem 1 from [5] imply that 20 (Né) is a subsemigroup of
P05 (NZ ). The subsemigroup P05 (N2) is called the monoid of orientation-preserving
monotone injective partial selfmaps of Ni with cofinite domains and images. Moreover
it is obvious that E(20%(N2) = E(P0,(N%)). Also, later by < and o we denote the
corresponding induced relations of the relations < and o from the semigroup 20, (N%)

onto its subsemigroup Z0 (N2).
The proofs of the following propositions are similar to those of Propositions [3] and
[ respectively.

Proposition 5. The relation < is the natural partial order on the semigroup L@@;(N@
Proposition 6. The relation o is a congruence on the semigroup @ﬁ;(Ni)

By w we denote the bijective transformation of N x N defined by the formula
(i,7)w = (J,1), for any (i,7) € Nx N. It is obvious that w is an element of the semigroup
POy (NZ) and wow = 1L
Remark 2. We observe that

(i) o € POL(NZ) if and only if aw, wa € P0,(N2) \ 205 (N2);

(i1) o € PO (NZ) if and only if waw € P01} (N2).

We define a map b: @ﬁ’m(Ni) — @ﬁm(Ni) by the formula (a)h = waw, for
o € PO (N2).
Proposition 7. The map b: 0, (N2) = P05 (NZ) is an automorphism of the semi-
group PO (N%). Moreover its restriction b‘yﬁ;(Ni): POL(NL) — POL(NZ) is an

automorphism of the subsemigroup P07 (NZ).
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Proof. First we show that h: @ﬁm(Ni) — POy (Ni) is a homomorphism. Fix arbitrary
a, f € POy (Ni) Then we have that

(@p)h = w(af)w = w(ddf)w = w(awwf)w = (waw)(wfw) = (@)h(5)h,
and hence b: P0,(N2) — P05 (NZ) is a homomorphism.
Fix an arbitrary a € P20, (Né) Then the definition of b implies that
(waw)h = wwaww = lal = «,

and hence the map b: P20, (N2) — P20, (N%) is surjective. Suppose that ()b = (8)h
for some «, f € P0,,(N%). Then

a =laol = wwaww = ((a)h)h = ((A)h)h = wwhww = 181 = 3,
and hence the map h: P0,,(N2) — P0,(N%) is injective. Thus the map b is an
automorphism of the semigroup Z0,,(NZ).

Now, Remarkirnplies that the restriction b| 5+ 2y PO%(NZ) — P0%(N2) is
an automorphism of the semigroup 20 (N%), too. O

For the automorphism b: 201 (N2) — P05 (N ) of the semigroup 207 (N%) we
have that h% = ld 5+ N2) is the identity automorphism of 207 (Ni) This implies that
the element h generates\the group which is isomorphic to the cyclic group of order two
Zs. By Proposition 4 from [5] the group of units H(I) of the semigroup gzﬁoo(Ni) is
isomorphic to Zy. We define a map 9 from H(I) into the group Aut(@ﬁ;(Ni)) of
automorphisms of the semigroup gZﬁgg(Ni) in the following way (I)Q = Id 5+ ™N2) and
(@)Q = h. It is obvious that so defined map Q: H(I) — Aut(L0 (Ni)) is an inj\ective
homomorphism.

Let S and T be semigroups and let £) be a homomorphism from 7" into the semigroup
of endomorphisms End(S) of S, $: ¢t — b;. Then the Cartesian product S x T with the
following semigroup operation

(s1,t1) - (52, t2) = (51 (82)bt,, 1 - t2), 1,82 € 5, t1,t2 €T,

is called a semidirect product of the semigroup S by T and is denoted by S xg T.
We remark that if 17 is the unit of the semigroup T then (17)$) = by, is the identity
homomorphism of S and in the case when T is a group then (¢)$) = b, is an automorphism
of S for any t € T.

