УДК 512.534.5

ON THE MONOID OF MONOTONE INJECTIVE PARTIAL SELFMAPS OF \mathbb{N}^2_{\leq} WITH COFINITE DOMAINS AND IMAGES, II

Oleg GUTIK, Inna POZDNIAKOVA

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, e-mails: o_gutik@franko.lviv.ua, ovgutik@yahoo.com, pozdnyakova.inna@gmail.com

Let \mathbb{N}^2_{\leq} be the set \mathbb{N}^2 with the partial order defined as the product of usual order \leq on the set of positive integers N. We study the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ of monotone injective partial selfmaps of \mathbb{N}^2_{\leq} having cofinite domain and image. We describe the natural partial order on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ and show that it coincides with the natural partial order which is induced from symmetric inverse monoid $\mathscr{I}_{\mathbb{N}\times\mathbb{N}}$ over the set $\mathbb{N}\times\mathbb{N}$ onto the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$. We proved that the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ is isomorphic to the semidirect product $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \rtimes \mathbb{Z}_2$ of the monoid $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ of orientation-preserving monotone injective partial selfmaps of \mathbb{N}^2_{\leqslant} with cofinite domains and images by the cyclic group \mathbb{Z}_2 of the order two. Also we describe the congruence σ on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ which is generated by the natural order \preccurlyeq on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$: $\alpha\sigma\beta$ if and only if α and β are comparable in $(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2), \preceq)$. We prove that the quotient semigroup $\mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})/\sigma$ is isomorphic to the free commutative monoid \mathfrak{AM}_{ω} over an infinite countable set and show that the quotient semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)/\sigma$ is isomorphic to the semidirect product of the free commutative monoid \mathfrak{AM}_{ω} by the group \mathbb{Z}_2 .

Key words: Semigroup of bijective partial transformations, natural partial order, semidirect product, minimum group congruence, free commutative monoid.

We shall follow the terminology of [2] and [10].

In this paper we shall denote the first infinite cardinal by ω and the cardinality of the set A by |A|. We shall identify every set X with its cardinality |X|. By \mathbb{Z}_2 we shall denote the cyclic group of order two. Also, for infinite subsets A and B of an infinite set X we shall write $A \subseteq {}^*B$ if and only if there exists a finite subset A_0 of A such that $A \setminus A_0 \subseteq B$.

An algebraic semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse* of $x \in S$.

If S is a semigroup, then we shall denote the subset of idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) a band (or the band of S). If the band E(S) is a non-empty subset of S, then the semigroup operation on S determines the following partial order \leq on E(S): $e \leq f$ if and only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice is a commutative semigroup of idempotents.

If $\alpha: X \to Y$ is a partial map, then by $\operatorname{dom} \alpha$ and $\operatorname{ran} \alpha$ we denote the domain and the range of α , respectively.

Let \mathscr{I}_{λ} denote the set of all partial one-to-one transformations of an infinite set X of cardinality λ together with the following semigroup operation: $x(\alpha\beta) = (x\alpha)\beta$ if $x \in \text{dom}(\alpha\beta) = \{y \in \text{dom } \alpha \mid y\alpha \in \text{dom } \beta\}$, for $\alpha, \beta \in \mathscr{I}_{\lambda}$. The semigroup \mathscr{I}_{λ} is called the *symmetric inverse semigroup* over the set X (see [2, Section 1.9]). The symmetric inverse semigroup was introduced by Vagner [18] and it plays a major role in the theory of semigroups. An element $\alpha \in \mathscr{I}_{\lambda}$ is called *cofinite*, if the sets $\lambda \setminus \text{dom } \alpha$ and $\lambda \setminus \text{ran } \alpha$ are finite.

Let (X, \leq) be a partially ordered set (a poset). For an arbitrary $x \in X$ we denote

$$\uparrow x = \{ y \in X \colon x \leqslant y \} .$$

We shall say that a partial map $\alpha \colon X \to X$ is monotone if $x \leqslant y$ implies $(x)\alpha \leqslant (y)\alpha$ for $x, y \in \text{dom } \alpha$.

Let \mathbb{N} be the set of positive integers with the usual linear order \leq . On the Cartesian product $\mathbb{N} \times \mathbb{N}$ we define the product partial order, i.e.,

$$(i,m) \leqslant (j,n)$$
 if and only if $(i \leqslant j)$ and $(m \leqslant n)$.

Later the set $\mathbb{N} \times \mathbb{N}$ with so defined partial order will be denoted by \mathbb{N}^2_{\leq} .

By $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ we denote the semigroup of injective partial monotone selfmaps of \mathbb{N}^2_{\leqslant} with cofinite domains and images. Obviously, $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is a submonoid of the symmetric inverse semigroup \mathscr{I}_{ω} and $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is a countable semigroup.

Furthermore, we shall denote the identity of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ by \mathbb{I} and the group of units of $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ by $H(\mathbb{I})$.

For any positive integer n and an arbitrary $\alpha \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ we denote:

$$\begin{split} \mathsf{V}^n &= \{(n,j) \colon j \in \mathbb{N}\}; \\ \mathsf{V}^n_{\operatorname{dom}\alpha} &= \mathsf{V}^n \cap \operatorname{dom}\alpha; \\ \mathsf{H}^n_{\operatorname{dom}\alpha} &= \mathsf{H}^n \cap \operatorname{dom}\alpha; \\ \mathsf{H}^n_{\operatorname{ran}\alpha} &= \mathsf{H}^n \cap \operatorname{ran}\alpha; \\ \mathsf{H}^n_{\operatorname{ran}\alpha} &= \mathsf{H}^n \cap \operatorname{ran}\alpha, \end{split}$$

and

$$(i_{\alpha[*,j]},j_{\alpha[i,*]})=(i,j)\alpha,\qquad \text{for every}\quad (i,j)\in\operatorname{dom}\alpha.$$

It well known that each partial injective cofinite selfmap f of λ induces a homeomorphism $f^* : \lambda^* \to \lambda^*$ of the remainder $\lambda^* = \beta \lambda \setminus \lambda$ of the Stone-Čech compactification of the discrete space λ . Moreover, under some set theoretic axioms (like **PFA** or **OCA**), each homeomorphism of ω^* is induced by some partial injective cofinite selfmap

of ω (see [12]–[17]). So, the inverse semigroup $\mathscr{I}_{\lambda}^{\mathrm{cf}}$ of injective partial selfmaps of an infinite cardinal λ with cofinite domains and images admits a natural homomorphism $\mathfrak{h} \colon \mathscr{I}_{\lambda}^{\mathrm{cf}} \to \mathscr{H}(\lambda^*)$ to the homeomorphism group $\mathscr{H}(\lambda^*)$ of λ^* and this homomorphism is surjective under certain set theoretic assumptions.

In the paper [9] algebraic properties of the semigroup $\mathscr{I}_{\lambda}^{\mathrm{cf}}$ are studied. It is showed that $\mathscr{I}_{\lambda}^{\mathrm{cf}}$ is a bisimple inverse semigroup and that for every non-empty chain L in $E(\mathscr{I}_{\lambda}^{\mathrm{cf}})$ there exists an inverse subsemigroup S of $\mathscr{I}_{\lambda}^{\mathrm{cf}}$ such that S is isomorphic to the bicyclic semigroup and $L \subseteq E(S)$, the Green relations on $\mathscr{I}_{\lambda}^{\mathrm{cf}}$ are described and it is proved that every non-trivial congruence on $\mathscr{I}_{\lambda}^{\mathrm{cf}}$ is a group congruence. Also, the structure of the quotient semigroup $\mathscr{I}_{\lambda}^{\mathrm{cf}}/\sigma$ is described, where σ is the least group congruence on $\mathscr{I}_{\lambda}^{\mathrm{cf}}$.

quotient semigroup $\mathscr{I}^{\mathrm{cf}}_{\lambda}/\sigma$ is described, where σ is the least group congruence on $\mathscr{I}^{\mathrm{cf}}_{\lambda}$. The semigroups $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{N})$ and $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{Z})$ of injective isotone partial selfmaps with cofinite domains and images of positive integers and integers are studied in [7] and [8], respectively. It was proved that the semigroups $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{N})$ and $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{Z})$ have similar properties to the bicyclic semigroup: they are bisimple and every non-trivial homomorphic image $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{N})$ and $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{Z})$ is a group, and moreover the semigroup $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{N})$ has $\mathbb{Z}(+)$ as a maximal group image and $\mathscr{I}^{\mathrm{cf}}_{\infty}(\mathbb{Z})$ has $\mathbb{Z}(+) \times \mathbb{Z}(+)$, respectively.