Theorem 1. The semigroup Wﬁm(Ni) 1s isomorphic to the semidirect product
POL(N2) xq H(I) of the semigroup P0% (NZ) by the group H(I).
Proof. We define a map J3: 20 (N2)xq H(I) — @ﬁm(Ni) by the formula (o, g)J = ag.
Then for all oy, a9 € @ﬁ;@(Ni) and g1, 92 € H(I) we have that
((@1,91) - (a2,92)) T = (a1 - (a2)(91)Q,91 - 92) T = (1 - g1 - @2 - 91,91 - 92) T =
=01g1-02-g1°-g1-g2=01"g1° Q2" Qg2 =
- (ahgl)j . (a2792)37

because g = T for any g € H(I), and hence the map J: POL(N2) xq H(I) = P0,(NZ)
is a homomorphism.
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By Lemma 3 from [5] for every a € 0, (N%) there exist at € ZP0f(NZ) and
ga € H(I) such that a = atg,. Indeed,

(a) in the case when (H},,, ,)a € H" we put a™ = o and g, = I;

(b) in the case when (H},,, ) C V! we put ot = aw and g, = w.

Let o, 8t € 205(N%) and ga,g9s € H(I) be such that atg, = (a¥,9,)7 =
(8%,95)3 = Btgs. Since (Hipma+)at € H' and (Hiy 5+)B87 € H', Lemma 3 from
[5] implies that g, = gs. By Proposition 4 from [5] the group of units H(I) of the
semigroup Z0,,(NZ) is isomorphic to Zg and hence o™ = atg2 = atgags = 793 =
BT. Therefore, we get that so defined map J: 205 (N2) xq H(I) - P0(N%) is an
isomorphism. O

By Theorem 2(ii1) from [5] for every o € @ﬁ;@(Ni) there exists a smallest positive
integer n,, such that (i,7)a = (4,) for each (i,j) € doma N T(ng, na)-

Lemma 1. For every a € 205 (N%) there exists oz € PO%(NZ) such that the following
assertions hold:
(i) aoas;
(i1) (i + Dager) — (0 + 1) = dagfs ) — @ for arbitrary (i,j) € domaz with j < na,
(Z.aj)af = (iaf[*,j]ajaf[i,*]) and (7/ + 17j)af - ((7/ + 1)af[*,j]7jaf[i+17*])’ i.e., O
acts as a partial shift on the set H’;
(411) (J + Daglie] — (G + 1) = Jagfie) — J for arbitrary (i,j) € domas with i < ng,
(i, 7)as = (iacng)s Jaclie)) and (3,5 + Das = (lagejir)s (G + Daglig), Goes 0
acts as a partial shift on the set V*.

Moreover, there exist smallest positive integers ﬁa,ﬁa < ng such that (i,5)as = (4,75) for

arbitrary (i,7) € domas with i > h, and (k,l)as = (k,1) for arbitrary (k,1) € dom oy
with | > v,.

Proof. Fix an arbitrary element « of the semigroup 201 (Ni) Then by Theorem 1(1)
from [5] we get that (Hj,., ,)aC*H" and (V. ,)aC*V" for any positive integer n.
Also, the definition of the semigroup 90, (N%) and Theorem 2(ii1) of [5] imply that
there exists a smallest positive integer n, such that (i,j)a = (4,7) for each (i,7) €
dom N1 (ny,nq), and hence for arbitrary positive integers i, j < n,, there exist smallest
positive integers h, and v/, such that the following conditions hold:

Hiano N {00 p > hy} = {(,1): p > hy}

Viawa N{0,0): ¢ =04} = {(,0): ¢ = v} },
and

(k.1),(4,1) € doma,  (k,i)a€H',  (j,)aeV,
for all positive integers k > hla and [ > v&.
We put

i_za:max{hfl:izl,...,nafl} and ﬂa:max{vg‘:jzl,...,nafl}.
The above arguments imply that
Hisna V{0 )): p=ha} = {(p,i): p > ha}; (1)
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Vganam{(j7q): q2 0} =10,9): ¢ = Va}, (2)
and ' .
(k,9),(j,1) €dome,  (k,i)a €H,  (j,D)ar €V,
for all positive integers k > he and 1 > 3.
Next we put
Do = (NxN)\ ({(i,4): i < haq and j <na} U{(i,)): i <nq and j <a}).  (3)
We define o¢ = o|p_, i.e.,
domog = D,, ranog = (Dy ) and (4,5)ce = (i,7)a for all (i,7) € dom og.
Since o = e,06 = o« for the identity partial map €,: N X N —= N x N with dome, =
rane, = D, Proposition 4] implies that aoas. -
Then condition and the definition of the positive integer h, imply that
(ha + 2)%[*711 = (ha +1) +1,

and by similar arguments and induction we have that (i + 1)o 1] = (4, 1)ag[«,1) + 1 for
arbitrary i > ho + 1. Next, if we apply condition and induction for arbitrary j < ng,
then we get that (i+1)a,[xj] = (£)ee[+,7+ 1 for arbitrary i > hq +1. This implies assertion
(13).

The proof of item (#i7) is similar to (7).

The last statement of the lemma follows from the above arguments and Theorem 2(1)
from [3]. O

For every positive integer n we define partial maps v,: NxN — N x N and v, : N x
N — N x N in the following way:
dom~y, =NxN\{(L,9):¢:=1,...,n},
domuv, =N x N\ {(4,1):i=1,...,n},
ranvy, =ranv, = N x N

o [*,1]

and
([ ti—1,9), ifj<n o
(17.7)777« - { (’L,j), lfj >n for (Z7j) € dom'yn,
o -1, ity .
(4, j)vn = { (i 9), i for (i,7) € domwy,.

Simple verifications show that v,, v, € P0% (Ni) for every positive integer n, and
moreover the subsemigroups (v; | £ € N) and (v, | k € N) of the semigroup gzﬁ;g(Ni),
generated by the sets {7;: k € N} and {vy: k € N}, respectively, are isomorphic to the
free Abelian semigroup over an infinite countable set.

Lemma 2. For every a € c@ﬁ;g(Ni) there exist finitely many elements yi,, ..., vk, and
ULy, of the semigroup @ﬁ;(Ni), with k1 < ... <k, l1 <...<lj, such that
i q;
ao (! opioft .’Ul]_]), (4)
for some positive integers pi,...,p;, q1,...,q;. Moreover if

P pi, q qj b bi,d d;
aa(’ykll VRV .vlj’) and 50(7& VeVl - .Uc;)
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for some a, 8 € @ﬁ;(Ni) then (o, B) ¢ o if and only if

P1 Pi, q1 9 b bi,d d;
Why = Vi Uty -+ UL F Y0h VoV - - - Ug?

for any idempotent € PO (NZ).

Proof. Fix an arbitrary element, o of the semigroup 22 (N%). Let g be the element of
P03 (NZ) defined in the proof of Lemma (1} By Theorem 3 from [5] and the second
statement of Lemma [l| there exist smallest positive integers Emﬁa < ng such that
(i,5)0¢ = (i, 5) for arbitrary (i,5) € dom og with i > hy and (k,1)ae = (k, 1) for arbitrary
(k,1) € dom g with | > 7.

By Lemmal[f] and Theorem 1(1) of [5] we have that

(oha =1)0e = (o i1y Pa=1) < (iha—=1) and  (G+1) 47 1] = Jogfe a1 = Lo
for arbitrary (j,/f\La — 1), (j + 1,%,1 — 1) € domog. Then we put p; | =7 — jaf[*ﬁ _p-
Next, for s =2, ... ,ﬁa — 2 we define integers p; _ _,...,p1 by induction,

Pho—s = J 7‘7'0&[*,%—8] o (p/};a_l o Jrpﬁoz—sﬂ) ’

where (j,?za —s)og = (]af[* ﬁa—s]jza —s) < (j,/ﬁa — s) for arbitrary (j,/ﬁa —s) € dom cg.
Similarly, by Lemma [I] and Theorem 1(1) of [5] we have that
(604 — ].,Z)af = (604 —_ 171‘%[@\04—17*]) < (604 — 1,2) and (Z -+ 1)0&[604—17*] — ’L.af[;ja_l,*] = 1,
for arbitrary (@X - l,i), (@a — 1,1+ 1) € domag. Then we put g, 1 = i — g [5,—1,4]
Next, for t = 2,...,0, — 2 we define integers ¢z, ¢, ..., ¢ by induction
Qoo—t =1~ Gog[oa—t] — (@oo—1+ -+ @a—t11),

where (U —t,i)0¢ = (Va — t,iag[oa—t,4]) < (Vo —t,1) for arbitrary (0 —t,i) € dom qg.
For any a € @ﬁ;@(Né) put £4: N x N be the identity partial map with dome, =
rane, = D, where the set D,, is defined by formula . Simple verification shows that