In the paper [6] we studied the semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$ of monotone injective partial selfmaps of the set of $L_n \times_{\mathrm{lex}} \mathbb{Z}$ having cofinite domain and image, where $L_n \times_{\mathrm{lex}} \mathbb{Z}$ is the lexicographic product of n-elements chain and the set of integers with the usual linear order. In this paper we described Green's relations on $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$, showed that the semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$ is bisimple and established its projective congruences. Also, we proved that $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$ is finitely generated, every automorphism of $\mathscr{IO}_{\infty}(\mathbb{Z})$ is inner and showed that in the case $n \geqslant 2$ the semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$ has non-inner automorphisms. In [6] we also proved that for every positive integer n the quotient semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})/\sigma$, where σ is a least group congruence on $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$, is isomorphic to the direct power $(\mathbb{Z}(+))^{2n}$. The structure of the sublattice of congruences on $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\mathrm{lex}})$ that are contained in the least group congruence is described in [4].

In the paper [5] we studied algebraic properties of the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$. We described properties of elements of the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$ as monotone partial bijection of \mathbb{N}_{\leq}^2 and showed that the group of units of $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$ is isomorphic to the cyclic group of order two. Also in [5] the subsemigroup of idempotents of $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$ and the Green relations on $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$ are described. In particular, here we proved that $\mathscr{D} = \mathscr{J}$ in $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$.

The present paper is a continuation of [5]. We describe the natural partial order \preceq on the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$ and show that it coincides with the natural partial order which is induced from symmetric inverse monoid $\mathscr{I}_{\mathbb{N}\times\mathbb{N}}$ over the set $\mathbb{N}\times\mathbb{N}$ onto the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$. We proved that the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$ is isomorphic to the semidirect product $\mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2) \rtimes \mathbb{Z}_2$ of the monoid $\mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ of orientation-preserving monotone injective partial selfmaps of \mathbb{N}_{\leqslant}^2 with cofinite domains and images by the cyclic group \mathbb{Z}_2 of the order two. Also we describe the congruence σ on the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$, which is generated by the natural order \preceq on the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$: $\alpha\sigma\beta$ if and only if α and β are comparable in $(\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2), \preceq)$. We prove that the quotient semigroup $\mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2)/\sigma$ is isomorphic to the free commutative monoid \mathfrak{AM}_{ω} over an infinite countable set and

show that quotient semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})/\sigma$ is isomorphic to the semidirect product of the free commutative monoid $\mathfrak{A}\mathfrak{M}_{\omega}$ by the group \mathbb{Z}_2 .

The following proposition implies that the equations of the form $a \cdot x = b$ and $x \cdot c = d$ in the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{\leq}^2)$ have finitely many solutions. This property holds for the bicyclic monoid, many its generalizations and other semigroups (see corresponding results in [1, 3, 6, 7, 8, 9]).

Proposition 1. For every $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$, both sets

$$\left\{\chi\in\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^{2})\mid\alpha\cdot\chi=\beta\right\} \qquad and \qquad \left\{\chi\in\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^{2})\mid\chi\cdot\alpha=\beta\right\}$$

are finite. Consequently, every right translation and every left translation by an element of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{<})$ is a finite-to-one map.

Proof. We consider the case of the equation $\alpha \cdot \chi = \beta$. In the case of the equation $\chi \cdot \alpha = \beta$ the proof is similar.

The definition of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ and the equality $\alpha \cdot \chi = \beta$ imply that $\operatorname{dom} \beta \subseteq \operatorname{dom} \alpha$ and $\operatorname{ran} \chi \subseteq \operatorname{ran} \alpha$. Since any element of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ has a cofinite domain and a cofinite image in $\mathbb{N} \times \mathbb{N}$, we conclude that if an element χ_0 satisfies the equality $\alpha \cdot \chi = \beta$ then for every other root χ of the equation $\alpha \cdot \chi = \beta$ there exist finitely many $(i,j) \in (\mathbb{N} \times \mathbb{N}) \setminus \operatorname{ran} \beta$ such that one of the following conditions holds:

- $(1) (i,j)\chi \neq (i,j)\chi_0;$
- (2) $(i, j)\chi$ is determined and $(i, j)\chi_0$ is undetermined;
- (3) $(i,j)\chi_0$ is determined and $(i,j)\chi$ is undetermined.

This implies that the equation $\alpha \cdot \chi = \beta$ has finitely many solutions, which completes the proof of the proposition.

Later we shall describe the natural partial order " \preccurlyeq " on the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$. For $\alpha, \beta \in \mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$ we put

$$\alpha \preccurlyeq \beta$$
 if and only if $\alpha = \beta \varepsilon$ for some $\varepsilon \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^{2}))$.

We need the following proposition from [11].

Proposition 2 ([11, p. 387, Corollary]). For any semigroup S and its natural partial order \leq the following conditions are equivalent:

- (i) $a \leq b$;
- (ii) a = wb = bz, az = a for some $w, z \in S^1$;
- (iii) a = xb = by, xa = ay = a for some $x, y \in S^1$.

Proposition 3. The relation \preccurlyeq is the natural partial order on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{<}^2)$.

Proof. Suppose that $\alpha = \beta \varepsilon$ for some idempotent $\varepsilon \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq}))$. Then we have that

$$\alpha \varepsilon = (\beta \varepsilon) \varepsilon = \beta(\varepsilon \varepsilon) = \beta \varepsilon = \alpha.$$

Let ι : $\operatorname{dom}(\beta\varepsilon) \to \operatorname{dom}(\beta\varepsilon)$ be the identity map of the set $\operatorname{dom}(\beta\varepsilon)$. Then $\iota \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2))$ and the definition of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ implies that $\operatorname{dom}(\beta\varepsilon) = \operatorname{dom}(\iota\beta)$, because ε is an idempotent of $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$. This implies that $(i,j)\iota\beta = (i,j)\beta\varepsilon$ for each $(i,j) \in \operatorname{dom}(\iota\beta)$ and hence we get that $\alpha = \beta\varepsilon = \iota\beta$. Next we apply Proposition 2.

Remark 1. Proposition 3 implies that the natural partial order on the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leq})$ coincides with the natural partial order which is induced from symmetric inverse monoid $\mathscr{I}_{\mathbb{N}\times\mathbb{N}}$ over the set $\mathbb{N}\times\mathbb{N}$ onto the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leq})$.

We define a relation σ on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ in the following way:

 $\alpha\sigma\beta$ if and only if there exists $\varepsilon \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant}))$ such that $\alpha\varepsilon = \beta\varepsilon$, for $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{<})$.

Proposition 4. For $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ the following conditions are equivalent:

- (i) $\alpha \sigma \beta$;
- (ii) there exist $\varsigma, \upsilon \in E(\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leq}))$ such that $\alpha\varsigma = \beta\upsilon$;
- (iii) there exist $\varsigma, \upsilon \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^{2}))$ such that $\alpha\varsigma = \upsilon\beta$;
- (iv) there exists $\iota \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq}))$ such that $\iota \alpha = \iota \beta$;
- (v) there exist $\varsigma, \upsilon \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathring{\mathbb{N}}^2_{\leq}))$ such that $\varsigma \alpha = \upsilon \beta$.

Thus σ is a congruence on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$.

Proof. Implication $(i) \Rightarrow (ii)$ is trivial.

- $(ii) \Rightarrow (i)$ If we have that $\alpha \varsigma = \beta v$ for some $\varsigma, v \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2))$ then $\alpha \varsigma(\varsigma v) = \beta v(\varsigma v)$. Since $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ is a subsemigroup of the symmetric inverse monoid $\mathscr{I}_{|\mathbb{N}\times\mathbb{N}|}$, the idempotents in the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ commute and hence $\alpha(\varsigma v) = \beta(\varsigma v)$. This implies that $\alpha \sigma \beta$.
- $(ii) \Rightarrow (iii)$ Suppose that $\alpha \varsigma = \beta v$ for some $\varsigma, v \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2))$. Let $\iota \colon \operatorname{dom}(\beta v) \to \operatorname{dom}(\beta v)$ be the identity map of the set $\operatorname{dom}(\beta v)$. Then $\iota \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2))$ and the definition of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ implies that $\operatorname{dom}(\beta v) = \operatorname{dom}(\iota \beta)$, because v is an idempotent of $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$. This implies that $(i,j)\iota\beta = (i,j)\beta v$ for each $(i,j) \in \operatorname{dom}(\iota\beta)$ and hence we get that $\alpha \varsigma = \beta v = \iota\beta$.
- $(iii) \Rightarrow (ii)$ Suppose that $\alpha_{\varsigma} = v\beta$ for some $\varsigma, v \in E(\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant}))$. Let $\iota \colon \operatorname{ran}(v\beta) \to \operatorname{ran}(v\beta)$ be the identity map of the set $\operatorname{ran}(v\beta)$. Then $\iota \in E(\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant}))$ and the definition of the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$ implies that $\operatorname{ran}(v\beta) = \operatorname{ran}(\beta\iota)$, because v is an idempotent of $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$. Since all elements of the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$ are partial bijections of $\mathbb{N} \times \mathbb{N}$ we get that $\operatorname{dom}(v\beta) = \operatorname{dom}(\beta\iota)$. This implies that $(i,j)\beta\iota = (i,j)v\beta$ for each $(i,j) \in \operatorname{dom}(\beta\iota)$ and hence we get that $\alpha\varsigma = v\beta = \beta\iota$.