P Do
ca = o (Y. 7p " foft L v !) and hence
P1 Prha—-1, q1 Qoo —1
aa('yl "'72;4 U1 ...Ulj‘* ),

which implies that relation (4) holds.
Since 72, = v%, = I for any positive integer m, without loss of generality we may

assume that pi,...,p;,¢q1,...,q; are positive integers in formula .
Also, the last statement of the lemma follows from the definition of the congruence
o on the semigroup &0 (N2). O

Lemma 3. Let be ao(yy! ...vp v ...’U?jj) for o € POL(NZ) and positive integers
Dis--sDis Qiy---5G5, k1 < ... < ki, li < ... < ;. Then there ezists an idempotent
o € POL(NZ) such that

I~ _ 2 AP Pi,,q1 4G5 _ =~ Q0 45 A, P1 Di
Ealt =EaVgy -+ Vi, Yty - V1, =C€aVyy - U Vg - Vi -
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Proof. Put
Mo =Ng +Na+0a+p1+...+0i+q@ +...+gj,

where h,, and 7, are the positive integers defined in the proof of Lemma [I] We define
the identity partial map £,: N x N — N x N with dom &, = ran&, = M,,, where

M, = (NXN)\({(Zvj) 1< Mg andjgma})'

Then &, < ¢, where g, is the idempotent of the semigroup Wﬁ;(Ni) defined in the
proof of Lemmal[I} This implies that

= — = p1 Di, 41 4 _ =~ .P1 Pi, g1 qj
Eqll = EqEqX = 80480/}%1 . ’}/ki Ul1 e Ulj = {-:a’ykl e ’yki Ull . Ulj s

and the equlity

EaVr - Veivlt .vfjj =Equf .. .vlqj'yzll Ve
follows from the definition of the idempotent &, € 20 (N2). O

The following theorem describes the quotient semigroup 0 (N2)/o.

Theorem 2. The quotient semigroup P05, (Ni)/a is isomorphic to the free commutative
monoid AM,, over an infinite countable set.

Proof. Let X = {a;: i € N} U{b;: j € N} be a countable infinite set.
We define the map ), : P05 (N2) — ANy in the following way:

(a) if ao(yp) ... vpi ol ...’U;Ijj) for some positive integers p1,...,pi, q1,---,qj, k1 <

<ki, lh<... <lj,then
(a)Hy = (75; AR .Ulqjj)f)(, =ap:...apiblt . .b?j;
(b) (I)$H, = e, where e is the unit of the free commutative monoid AN x.
Then Lemmas [2| and |3|imply that ()9, = (8)9, if and only if acf in PO (Ni)
and hence the quotient semigroup P01 (Ni) /o is isomorphic to the free commutative

monoid AN x. O

The following corollary of Theorem [2| shows that the semigroup Wﬁ;(Ni) has
infinitely many congruences similar as the free commutative monoid 290, over an infinite
countable set.

Corollary 3. Every countable (infinite or finite) commutative monoid is a homomorphic
image of the semigroup @ﬁ;(Né)

Its obvious that every non-unit element u of the free commutative monoid AN,
over the infinite countable set {a;: i € w} U{b;: j € w} can be represented in the form

U= ail .. .ai’“b{l .. .b{’, where i1,...,1,J1,---,l; are positive integers. We define a map
f:AM, — AN, by the formula
(@i ... al o bf=al . al' by b (5)

for u =aj'...a}} bt .b{l € AM,, and (e)f = e, for unit element e of AM,,.

Proposition 8. The map f: AM,, — AM,, is an automorphism of the free commutative
monoid AN,,.
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Proof. First we show that §: 29, — AN, is a homomorphism. Fix arbitrary elements
u,v € AM,,. Without loss of generality we may assume that

R 21 ip J1 Ip _ 81 spht1 tp
u=ap...arby'...by and v=aj'...a, byt ... b}
for some non-negative integers p,i1,...,%p,J1,---17psS1s--+>Spyt1,.-.,tp, where a* =
b* =e for ¢ =0.