The proofs of equivalences $(iii) \Leftrightarrow (iv)$ and $(iv) \Leftrightarrow (v)$ are similar.

It is obvious that σ is a reflexive and symmetric relation on $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$. Suppose that $\alpha\sigma\beta$ and $\beta\sigma\gamma$ in $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$. Then there exist $\varsigma, \upsilon \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2))$ such that $\alpha\varsigma = \beta\varsigma$ and $\beta\upsilon = \gamma\upsilon$. This implies that $\alpha\varsigma\upsilon = \beta\varsigma\upsilon$ and $\beta\upsilon\varsigma = \gamma\upsilon\varsigma$, and since the idempotents in $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)$ commute we get that $\alpha\varsigma\upsilon = \beta\varsigma\upsilon = \beta\upsilon\varsigma = \gamma\upsilon\varsigma$, and hence $\alpha\sigma\gamma$.

Suppose that $\alpha\sigma\beta$ for some $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$. Then by (iv) there exists $\iota \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant}))$ such that $\iota\alpha = \iota\beta$. This implies that $\iota\alpha\gamma = \iota\beta\gamma$ for each $\gamma \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ and hence by item (iv) we get that $(\alpha\gamma)\sigma(\beta\gamma)$. The proof of the statement that $(\gamma\alpha)\sigma(\gamma\beta)$ for each $\gamma \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is similar, and hence σ is a congruence on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$.

Corollary 1. For $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ the following condition are equivalent:

- (i) $\alpha \sigma \beta$;
- (ii) $\alpha \varpi \sigma \beta \varpi$;
- (iii) $\varpi \alpha \sigma \varpi \beta$.

Proof. (i) \Leftrightarrow (ii) If $\alpha\sigma\beta$ in $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ then by Proposition 4 there exists $\iota \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2))$ such that $\iota\alpha = \iota\beta$. This implies that $\iota\alpha\varpi = \iota\beta\varpi$ and hence $(\alpha\varpi)\sigma(\beta\varpi)$. Conversely, if $(\alpha\varpi)\sigma(\beta\varpi)$ then by Proposition 4 we have that $\nu\alpha\varpi = \nu\beta\varpi$ for some $\nu \in E(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2))$, and hence $\nu\alpha = \nu\alpha\varpi\varpi = \nu\beta\varpi\varpi = \nu\beta$, which implies that $\alpha\sigma\beta$.

The proof of
$$(i) \Leftrightarrow (ii)$$
 is similar.

Also the definition of the congruence σ on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ implies the following simple property of σ -equivalent elements of $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$:

Corollary 2. Let α, β be elements of the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$ such that $\alpha\sigma\beta$. Then the following assertions hold:

- (i) $(\mathsf{H}^1_{\mathrm{dom}\,\alpha})\alpha\subseteq\mathsf{H}^1$ if and only if $(\mathsf{H}^1_{\mathrm{dom}\,\beta})\beta\subseteq\mathsf{H}^1$;
- (ii) $(\mathsf{H}^1_{\mathrm{dom}\,\beta})\alpha\subseteq\mathsf{V}^1$ if and only if $(\mathsf{H}^1_{\mathrm{dom}\,\beta})\beta\subseteq\mathsf{V}^1$.

We define

$$\mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) = \left\{\alpha \in \mathscr{P}\!\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant}) \colon (\mathsf{H}^1_{\mathrm{dom}\,\alpha})\alpha \subseteq \mathsf{H}^1\right\}.$$

Then Lemma 3 and Theorem 1 from [5] imply that $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ is a subsemigroup of $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$. The subsemigroup $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ is called the *monoid of orientation-preserving monotone injective partial selfmaps of* \mathbb{N}^2_{\leqslant} with cofinite domains and images. Moreover it is obvious that $E(\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})) = E(\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant}))$. Also, later by \preccurlyeq and σ we denote the corresponding induced relations of the relations \preccurlyeq and σ from the semigroup $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ onto its subsemigroup $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$.

The proofs of the following propositions are similar to those of Propositions 3 and 4, respectively.

Proposition 5. The relation \preccurlyeq is the natural partial order on the semigroup $\mathscr{PO}^+_{\sim}(\mathbb{N}^2_{\leq})$.

Proposition 6. The relation σ is a congruence on the semigroup $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leq})$.

By ϖ we denote the bijective transformation of $\mathbb{N} \times \mathbb{N}$ defined by the formula $(i,j)\varpi = (j,i)$, for any $(i,j) \in \mathbb{N} \times \mathbb{N}$. It is obvious that ϖ is an element of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^{2})$ and $\varpi\varpi = \mathbb{I}$.

Remark 2. We observe that

- (i) $\alpha \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ if and only if $\alpha \varpi, \varpi \alpha \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant}) \setminus \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$;
- (ii) $\alpha \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ if and only if $\varpi \alpha \varpi \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$.

We define a map $\mathfrak{h} \colon \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2) \to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ by the formula $(\alpha)\mathfrak{h} = \varpi\alpha\varpi$, for $\alpha \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$.

Proposition 7. The map $\mathfrak{h}: \mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2) \to \mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$ is an automorphism of the semi-group $\mathscr{PO}_{\infty}(\mathbb{N}_{\leqslant}^2)$. Moreover its restriction $\mathfrak{h}|_{\mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2)}: \mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2) \to \mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ is an automorphism of the subsemigroup $\mathscr{PO}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$.

Proof. First we show that $\mathfrak{h}: \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2) \to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ is a homomorphism. Fix arbitrary $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$. Then we have that

$$(\alpha\beta)\mathfrak{h} = \varpi(\alpha\beta)\varpi = \varpi(\alpha\mathbb{I}\beta)\varpi = \varpi(\alpha\varpi\varpi\beta)\varpi = (\varpi\alpha\varpi)(\varpi\beta\varpi) = (\alpha)\mathfrak{h}(\beta)\mathfrak{h},$$

and hence $\mathfrak{h} \colon \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant}) \to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is a homomorphism.

Fix an arbitrary $\alpha \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$. Then the definition of \mathfrak{h} implies that

$$(\varpi \alpha \varpi)\mathfrak{h} = \varpi \varpi \alpha \varpi \varpi = \mathbb{I} \alpha \mathbb{I} = \alpha,$$

and hence the map $\mathfrak{h} \colon \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2) \to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ is surjective. Suppose that $(\alpha)\mathfrak{h} = (\beta)\mathfrak{h}$ for some $\alpha, \beta \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$. Then

$$\alpha = \mathbb{I}\alpha\mathbb{I} = \varpi\varpi\alpha\varpi\varpi = ((\alpha)\mathfrak{h})\mathfrak{h} = ((\beta)\mathfrak{h})\mathfrak{h} = \varpi\varpi\beta\varpi\varpi = \mathbb{I}\beta\mathbb{I} = \beta,$$

and hence the map $\mathfrak{h} \colon \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant}) \to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is injective. Thus the map \mathfrak{h} is an automorphism of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$.

Now, Remark 2 implies that the restriction $\mathfrak{h}|_{\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})} \colon \mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \to \mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ is an automorphism of the semigroup $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$, too.

For the automorphism $\mathfrak{h} \colon \mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \to \mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ of the semigroup $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ we have that $\mathfrak{h}^2 = \operatorname{Id}_{\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})}$ is the identity automorphism of $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$. This implies that the element \mathfrak{h} generates the group which is isomorphic to the cyclic group of order two \mathbb{Z}_2 . By Proposition 4 from [5] the group of units $H(\mathbb{I})$ of the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leqslant})$ is isomorphic to \mathbb{Z}_2 . We define a map \mathfrak{Q} from $H(\mathbb{I})$ into the group $\operatorname{Aut}(\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant}))$ of automorphisms of the semigroup $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ in the following way $(\mathbb{I})\mathfrak{Q} = \operatorname{Id}_{\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant})}$ and $(\varpi)\mathfrak{Q} = \mathfrak{h}$. It is obvious that so defined map $\mathfrak{Q} \colon H(\mathbb{I}) \to \operatorname{Aut}(\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leqslant}))$ is an injective homomorphism.

Let S and T be semigroups and let \mathfrak{H} be a homomorphism from T into the semigroup of endomorphisms $\operatorname{End}(S)$ of S, $\mathfrak{H}: t \mapsto \mathfrak{h}_t$. Then the Cartesian product $S \times T$ with the following semigroup operation

$$(s_1, t_1) \cdot (s_2, t_2) = (s_1 \cdot (s_2)\mathfrak{h}_{t_1}, t_1 \cdot t_2), \qquad s_1, s_2 \in S, \ t_1, t_2 \in T,$$

is called a *semidirect product* of the semigroup S by T and is denoted by $S \rtimes_{\mathfrak{H}} T$. We remark that if 1_T is the unit of the semigroup T then $(1_T)\mathfrak{H} = \mathfrak{h}_{1_T}$ is the identity homomorphism of S and in the case when T is a group then $(t)\mathfrak{H} = \mathfrak{h}_t$ is an automorphism of S for any $t \in T$.

Theorem 1. The semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leq})$ is isomorphic to the semidirect product $\mathscr{PO}_{\infty}^+(\mathbb{N}^2_{\leq}) \rtimes_{\mathfrak{Q}} H(\mathbb{I})$ of the semigroup $\mathscr{PO}_{\infty}^+(\mathbb{N}^2_{\leq})$ by the group $H(\mathbb{I})$.

Proof. We define a map \mathfrak{I} : $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \rtimes_{\mathfrak{Q}} H(\mathbb{I}) \to \mathscr{P}\mathcal{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ by the formula $(\alpha, g)\mathfrak{I} = \alpha g$. Then for all $\alpha_1, \alpha_2 \in \mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ and $g_1, g_2 \in H(\mathbb{I})$ we have that

$$\begin{split} \left((\alpha_1,g_1) \cdot (\alpha_2,g_2) \right) \mathfrak{I} &= \left(\alpha_1 \cdot (\alpha_2)(g_1) \mathfrak{Q}, g_1 \cdot g_2 \right) \mathfrak{I} = \left(\alpha_1 \cdot g_1 \cdot \alpha_2 \cdot g_1, g_1 \cdot g_2 \right) \mathfrak{I} = \\ &= \alpha_1 \cdot g_1 \cdot \alpha_2 \cdot g_1 \cdot g_1 \cdot g_2 = \alpha_1 \cdot g_1 \cdot \alpha_2 \cdot g_2 = \\ &= (\alpha_1,g_1) \mathfrak{I} \cdot (\alpha_2,g_2) \mathfrak{I}, \end{split}$$

because $g^2 = \mathbb{I}$ for any $g \in H(\mathbb{I})$, and hence the map $\mathfrak{I} \colon \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \rtimes_{\mathfrak{Q}} H(\mathbb{I}) \to \mathscr{P}\!\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is a homomorphism.

By Lemma 3 from [5] for every $\alpha \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ there exist $\alpha^+ \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ and $g_{\alpha} \in H(\mathbb{I})$ such that $\alpha = \alpha^+ g_{\alpha}$. Indeed,

- (a) in the case when $(\mathsf{H}^1_{\mathrm{dom}\,\alpha})\alpha\subseteq\mathsf{H}^1$ we put $\alpha^+=\alpha$ and $g_\alpha=\mathbb{I};$ (b) in the case when $(\mathsf{H}^1_{\mathrm{dom}\,\alpha})\alpha\subseteq\mathsf{V}^1$ we put $\alpha^+=\alpha\omega$ and $g_\alpha=\omega.$

Let $\alpha^+, \beta^+ \in \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ and $g_{\alpha}, g_{\beta} \in H(\mathbb{I})$ be such that $\alpha^+ g_{\alpha} = (\alpha^+, g_{\alpha})\mathfrak{I} =$ $(\beta^+, g_\beta)\mathfrak{I} = \beta^+ g_\beta$. Since $(\mathsf{H}^1_{\mathrm{dom}\,\alpha^+})\alpha^+ \subseteq \mathsf{H}^1$ and $(\mathsf{H}^1_{\mathrm{dom}\,\beta^+})\beta^+ \subseteq \mathsf{H}^1$, Lemma 3 from [5] implies that $g_\alpha = g_\beta$. By Proposition 4 from [5] the group of units $H(\mathbb{I})$ of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ is isomorphic to \mathbb{Z}_2 and hence $\alpha^+ = \alpha^+ g_{\alpha}^2 = \alpha^+ g_{\alpha} g_{\beta} = \beta^+ g_{\beta}^2 = \alpha^+ g_{\alpha} g_{\beta}$ β^+ . Therefore, we get that so defined map $\mathfrak{I}: \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \rtimes_{\mathfrak{Q}} H(\mathbb{I}) \to \mathscr{P}\!\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ is an isomorphism.

By Theorem $2(ii_1)$ from [5] for every $\alpha \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ there exists a smallest positive integer n_{α} such that $(i,j)\alpha = (i,j)$ for each $(i,j) \in \text{dom } \alpha \cap \uparrow(n_{\alpha},n_{\alpha})$.

Lemma 1. For every $\alpha \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ there exists $\alpha_{\mathbf{f}} \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ such that the following assertions hold:

- (i) $\alpha \sigma \alpha_{\mathbf{f}}$;
- $\begin{array}{ll} (ii) & (i+1)_{\alpha_{\mathbf{f}}[*,j]} (i+1) = i_{\alpha_{\mathbf{f}}[*,j]} i \ for \ arbitrary \ (i,j) \in \mathrm{dom} \ \alpha_{\mathbf{f}} \ \ with \ j < n_{\alpha}, \\ & (i,j)\alpha_{\mathbf{f}} = \left(i_{\alpha_{\mathbf{f}}[*,j]}, j_{\alpha_{\mathbf{f}}[i,*]}\right) \ \ and \ \ (i+1,j)\alpha_{\mathbf{f}} = \left((i+1)_{\alpha_{\mathbf{f}}[*,j]}, j_{\alpha_{\mathbf{f}}[i+1,*]}\right), \ i.e., \ \alpha_{\mathbf{f}} \end{array}$ acts as a partial shift on the set H^{j} ;
- $\begin{array}{ll} (iii) \ (j+1)_{\alpha_{\mathbf{f}}[i,*]} (j+1) = j_{\alpha_{\mathbf{f}}[i,*]} j \ \textit{for arbitrary} \ (i,j) \in \mathrm{dom} \ \alpha_{\mathbf{f}} \ \textit{with} \ i < n_{\alpha}, \\ (i,j)\alpha_{\mathbf{f}} = \left(i_{\alpha_{\mathbf{f}}[*,j]}, j_{\alpha_{\mathbf{f}}[i,*]}\right) \ \textit{and} \ (i,j+1)\alpha_{\mathbf{f}} = \left(i_{\alpha_{\mathbf{f}}[*,j+1]}, (j+1)_{\alpha_{\mathbf{f}}[i,*]}\right), \ \textit{i.e.}, \ \alpha_{\mathbf{f}} \end{array}$ acts as a partial shift on the set V^i .

Moreover, there exist smallest positive integers $\hat{h}_{\alpha}, \hat{v}_{\alpha} \leqslant n_{\alpha}$ such that $(i, j)\alpha_{\mathbf{f}} = (i, j)$ for arbitrary $(i,j) \in \operatorname{dom} \alpha_{\mathbf{f}}$ with $i \geqslant \hat{h}_{\alpha}$ and $(k,l)\alpha_{\mathbf{f}} = (k,l)$ for arbitrary $(k,l) \in \operatorname{dom} \alpha_{\mathbf{f}}$ with $l \geqslant \widehat{v}_{\alpha}$.

Proof. Fix an arbitrary element α of the semigroup $\mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$. Then by Theorem 1(1) from [5] we get that $(\mathsf{H}^n_{\mathrm{dom}\,\alpha})\alpha\subseteq^*\mathsf{H}^n$ and $(\mathsf{V}^n_{\mathrm{dom}\,\alpha})\alpha\subseteq^*\mathsf{V}^n$ for any positive integer n. Also, the definition of the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ and Theorem 2(ii₁) of [5] imply that there exists a smallest positive integer n_{α} such that $(i,j)\alpha=(i,j)$ for each $(i,j)\in$ $\operatorname{dom} \alpha \cap \uparrow(n_{\alpha}, n_{\alpha})$, and hence for arbitrary positive integers $i, j < n_{\alpha}$ there exist smallest positive integers h_{α}^{i} and v_{α}^{j} such that the following conditions hold:

$$\mathsf{H}_{\mathrm{ran}\,\alpha}^{i} \cap \left\{ (p,i) \colon p \geqslant h_{\alpha}^{i} \right\} = \left\{ (p,i) \colon p \geqslant h_{\alpha}^{i} \right\};$$
$$\mathsf{V}_{\mathrm{ran}\,\alpha}^{j} \cap \left\{ (j,q) \colon q \geqslant v_{\alpha}^{j} \right\} = \left\{ (j,q) \colon q \geqslant v_{\alpha}^{j} \right\},$$

and

$$(k,i),(j,l) \in \operatorname{dom} \alpha, \qquad (k,i)\alpha \in \mathsf{H}^i, \qquad (j,l)\alpha \in \mathsf{V}^j,$$

for all positive integers $k \ge h_{\alpha}^i$ and $l \ge v_{\alpha}^j$.

$$\bar{h}_{\alpha} = \max \left\{ h_{\alpha}^{i} : i = 1, \dots, n_{\alpha} - 1 \right\} \quad \text{and} \quad \bar{v}_{\alpha} = \max \left\{ v_{\alpha}^{j} : j = 1, \dots, n_{\alpha} - 1 \right\}.$$

The above arguments imply that

$$\mathsf{H}_{\operatorname{ran}\alpha}^{i} \cap \left\{ (p,i) \colon p \geqslant \bar{h}_{\alpha} \right\} = \left\{ (p,i) \colon p \geqslant \bar{h}_{\alpha} \right\}; \tag{1}$$

$$\mathsf{V}_{\mathrm{ran}\,\alpha}^{j} \cap \{(j,q) \colon q \geqslant \bar{v}_{\alpha}\} = \{(j,q) \colon q \geqslant \bar{v}_{\alpha}\}\,,\tag{2}$$

and

$$(k,i),(j,l) \in \operatorname{dom} \alpha, \qquad (k,i)\alpha \in \mathsf{H}^i, \qquad (j,l)\alpha \in \mathsf{V}^j,$$

for all positive integers $k \geqslant \bar{h}_{\alpha}$ and $l \geqslant \bar{v}_{\alpha}$.