Then we have that
(uv)f = (a* ...aifb{l Cblraltoalrbyt bl )f =
_ (1t ip+ j1+1 ip+t _
= (a}' 51...a;f’ Sppt 1...bz’;’ P)f =

_ gditt Jpttppir+si iptsp _
=a coaPThy by =

=al' .. .agf’blf Cbiralt o alrblt b =
= (a® ... ai}”bf} . bM)b(a3t .. .a;beil Lblr)f =
= (Wi(v)f.
It is obvious that f: AN, — AIM,, is a bijective map and hence f: AM,, — AM,, is
an automorphism. O

The relationships between elements of the subsemigroup (vx | k¥ € N) and of the
subsemigroup (v, | k € N) in 201 (Ni) is described by the following proposition.

We observe that the cyclic group Z, acts on the free commutative monoid AN,
over the infinite countable set {a;: i € w} U{b;: j € w} in the following way

u, if g=0;
(u)fa if g= L

where the map f: A9, — AM,, is defined by formula. By Proposition [8| the map § is
an automorphism of the free commutative monoid 2AN,,.

AM, X Zgy — AM,,: (u,g)r—H)—{

Proposition 9. Let p1,...,p;, k1,...,k; be some positive integers such that k1 < ... <
k;. Then the following assertions hold:
(1) @Y Ve = UL U
(1) Yt YT = WU LR
(i91) WYt = v Ui
(i) wup! vt =gt

Proof. Assertion (i) follows from the definitions of the elements of the semigroups
(v | k€ N) and (vg | k € N). Other assertions follow from (i) and the equality
ww = L. g

Later we assume that Zs = {0, 1}.
The following theorem describes the quotient semigroup 0, (Ni) /o.

Theorem 3. The semigroup PO (N%)/o is isomorphic to the semidirect product
AM, X Zo of the free commutative monoid AIM,, over an infinite countable set by the
cyclic group Zs.
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Proof. We define a map J: 20, (N2)/o — AM,, xq Za: © = (u,g) in the following
way. Let P, : Wﬁm(Ni) — gzﬁoo(Nzg)/a be the natural homomorphism generated by
the congruence o on the semigroup &0, (N%). Then for every 2 € P0,,(NZ)/o for any
oy € PO (NZ) such that (o), = 2 only one of the following conditions holds:

(1) (Haoma,)azCH';

(2) (Hcllomaz)axgvl'
We put

— ((aﬂf)ﬁtﬂﬁ)’ lf (Hcliomam)a%ng;
3= (), ©

for all a, € PO (Né) with (az)PB, = z. Then the definition of the congruence ¢ on the
semigroup L0, (Ni) and Corollaryimply that the map J: @ﬁm(Ni)/a — AM,, X Zo
is well defined.

We observe that formula (6) implies that (21)J = (e, 0) for z; = ()P, and (z5)J =
(e,1) for x4 = (@)P,. Hence we have that

~ f (@2)$95,0)(e,0), if (Hioma,)oaCH';
()T - (21)T = { ((0p@)$Hs,1) - (e,0), if (Hiomaz)axgvl

(
_ ((O‘I)ﬁd "6 0- _) , if (H(ljomam)amgHIQ _
T (e@)$o e, 1-0), if (Higma, ) SV
_ ((0)95,0),  if (Haoma,)awCH;
B ((Oéxw)f)g, i) ’ if (H(liom am)algvl
= (z)J

and
, if (Hcliomaz)a-rng;
) )7 lf (Hfllomaz)awgvl
— (6' (O‘x)ﬁ(ﬂ()' , it (Hcliomaz)a:chl;
T (e (w)H,,0-1), if (Hi,. am)%gvl
((02)$5,0),  if (Hiom o, )an CH;
(aﬁw)ﬁtﬂ 1) ’ lf (Héom al.)awgvl

Also, since o is congruence on ,@@)@(Ni), we get

~ ~_ ((O‘w)ﬁmﬁ) (e, Da if (Héomam)angl; _
@2 ={ (e L e
_ ((aw)ﬁg’ '67()'1)7 if (H}iomaw)aﬁng; _
| (w®@)Ho-e,1-1), if (Hioma,)azCVE
_ ((az)$o, D ,if (Htliomaw)aangl; _
B ((amw)ﬁ07 (_)) ’ lf (Htliomozx)afgvl
— ((Otm’ZUW)Y)o-, i) ? lf (Hcliomax)angl; —
B ((afbw)ﬁfﬂﬁ)? lf (Hcliomaz)al’gvl B
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_ (((OéxW)W)ﬁg7 I) ’ if (Hdom(amw))a-ﬁwcv
B ((aﬁw)ﬁav (_)) ’ if (Hdom(a w))aszH