Next we put

$$D_{\alpha} = (\mathbb{N} \times \mathbb{N}) \setminus \left(\left\{ (i, j) : i \leqslant \bar{h}_{\alpha} \text{ and } j \leqslant n_{\alpha} \right\} \cup \left\{ (i, j) : i \leqslant n_{\alpha} \text{ and } j \leqslant \bar{v}_{\alpha} \right\} \right). \tag{3}$$

We define $\alpha_f = \alpha|_{D_-}$, i.e.,

 $(i,j)\alpha_{\mathbf{f}} = (i,j)\alpha$ for all $(i,j) \in \operatorname{dom} \alpha_{\mathbf{f}}$. $\operatorname{dom} \alpha_{\mathbf{f}} = D_{\alpha},$ $\operatorname{ran} \alpha_{\mathbf{f}} = (D_{\alpha})\alpha$ $\quad \text{and} \quad$

Since $\alpha_{\mathbf{f}} = \varepsilon_{\alpha} \alpha_{\mathbf{f}} = \varepsilon_{\alpha} \alpha$ for the identity partial map $\varepsilon_{\alpha} \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ with dom $\varepsilon_{\alpha} = 0$ $\operatorname{ran} \varepsilon_{\alpha} = D_{\alpha}$, Proposition 4 implies that $\alpha \sigma \alpha_{\mathbf{f}}$.

Then condition (1) and the definition of the positive integer \bar{h}_{α} imply that

$$\left(\bar{h}_{\alpha}+2\right)_{\alpha_{\mathsf{f}}[*,1]}=\left(\bar{h}_{\alpha}+1\right)_{\alpha_{\mathsf{f}}[*,1]}+1,$$

and by similar arguments and induction we have that $(i+1)_{\alpha_{\mathbf{f}}[*,1]} = (i,1)_{\alpha_{\mathbf{f}}[*,1]} + 1$ for arbitrary $i \ge \bar{h}_{\alpha} + 1$. Next, if we apply condition (1) and induction for arbitrary $j < n_{\alpha}$ then we get that $(i+1)_{\alpha_i[*,j]} = (i)_{\alpha_i[*,j]} + 1$ for arbitrary $i \geqslant \bar{h}_{\alpha} + 1$. This implies assertion

The proof of item (iii) is similar to (ii).

The last statement of the lemma follows from the above arguments and Theorem 2(1) from [5].

For every positive integer n we define partial maps $\gamma_n \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ and $v_n \colon \mathbb{N} \times \mathbb{N}$ $\mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ in the following way:

$$\operatorname{dom} \gamma_n = \mathbb{N} \times \mathbb{N} \setminus \{(1, i) : i = 1, \dots, n\}, \operatorname{dom} v_n = \mathbb{N} \times \mathbb{N} \setminus \{(i, 1) : i = 1, \dots, n\}, \operatorname{ran} \gamma_n = \operatorname{ran} v_n = \mathbb{N} \times \mathbb{N}$$

and

$$(i,j)\gamma_n = \begin{cases} (i-1,j), & \text{if } j \leqslant n; \\ (i,j), & \text{if } j > n \end{cases} \quad \text{for} \quad (i,j) \in \text{dom } \gamma_n,$$
$$(i,j)v_n = \begin{cases} (i,j-1), & \text{if } i \leqslant n; \\ (i,j), & \text{if } i > n \end{cases} \quad \text{for} \quad (i,j) \in \text{dom } v_n.$$

$$(i,j)v_n = \begin{cases} (i,j-1), & \text{if } i \leq n; \\ (i,j), & \text{if } i > n \end{cases}$$
 for $(i,j) \in \text{dom } v_n.$

Simple verifications show that $\gamma_n, v_n \in \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ for every positive integer n, and moreover the subsemigroups $\langle \gamma_k \mid k \in \mathbb{N} \rangle$ and $\langle v_k \mid k \in \mathbb{N} \rangle$ of the semigroup $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leq})$, generated by the sets $\{\gamma_k \colon k \in \mathbb{N}\}$ and $\{v_k \colon k \in \mathbb{N}\}$, respectively, are isomorphic to the free Abelian semigroup over an infinite countable set.

Lemma 2. For every $\alpha \in \mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ there exist finitely many elements $\gamma_{k_1}, \ldots, \gamma_{k_i}$ and v_{l_1}, \ldots, v_{l_j} of the semigroup $\mathscr{PO}^+_{\infty}(\mathring{\mathbb{N}}^2_{\leqslant})$, with $k_1 < \ldots < k_i, l_1 < \ldots < l_j$, such that

$$\alpha\sigma(\gamma_{k_1}^{p_1}\dots\gamma_{k_i}^{p_i}v_{l_1}^{q_1}\dots v_{l_j}^{q_j}),\tag{4}$$

for some positive integers $p_1, \ldots, p_i, q_1, \ldots, q_j$. Moreover if

$$\alpha\sigma\left(\gamma_{k_1}^{p_1}\dots\gamma_{k_i}^{p_i}\upsilon_{l_1}^{q_1}\dots\upsilon_{l_i}^{q_j}\right) \qquad and \qquad \beta\sigma\left(\gamma_{a_1}^{b_1}\dots\gamma_{a_i}^{b_i}\upsilon_{c_1}^{d_1}\dots\upsilon_{c_i}^{d_j}\right)$$

for some $\alpha, \beta \in \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ then $(\alpha, \beta) \notin \sigma$ if and only if

$$i\gamma_{k_1}^{p_1}\dots\gamma_{k_i}^{p_i}v_{l_1}^{q_1}\dots v_{l_j}^{q_j} \neq i\gamma_{a_1}^{b_1}\dots\gamma_{a_i}^{b_i}v_{c_1}^{d_1}\dots v_{c_j}^{d_j}$$

for any idempotent $\iota \in \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$.

Proof. Fix an arbitrary element α of the semigroup $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$. Let $\alpha_{\mathbf{f}}$ be the element of $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ defined in the proof of Lemma 1. By Theorem 3 from [5] and the second statement of Lemma 1 there exist smallest positive integers $\widehat{h}_{\alpha}, \widehat{v}_{\alpha} \leqslant n_{\alpha}$ such that $(i,j)\alpha_{\mathbf{f}} = (i,j)$ for arbitrary $(i,j) \in \operatorname{dom} \alpha_{\mathbf{f}}$ with $i \geqslant \widehat{h}_{\alpha}$ and $(k,l)\alpha_{\mathbf{f}} = (k,l)$ for arbitrary $(k,l) \in \operatorname{dom} \alpha_{\mathbf{f}}$ with $k \geqslant \widehat{v}_{\alpha}$.

By Lemma 1 and Theorem 1(1) of [5] we have that

$$\left(j,\widehat{h}_{\alpha}-1\right)o_{\mathbf{f}}=\left(j_{o_{\mathbf{f}}\left[*,\widehat{h}_{\alpha}-1\right]},\widehat{h}_{\alpha}-1\right)<\left(j,\widehat{h}_{\alpha}-1\right)\quad\text{and}\quad\left(j+1\right)_{o_{\mathbf{f}}\left[*,\widehat{h}_{\alpha}-1\right]}-j_{o_{\mathbf{f}}\left[*,\widehat{h}_{\alpha}-1\right]}=1,$$

for arbitrary $(j, \widehat{h}_{\alpha} - 1), (j + 1, \widehat{h}_{\alpha} - 1) \in \text{dom } \alpha_{\mathbf{f}}$. Then we put $p_{\widehat{h}_{\alpha} - 1} = j - j_{\alpha_{\mathbf{f}}[*, \widehat{h}_{\alpha} - 1]}$. Next, for $s = 2, \dots, \widehat{h}_{\alpha} - 2$ we define integers $p_{\widehat{h}_{\alpha} - s}, \dots, p_1$ by induction,

$$p_{\widehat{h}_{\alpha}-s}=j-j_{c_{\mathbb{K}}[*,\widehat{h}_{\alpha}-s]}-\left(p_{\widehat{h}_{\alpha}-1}+\ldots+p_{\widehat{h}_{\alpha}-s+1}\right),$$

where $(j, \hat{h}_{\alpha} - s)\alpha_{\mathbf{f}} = (j_{\alpha_{\mathbf{f}}[*, \hat{h}_{\alpha} - s]}, \hat{h}_{\alpha} - s) \leqslant (j, \hat{h}_{\alpha} - s)$ for arbitrary $(j, \hat{h}_{\alpha} - s) \in \text{dom } \alpha_{\mathbf{f}}$. Similarly, by Lemma 1 and Theorem 1(1) of [5] we have that

$$(\widehat{v}_{\alpha}-1,i)\alpha_{\mathbf{f}} = (\widehat{v}_{\alpha}-1,i_{\alpha_{\mathbf{f}}[\widehat{v}_{\alpha}-1,*]}) < (\widehat{v}_{\alpha}-1,i) \quad \text{and} \quad (i+1)_{\alpha_{\mathbf{f}}[\widehat{v}_{\alpha}-1,*]} - i_{\alpha_{\mathbf{f}}[\widehat{v}_{\alpha}-1,*]} = 1,$$

for arbitrary $(\widehat{v}_{\alpha}-1,i)$, $(\widehat{v}_{\alpha}-1,i+1) \in \text{dom } \alpha_{\mathbb{f}}$. Then we put $q_{\widehat{v}_{\alpha}-1}=i-i_{\alpha_{\mathbb{f}}[\widehat{v}_{\alpha}-1,*]}$. Next, for $t=2,\ldots,\widehat{v}_{\alpha}-2$ we define integers $q_{\widehat{v}_{\alpha}-t},\ldots,q_1$ by induction

$$q_{\widehat{v}_{\alpha}-t} = i - i_{\alpha, [\widehat{v}_{\alpha}-t,*]} - (q_{\widehat{v}_{\alpha}-1} + \ldots + q_{\widehat{v}_{\alpha}-t+1}),$$

where $(\widehat{v}_{\alpha} - t, i)\alpha_{\mathbf{f}} = (\widehat{v}_{\alpha} - t, i_{\alpha_{\mathbf{f}}[\widehat{v}_{\alpha} - t, *]}) \leq (\widehat{v}_{\alpha} - t, i)$ for arbitrary $(\widehat{v}_{\alpha} - t, i) \in \operatorname{dom} \alpha_{\mathbf{f}}$. For any $\alpha \in \mathscr{P}\mathcal{O}^{+}_{\infty}(\mathbb{N}^{2}_{\leq})$ put $\varepsilon_{\alpha} \colon \mathbb{N} \times \mathbb{N}$ be the identity partial map with $\operatorname{dom} \varepsilon_{\alpha} = \operatorname{ran} \varepsilon_{\alpha} = D_{\alpha}$, where the set D_{α} is defined by formula (3). Simple verification shows that

 $\varepsilon_{\alpha}\alpha = \varepsilon_{\alpha}(\gamma_1^{p_1} \dots \gamma_{\widehat{h}_{\alpha}-1}^{p_{\widehat{h}_{\alpha}-1}} v_1^{q_1} \dots v_{l_j}^{q_{\widehat{v}_{\alpha}-1}})$ and hence

$$\alpha\sigma(\gamma_1^{p_1}\dots\gamma_{\widehat{h}_{\alpha}-1}^{p_{\widehat{h}_{\alpha}-1}}v_1^{q_1}\dots v_{l_j}^{q_{\widehat{v}_{\alpha}-1}}),$$

which implies that relation (4) holds.

Since $\gamma_m^0 = v_m^0 = \mathbb{I}$ for any positive integer m, without loss of generality we may assume that $p_1, \ldots, p_i, q_1, \ldots, q_i$ are positive integers in formula (4).

Also, the last statement of the lemma follows from the definition of the congruence σ on the semigroup $\mathscr{P}_{\infty}^{+}(\mathbb{N}_{\leq}^{2})$.

Lemma 3. Let be $\alpha\sigma(\gamma_{k_1}^{p_1}\dots\gamma_{k_i}^{p_i}v_{l_1}^{q_1}\dots v_{l_j}^{q_j})$ for $\alpha\in\mathscr{P}\mathcal{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ and positive integers $p_1,\dots,p_i,\ q_1,\dots,q_j,\ k_1<\dots< k_i,\ l_1<\dots< l_j.$ Then there exists an idempotent $\widehat{\varepsilon}_{\alpha}\in\mathscr{P}\mathcal{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ such that

$$\widehat{\varepsilon}_{\alpha}\alpha = \widehat{\varepsilon}_{\alpha}\gamma_{k_1}^{p_1}\ldots\gamma_{k_i}^{p_i}v_{l_1}^{q_1}\ldots v_{l_j}^{q_j} = \widehat{\varepsilon}_{\alpha}v_{l_1}^{q_1}\ldots v_{l_j}^{q_j}\gamma_{k_1}^{p_1}\ldots\gamma_{k_i}^{p_i}.$$

Proof. Put

$$\overline{m}_{\alpha} = n_{\alpha} + \overline{h}_{\alpha} + \overline{v}_{\alpha} + p_1 + \ldots + p_i + q_1 + \ldots + q_i,$$

where \bar{h}_{α} and \bar{v}_{α} are the positive integers defined in the proof of Lemma 1. We define the identity partial map $\widehat{\varepsilon}_{\alpha} \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ with dom $\widehat{\varepsilon}_{\alpha} = \operatorname{ran} \widehat{\varepsilon}_{\alpha} = M_{\alpha}$, where

$$M_{\alpha} = (\mathbb{N} \times \mathbb{N}) \setminus (\{(i, j) : i \leqslant \overline{m}_{\alpha} \text{ and } j \leqslant \overline{m}_{\alpha}\}).$$

Then $\widehat{\varepsilon}_{\alpha} \preceq \varepsilon_{\alpha}$ where ε_{α} is the idempotent of the semigroup $\mathscr{P}\!\mathcal{C}_{\infty}^{+}(\mathbb{N}_{<}^{2})$ defined in the proof of Lemma 1. This implies that

$$\widehat{\varepsilon}_{\alpha}\alpha = \widehat{\varepsilon}_{\alpha}\varepsilon_{\alpha}\alpha = \widehat{\varepsilon}_{\alpha}\varepsilon_{\alpha}\gamma_{k_{1}}^{p_{1}}\ldots\gamma_{k_{i}}^{p_{i}}v_{l_{1}}^{q_{1}}\ldots v_{l_{i}}^{q_{j}} = \widehat{\varepsilon}_{\alpha}\gamma_{k_{1}}^{p_{1}}\ldots\gamma_{k_{i}}^{p_{i}}v_{l_{1}}^{q_{1}}\ldots v_{l_{i}}^{q_{j}},$$

and the equlity

$$\widehat{\varepsilon}_{\alpha}\gamma_{k_1}^{p_1}\dots\gamma_{k_i}^{p_i}v_{l_1}^{q_1}\dots v_{l_j}^{q_j}=\widehat{\varepsilon}_{\alpha}v_{l_1}^{q_1}\dots v_{l_j}^{q_j}\gamma_{k_1}^{p_1}\dots\gamma_{k_i}^{p_i}$$

follows from the definition of the idempotent $\widehat{\varepsilon}_{\alpha} \in \mathscr{P}\!\mathcal{O}_{\infty}^{+}(\mathbb{N}_{<}^{2})$.

The following theorem describes the quotient semigroup $\mathscr{P}_{\infty}^{+}(\mathbb{N}_{\leq}^{2})/\sigma$.

Theorem 2. The quotient semigroup $\mathscr{P}\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leq})/\sigma$ is isomorphic to the free commutative monoid \mathfrak{AM}_{ω} over an infinite countable set.

Proof. Let $X = \{a_i \colon i \in \mathbb{N}\} \cup \{b_j \colon j \in \mathbb{N}\}$ be a countable infinite set. We define the map $\mathfrak{H}_{\sigma} \colon \mathscr{P}\!\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant}) \to \mathfrak{AM}_X$ in the following way:

(a) if $\alpha \sigma \left(\gamma_{k_1}^{p_1} \dots \gamma_{k_i}^{p_i} v_{l_1}^{q_1} \dots v_{l_j}^{q_j} \right)$ for some positive integers $p_1, \dots, p_i, q_1, \dots, q_j, k_1 < \dots < k_i, l_1 < \dots < l_j$, then

$$(\alpha)\mathfrak{H}_{\sigma} = (\gamma_{k_1}^{p_1} \dots \gamma_{k_i}^{p_i} v_{l_1}^{q_1} \dots v_{l_i}^{q_j}) \mathfrak{H}_{\sigma} = a_{k_1}^{p_1} \dots a_{k_i}^{p_i} b_{l_1}^{q_1} \dots b_{l_i}^{q_j};$$

(b) $(\mathbb{I})\mathfrak{H}_{\sigma}=e$, where e is the unit of the free commutative monoid \mathfrak{AM}_X .

Then Lemmas 2 and 3 imply that $(\alpha)\mathfrak{H}_{\sigma} = (\beta)\mathfrak{H}_{\sigma}$ if and only if $\alpha\sigma\beta$ in $\mathscr{P}\mathscr{O}^{+}_{\infty}(\mathbb{N}^{2}_{\leq})$ and hence the quotient semigroup $\mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})/\sigma$ is isomorphic to the free commutative monoid \mathfrak{AM}_X .

The following corollary of Theorem 2 shows that the semigroup $\mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ has infinitely many congruences similar as the free commutative monoid \mathfrak{AM}_{ω} over an infinite countable set.