=(r-25)J
and
(i) in the case when (Héom%)amng for a, = ’yil. fypvil. .vp?, for some
non-negative integers p,ii,...,%p, j1,--.,Jp, where % = 0¥ = I, we get that
(H(liom(waw))wafrgvla
(22)3 - (2)T = (e, 1) - ((22) 90, 0) =
= (e, 1) - ( . “’U ...Ug;p)ﬁg,()) =
= (e, 1)+ (al .. apbl . b, 0) =
= (6 (alt ... a»bl* .. br)f,1 0)
= ((a - afpbl )1 T) =
= (ajll oalrbi b, 1)
and by Proposition [0}
(2w 2)T = (wap@)Ho, 1) =
= ((w%l 'y“’vl ...Uf}’w)f)g,i) =
= (('Lﬁf vyt )9, T) =
= ((vil . .U;P'yfl . .'ygp)ija, i) =
- (b“ biral ...agp,i) -
= (a{l _.alrby ...b;f,I) ;
(74) in the case when (Héom%)amgvl we get for a, = vi'...y ’)U{I. fug,”w, for
some non-negative integers p,i,...,%p, j1,...,Jp, Where ~0 = I, we get

that (Hiom(wa, =) @e@CH?,

(2)7 - (2)T = (e, 1) - ((

1) ((z@)$o, 1) =
= (e,1) - ((7;'1 ol ...vngw)ﬁg,i) -
(e,i)-((vil Ayt ~~v§”)m,i):
(e,1)- (ot . aipb] .0, 1) =
:(e-<a§1...a;pb{l...bgp)f,i.i):

= ((aft - aipb .. b2)f0) =
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— (01 Jp it ip 0
= (al . apPby ...bpp70>

and by Proposition [9}

wyit. ’yPU . .v]];Pw)YJJ,()) =
.U;wavil ) D, ()) =
fuil .. .U;P'y{l .. .'yg”)fja,(_)) =
b1 b“’a1 ...alr ()) =

Ji Jp i1 ip 0
ait. .appbl...bp"’,O)7

which implies that (25 - )7 = ()T - (z)J.

Therefore we have showed that (1)J is the identity element of 0, (N%)/o and
(22)T - (22)T = (x1)7.

Next we shall show that so defined map J is a homomorphism from %0, (Ni) /o
into the semigroup AM,, xq Z,. Fix arbitrary elements 2 and y of @ﬁm(Ni)/o. We
consider the following four possible cases:

(i) (Hioma,)azCH' and (Hdoma Jay, CH' for any g, a, € P05 (N%) such that
)mﬂ =T and (ay)mo - y:

(a
(i) (Hd(mﬂ%)ozwgv1 and (Héom%)angl for any a,,q, € ﬁ”ﬁoc(Né) such that
(e )‘130 =z and (ay)P, = y;
i) (HX a,CH! and (H} a, CV! for any ag,q, € PO (N2) such that
dom ay dom a, /Y'Y = Y <
(ozx)‘ﬁc, =z and (ay)Bs = y;
(

(iv)

Hioma, )= CV' and (Héom%)aygvl for any a,,q, € P0,(N%) such that
(az)Bo =z and (ay)Bs = y.

Assume that (7) hods. Then we have that oy, ay,ayq, € POF(NZ). Since o is a
congruence on the semigroup 20, (N%), we may choose an element a,, = .o, €
PO%(NZ). Then (a.,)P, = xy Also, since Po: POL(NZ) — P05 (NZ)/o is the
natural homomorphism generated by the congruence o on the semigroup gzﬁoo(Ni)
we get that

(@y)T = ((aay)PBo)T = ()90, 0) = ((a20)H5,0) = ((az)9e - (0y)H4,0-0) =
((am 5:3076) ((O‘y)ﬁm ) = ( )j (y)j

If (ii) hods then by Propositions 1 and 3 from [5], a,w@, ay, a,yw € P05 (NZ)
and by Lemma [2] without loss of generality we may assume that