Corollary 3. Every countable (infinite or finite) commutative monoid is a homomorphic image of the semigroup $\mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$.

Its obvious that every non-unit element u of the free commutative monoid \mathfrak{AM}_{ω} over the infinite countable set $\{a_i \colon i \in \omega\} \cup \{b_j \colon j \in \omega\}$ can be represented in the form $u=a_1^{i_1}\ldots a_k^{i_k}b_1^{j_1}\ldots b_l^{j_l}$, where $i_1,\ldots,i_k,j_1,\ldots,l_l$ are positive integers. We define a map $\mathfrak{f}\colon \mathfrak{AM}_{\omega} \to \mathfrak{AM}_{\omega}$ by the formula

$$(a_1^{i_1} \dots a_k^{i_k} b_1^{j_1} \dots b_l^{j_l}) \mathfrak{f} = a_1^{j_1} \dots a_l^{j_l} b_1^{i_1} \dots b_k^{i_k}, \tag{5}$$

for $u=a_1^{i_1}\dots a_k^{i_k}b_1^{j_1}\dots b_l^{j_l}\in \mathfrak{AM}_{\omega}$ and $(e)\mathfrak{f}=e,$ for unit element e of \mathfrak{AM}_{ω} .

Proposition 8. The map $\mathfrak{f} \colon \mathfrak{AM}_{\omega} \to \mathfrak{AM}_{\omega}$ is an automorphism of the free commutative monoid \mathfrak{AM}_{ω} .

Proof. First we show that $\mathfrak{f}\colon \mathfrak{AM}_{\omega}\to \mathfrak{AM}_{\omega}$ is a homomorphism. Fix arbitrary elements $u, v \in \mathfrak{AM}_{\omega}$. Without loss of generality we may assume that

$$u = a_1^{i_1} \dots a_p^{i_p} b_1^{j_1} \dots b_p^{j_p}$$
 and $v = a_1^{s_1} \dots a_p^{s_p} b_1^{t_1} \dots b_p^{t_p}$

for some non-negative integers $p, i_1, \ldots, i_p, j_1, \ldots, j_p, s_1, \ldots, s_p, t_1, \ldots, t_p$, where a^i $b^i = e$ for i = 0.

Then we have that

$$\begin{split} (uv)\mathfrak{f} &= (a_1^{i_1} \dots a_p^{i_p}b_1^{j_1} \dots b_p^{j_p}a_1^{s_1} \dots a_p^{s_p}b_1^{t_1} \dots b_p^{t_p})\mathfrak{f} = \\ &= (a_1^{i_1+s_1} \dots a_p^{i_p+s_p}b_1^{j_1+t_1} \dots b_p^{j_p+t_p})\mathfrak{f} = \\ &= a_1^{j_1+t_1} \dots a_p^{j_p+t_p}b_1^{i_1+s_1} \dots b_p^{i_p+s_p} = \\ &= a_1^{j_1} \dots a_p^{j_p}b_1^{i_1} \dots b_p^{i_p}a_1^{t_1} \dots a_p^{t_p}b_1^{s_1} \dots b_p^{s_p} = \\ &= (a_1^{i_1} \dots a_p^{i_p}b_p^{j_1} \dots b_l^{j_p})\mathfrak{h}(a_1^{s_1} \dots a_p^{s_p}b_1^{t_1} \dots b_p^{t_p})\mathfrak{f} = \\ &= (u)\mathfrak{f}(v)\mathfrak{f}. \end{split}$$

It is obvious that $\mathfrak{f} \colon \mathfrak{AM}_{\omega} \to \mathfrak{AM}_{\omega}$ is a bijective map and hence $\mathfrak{f} \colon \mathfrak{AM}_{\omega} \to \mathfrak{AM}_{\omega}$ is an automorphism.

The relationships between elements of the subsemigroup $\langle \gamma_k \mid k \in \mathbb{N} \rangle$ and of the subsemigroup $\langle v_k \mid k \in \mathbb{N} \rangle$ in $\mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leq})$ is described by the following proposition.

We observe that the cyclic group \mathbb{Z}_2 acts on the free commutative monoid \mathfrak{AM}_{ω} over the infinite countable set $\{a_i: i \in \omega\} \cup \{b_j: j \in \omega\}$ in the following way

$$\mathfrak{AM}_{\omega} \times \mathbb{Z}_2 \to \mathfrak{AM}_{\omega} \colon (u,g) \mapsto v = \left\{ \begin{array}{ll} u, & \text{if } g = \bar{0}; \\ (u)\mathfrak{f}, & \text{if } g = \bar{1}, \end{array} \right.$$

where the map $\mathfrak{f}: \mathfrak{AM}_{\omega} \to \mathfrak{AM}_{\omega}$ is defined by formula(5). By Proposition 8 the map \mathfrak{f} is an automorphism of the free commutative monoid \mathfrak{AM}_{ω} .

Proposition 9. Let $p_1, \ldots, p_i, k_1, \ldots, k_i$ be some positive integers such that $k_1 < \ldots < k_i$ k_i . Then the following assertions hold:

- $\begin{array}{ll} (i) \ \varpi \gamma_{k_1}^{p_1} \dots \gamma_{k_i}^{p_i} \varpi = v_{k_1}^{p_1} \dots v_{k_i}^{p_i}; \\ (ii) \ \gamma_{k_1}^{p_1} \dots \gamma_{k_i}^{p_i} \varpi = \varpi v_{k_1}^{p_1} \dots v_{k_i}^{p_i}; \\ (iii) \ \varpi \gamma_{k_1}^{p_1} \dots \gamma_{k_i}^{p_i} = v_{k_1}^{p_1} \dots v_{k_i}^{p_i} \varpi; \\ (iv) \ \varpi v_{k_1}^{p_1} \dots v_{k_i}^{p_i} \varpi = \gamma_{k_1}^{p_1} \dots \gamma_{k_i}^{p_i}. \end{array}$

Proof. Assertion (i) follows from the definitions of the elements of the semigroups $\langle \gamma_k \mid k \in \mathbb{N} \rangle$ and $\langle v_k \mid k \in \mathbb{N} \rangle$. Other assertions follow from (i) and the equality $\varpi \varpi = \mathbb{I}.$

Later we assume that $\mathbb{Z}_2 = \{\bar{0}, \bar{1}\}.$

The following theorem describes the quotient semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{<}^{2})/\sigma$.

Theorem 3. The semigroup $\mathscr{PO}_{\infty}(\mathbb{N}^2_{\leq})/\sigma$ is isomorphic to the semidirect product $\mathfrak{AM}_{\omega}\rtimes_{\mathfrak{Q}}\mathbb{Z}_{2}$ of the free commutative monoid \mathfrak{AM}_{ω} over an infinite countable set by the cyclic group \mathbb{Z}_2 .

ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2016. Випуск 82

Proof. We define a map $\mathfrak{I}: \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)/\sigma \to \mathfrak{AM}_{\omega} \rtimes_{\mathfrak{Q}} \mathbb{Z}_2: x \mapsto (u,g)$ in the following way. Let $\mathfrak{P}_{\sigma} \colon \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2) \to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)/\sigma$ be the natural homomorphism generated by the congruence σ on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$. Then for every $x \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})/\sigma$ for any $\alpha_x \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2)$ such that $(\alpha_x)\mathfrak{P}_{\sigma} = x$ only one of the following conditions holds:

- $\begin{array}{ll} (1) & (\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x {\subseteq} \mathsf{H}^1; \\ (2) & (\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x {\subseteq} \mathsf{V}^1. \end{array}$

We put

$$(x)\mathfrak{I} = \left\{ \begin{array}{ll} ((\alpha_x)\mathfrak{H}_{\sigma}, \bar{0}), & \text{if } (\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x \subseteq \mathsf{H}^1; \\ ((\alpha_x \varpi)\mathfrak{H}_{\sigma}, \bar{1}), & \text{if } (\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x \subseteq \mathsf{V}^1. \end{array} \right.$$
(6)

for all $\alpha_x \in \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ with $(\alpha_x)\mathfrak{P}_{\sigma} = x$. Then the definition of the congruence σ on the semigroup $\mathscr{PO}_{\infty}(\mathbb{N}_{<}^2)$ and Corollary 2 imply that the map $\mathfrak{I}: \mathscr{PO}_{\infty}(\mathbb{N}_{<}^2)/\sigma \to \mathfrak{AM}_{\omega} \times \mathbb{Z}_2$ is well defined.