1 7 ) 81 s t1
oy =7 'ypv VP and ay =91 Pt Y,
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for some non-negative integers p,é1,...,%p,J1,---,Jp,S15--+>5p,t1,...,tp, Where 70 =
O = I. This and the fact that o is a congruence on the semigroup 220, (Ni), Proposi-
tion 0] imply that

S

.’yPU ...vgpwvfl. ’yP'U ...’U;f'w)ﬁa,i):

) s t1 t T
. ’YPU Svlrolt ot wmwyt L )9e, 1

7 S t t 1 J—
. 'va Uffvl I e ...'ypp)sﬁg,l> =

al! ...a;}’b{l ...b;f’(afl . ..azpb? e b;”)f, 1- ()) =

i1 ippJ1 o 1 81 Sy t1 tr N —
ar'...apby ...bgf’,l)~(a1 co.ayrby ...bp”,O) =

(
(
(
— (ab ...a;pb{1 LB brall a1 =
(
(
(
(

(V.. yrof? ..vi;p)ﬁmi) (Ot )96, 0) =
(

Fa, ’y““v . .vﬁpww)f)a, i) (3. .’y;f’v? . .Ultf’)fjg, 0) =
= ((x@)90,1) - ((ay)95,0) =
(

If (iii) hods then by Propositions 1 and 3 from [5], a., ay@, apoyw € P05 (NZ)
and by Lemma [2| without loss of generality we may assume that

tp

— il 7 j — S1 S tl
oy =7 'ypv Loy and Qy =77 YPUY U,

for some non-negative integers p,ii,...,%p,J1s---sJp)S1s---5Sp,t1,...,tp, Where S
v? = L. Since ¢ is a congruence on the semigroup Wﬁm(Ni), this and Propositi0n|§|
imply that

Sl v ) He, i) =
i ip A S Sp,,t t T
*y”v C U Py ...Upp)ﬁ,,,l) =

al! ...aéfb{l NN L Y SN B 1) =
p

( v)94.0) - (7]
(il o)9,0) - (07
= ((a2)90,0) - ((0y@)95, 1) =

. ;PU? ...U;’))f)[” T) =

(
(
(
- (alf ...a;pb{l ...bfp,ﬁ) (agt . asebl b T) =
( |
(

.
.’ygpv? V@), 1) =
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Assume that (iv) hods. Then by Propositions 1 and 3 from [5] we have that
iy T, Oy T, QU Oy, OlpTIOL T € @ﬁo‘g(Ni) and by Lemmawithout loss of generality we
may assume that

) ) .
e =" vlpv CUPT and ay =97 ey ...Utpw

for some non-negative integers p,ii,...,%p,J1,---,Jp,S1,--+,8p,t1,...,tp, Where 'y =

v? = L. Since o is a congruence on the semigroup 920, (N<) this and Prop051t10n|§|

imply that

. ’)/Z”’U ...Uzjfwyfl ...’yzfpvil ...v;”w)f)g,6> =
s t1 t n) —

. vhvl N O evkeiati ...’ypp)j’)mO) =

) Sp At t n) —
. ’ypv .. Uff’ul S VP ...’ypp)fjg,()> =
altalblt Wb bralt L alr,0) =
1eeeapbyt bt bprayt e, 0) =

i1 ip 1 J1 Jp 1) . S1 Spti tr T\ __
a' ...apby ...bpp,l) (a3 co.ayrby ...bpp,l) =

i1 7 j T S1 s t T\
Y- ’y”v ...UIJ)P).V)(,J) . (('71 . ’yppvl ...vpp)fjg,l) =

(
(
(
(
- (a§1 Calb b (at . asebl b T 1)
(
(
(

(
(7{1 .. 'y“’U .. .Uipww)f)g, i) . (('yfl .. .'yzl’vil .. .Ufj’ww)j’jo, i) =
= ((2@)90.1) - ((ay@) 9o, 1) =

= ()3 (y)J
Thus the map J: @ﬁm(Ni)/a — AM, X Zs is a homomorphism. Also, si-
nce (z1)3 = (e,0), (25)T = (e,1) and for any oy = ...y 0] ... v}, where
Dy%1y. .., 8p, J1,- .., Jp are some positive integers, our above arguments imply that

()7 = ( b ...affb{l,(_)) and (y)J = (azf ...ai}’b{ﬂ I) ,
where © = ()P, and y = (o, @w)P,. This implies that the homomorphism 7 is surjecti-
ve.

Now suppose that (2)J = (y)T = (u,g) for some z,y € PO, (N%)/o. Then there
exist oy, € POL(NZ) such that ()P, = 2 and ()P, = y in the case when
g =0, and (a@)P, = x and (a,@)P, = y in the case when g = 1. If g = 0 then
x,y € POL(NL) and the condition ayoa, in POL(NZ) implies the equality z = y.
Similarly, if g = 1 then z,y € Bzﬁoo(Ni) \ ﬂﬁo‘g(Ni) and the condition a,woa,w in
@ﬁ;(Ni) implies the equality 2 = y. Hence J: gzﬁoo(Ni)/a — AM, X Zy is an
isomorphism. O
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IIPO MOHOIZ MOHOTOHHUX IH’€EKTUBHUX YACTKOBUX
ITEPETBOPEHDb MHOKVHW Ni 3 KOCKIHYEHHUMWU
OBJIACTSMHW BU3HAYEHD I SBHAYEHD, 11
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Hexait Ni — muoxkuHa N? 3 4aCTKOBUM LOPSKOM, BUSHAYEHUM K J06yTOK
3BUYAMHOrO JIHIHHOTO MOPAAKY < Ha MHOXKUHI HaTypaabHuX uyncesna N. Busaa-
€Mo HAmBrpyny 0. (Ni) MOHOTOHHUX 1H €KTUBHUX YaCTKOBUX IIE€PETBOPEHD
YJaCTKOBO BIIOPAIKOBAHOI MHOXKWHUI Ni, SIKi MAIOTh KOCKIHYI€HH] 06/1aCTi BU3HA-
geHHs Ta 3HaYeHHs. OMUCYEMO MPUPOIHMI YaCTKOBUN MTOPSIOK HA HAUIBIPYI
POs (Ni) 1 IOBOAMMO, 1110 BiH 30ira€TbCd 3 IMPUPOJHUM YACTKOBUM HOPSITKOM,
AKUN IHIYKYETHCS 3 CUMETHIHOTO iHBEPCHOTO MOHOIA #NxN HAJl MHOXKUHOIO
N x N ma mamisrpyny Z0s(N2). Hosomumo, mo mHamisrpyma P0s(NZ) iso-
MopdHa HanisnpaMomy 106yTKy PO (NZ) X Zy monoina P05 (N2) opiento-
BAHNX MOHOTOHHMX iH'€KTHBHHX JaCTKOBHX II€PETBOPEHDb YACTKOBO BIIOPSIIKO-
BaHOI MHOXKUHU Ni, fAKi MAlOTh KOCKIHYEHHI 00/1acTi BUSHAYECHHS Ta 3HAYEHHS,
OUKJIYHOIO TPYIOI0 Z2 APYTOTO HMOPAIKY. TaK0oXK OIMMCYyeMO KOHTPYEHINIO 0 HA
HamiBrpym YO0 (Ni), SIKQ IOPOPKYETHCS [IPUPOJHUM YACTKOBUM IIODSIIKOM
< Ha HamiBrpym Y0 (Ni): aocf Tomi i ymmre Tomi, Koam « Ta [ € TOpiB-
HJIbHUMH B (@ﬁm(NZ), 4). Iosoammo, mo daxTop-Hamsrpyma PO5 (Né) /o
i3oMop(dHA BIILHOMY KOMYTATUBHOMY MOHOImy A, HaI HECKIHYEHHOIO 3JIi-
YEHHOI0 MHOMKHHOIO 1, mo dakTop-Hamisrpyna P0x (N2) /o isomopdia maris-
npsaMoMy A00yTKY BIIBHOrO KOMyTaTHBHOrO MOHOIma AN, rpymoio Z,.

Karono6i caro6a: HABrpymma J4acTKOBUX OI€KITiM, MOHOTOHHE YaCTKOBE Bi-
O00pazKeHHs, IPUPOJHUI YaCTKOBUN HOPAIOK, HAmBIpAMHU 100yTOK, Hali-
MEHIIa, TPYIOBa KOHT'PYEHIIisl, BIIbHUIT KOMYTATUBHUI MOHOI.