We observe that formula (6) implies that $(x_{\mathbb{I}})\mathfrak{I}=(e,\bar{0})$ for $x_{\mathbb{I}}=(\mathbb{I})\mathfrak{P}_{\sigma}$ and $(x_{\varpi})\mathfrak{I}=(e,\bar{0})$ $(e,\bar{1})$ for $x_{\varpi}=(\varpi)\mathfrak{P}_{\sigma}$. Hence we have that

$$\begin{split} (x)\mathfrak{I} \cdot (x_{\mathbb{I}})\mathfrak{I} &= \left\{ \begin{array}{l} ((\alpha_{x})\mathfrak{H}_{\sigma}, \bar{0}) \cdot (e, \bar{0}) \,, & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{H}^{1}; \\ ((\alpha_{x}\varpi)\mathfrak{H}_{\sigma}, \bar{1}) \cdot (e, \bar{0}) \,, & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{V}^{1} \end{array} \right. \\ &= \left\{ \begin{array}{l} ((\alpha_{x})\mathfrak{H}_{\sigma} \cdot e, \bar{0} \cdot \bar{0}) \,, & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{H}^{1}; \\ ((\alpha_{x}\varpi)\mathfrak{H}_{\sigma} \cdot e, \bar{1} \cdot \bar{0}) \,, & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{V}^{1} \end{array} \right. \\ &= \left\{ \begin{array}{l} ((\alpha_{x})\mathfrak{H}_{\sigma}, \bar{0}) \,, & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{H}^{1}; \\ ((\alpha_{x}\varpi)\mathfrak{H}_{\sigma}, \bar{1}) \,, & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{V}^{1} \end{array} \right. \\ &= (x)\mathfrak{I} \end{split}$$

and

$$(x_{\mathbb{I}})\mathfrak{I} \cdot (x)\mathfrak{I} = \begin{cases} (e,\bar{0}) \cdot ((\alpha_{x})\mathfrak{H}_{\sigma},\bar{0}), & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{H}^{1}; \\ (e,\bar{0}) \cdot ((\alpha_{x}\varpi)\mathfrak{H}_{\sigma},\bar{1}), & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{V}^{1} \end{cases} = \\ = \begin{cases} (e \cdot (\alpha_{x})\mathfrak{H}_{\sigma},\bar{0} \cdot \bar{0}), & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{H}^{1}; \\ (e \cdot (\alpha_{x}\varpi)\mathfrak{H}_{\sigma},\bar{0} \cdot \bar{1}), & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{V}^{1} \end{cases} = \\ = \begin{cases} ((\alpha_{x})\mathfrak{H}_{\sigma},\bar{0}), & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{H}^{1}; \\ ((\alpha_{x}\varpi)\mathfrak{H}_{\sigma},\bar{1}), & \text{if } (\mathsf{H}^{1}_{\operatorname{dom}\,\alpha_{x}})\alpha_{x} \subseteq \mathsf{V}^{1} \end{cases} = \\ = (x)\mathfrak{I}. \end{cases}$$

Also, since σ is congruence on $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2)$, we get

$$\begin{split} (x) \Im \cdot (x_{\varpi}) \Im &= \left\{ \begin{array}{ll} ((\alpha_x) \mathfrak{H}_{\sigma}, \overline{0}) \cdot (e, \overline{1}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{H}^1; \\ ((\alpha_x \varpi) \mathfrak{H}_{\sigma}, \overline{1}) \cdot (e, \overline{1}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x) \mathfrak{H}_{\sigma} \cdot e, \overline{0} \cdot \overline{1}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{H}^1; \\ ((\alpha_x \varpi) \mathfrak{H}_{\sigma} \cdot e, \overline{1} \cdot \overline{1}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x) \mathfrak{H}_{\sigma}, \overline{1}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{H}^1; \\ ((\alpha_x \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{1}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{H}^1; \\ ((\alpha_x \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ &= \left\{ \begin{array}{ll} ((\alpha_x \varpi \varpi) \mathfrak{H}_{\sigma}, \overline{0}) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ \left. \left((\alpha_x \varpi) \mathfrak{H}_{\sigma}, \overline{0} \right) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array} \right. = \\ \left. \left((\alpha_x \varpi) \mathfrak{H}_{\sigma}, \overline{0} \right) \,, & \text{if } (\mathsf{H}^1_{\operatorname{dom}\,\alpha_x}) \alpha_x \subseteq \mathsf{V}^1 \end{array}$$

$$= \begin{cases} (((\alpha_x \varpi) \varpi) \mathfrak{H}_{\sigma}, \overline{1}), & \text{if } (\mathsf{H}^1_{\mathrm{dom}(\alpha_x \varpi)}) \alpha_x \varpi \subseteq \mathsf{V}^1; \\ ((\alpha_x \varpi) \mathfrak{H}_{\sigma}, \overline{0}), & \text{if } (\mathsf{H}^1_{\mathrm{dom}(\alpha_x \varpi)}) \alpha_x \varpi \subseteq \mathsf{H}^1 \end{cases} = \\ = (x \cdot x_\varpi) \mathfrak{I}$$

and

(i) in the case when $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x\subseteq \mathsf{H}^1$ for $\alpha_x=\gamma_1^{i_1}\dots\gamma_p^{i_p}\nu_1^{j_1}\dots\nu_p^{j_p}$, for some non-negative integers $p,i_1,\dots,i_p,j_1,\dots,j_p$, where $\gamma^0=\upsilon^0=\mathbb{I}$, we get that $(\mathsf{H}^1_{\mathrm{dom}(\varpi\alpha_x)})\varpi\alpha_x\subseteq \mathsf{V}^1$,

$$\begin{split} (x_{\varpi}) \Im \cdot (x) \Im &= (e, \bar{1}) \cdot ((\alpha_x) \mathfrak{H}_{\sigma}, \bar{0}) = \\ &= (e, \bar{1}) \cdot \left((\gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p}) \mathfrak{H}_{\sigma}, \bar{0} \right) = \\ &= (e, \bar{1}) \cdot \left(a_1^{i_1} \dots a_p^{i_p} b_1^{j_1} \dots b_p^{j_p}, \bar{0} \right) = \\ &= \left(e \cdot (a_1^{i_1} \dots a_p^{i_p} b_1^{j_1} \dots b_p^{j_p}) \mathfrak{f}, \bar{1} \cdot \bar{0} \right) = \\ &= \left((a_1^{i_1} \dots a_p^{i_p} b_1^{j_1} \dots b_p^{j_p}) \mathfrak{f}, \bar{1} \right) = \\ &= \left(a_1^{j_1} \dots a_p^{j_p} b_1^{j_1} \dots b_p^{j_p}, \bar{1} \right) \end{split}$$

and by Proposition 9,

$$\begin{split} (x_{\varpi} \cdot x) & \Im = ((\varpi \alpha_x \varpi) \mathfrak{H}_{\sigma}, \bar{1}) = \\ & = \left((\varpi \gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p} \varpi) \mathfrak{H}_{\sigma}, \bar{1} \right) = \\ & = \left((v_1^{i_1} \dots v_p^{i_p} \varpi \varpi \gamma_1^{j_1} \dots \gamma_p^{j_p}) \mathfrak{H}_{\sigma}, \bar{1} \right) = \\ & = \left((v_1^{i_1} \dots v_p^{i_p} \gamma_1^{j_1} \dots \gamma_p^{j_p}) \mathfrak{H}_{\sigma}, \bar{1} \right) = \\ & = \left(b_1^{i_1} \dots b_p^{i_p} a_1^{j_1} \dots a_p^{j_p}, \bar{1} \right) = \\ & = \left(a_1^{j_1} \dots a_p^{j_p} b_1^{i_1} \dots b_p^{i_p}, \bar{1} \right); \end{split}$$

(ii) in the case when $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x\subseteq \mathsf{V}^1$ we get for $\alpha_x=\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\varpi$, for some non-negative integers $p,i_1,\ldots,i_p,j_1,\ldots,j_p$, where $\gamma^0=v^0=\mathbb{I}$, we get that $(\mathsf{H}^1_{\mathrm{dom}(\varpi\alpha_x\varpi)})\varpi\alpha_x\varpi\subseteq \mathsf{H}^1$,

$$\begin{split} (x_\varpi)\Im\cdot(x)\Im &= (e,\bar{1})\cdot ((\alpha_x\varpi)\mathfrak{H}_\sigma,\bar{1}) = \\ &= (e,\bar{1})\cdot \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\varpi\varpi)\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= (e,\bar{1})\cdot \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= (e,\bar{1})\cdot \left(a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p},\bar{1}\right) = \\ &= \left(e\cdot (a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p})\mathfrak{f},\bar{1}\cdot\bar{1}\right) = \\ &= \left((a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p})\mathfrak{f},\bar{0}\right) = \end{split}$$

$$= \left(a_1^{j_1} \dots a_p^{j_p} b_1^{i_1} \dots b_p^{i_p}, \bar{0} \right)$$

and by Proposition 9,

$$\begin{split} (x_{\varpi} \cdot x) \mathfrak{I} &= ((\varpi \alpha_x \varpi) \mathfrak{H}_{\sigma}, \bar{0}) = \\ &= \left((\varpi \gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p} \varpi) \mathfrak{H}_{\sigma}, \bar{0} \right) = \\ &= \left((v_1^{i_1} \dots v_p^{i_p} \varpi \varpi \gamma_1^{j_1} \dots \gamma_p^{j_p}) \mathfrak{H}_{\sigma}, \bar{0} \right) = \\ &= \left((v_1^{i_1} \dots v_p^{i_p} \gamma_1^{j_1} \dots \gamma_p^{j_p}) \mathfrak{H}_{\sigma}, \bar{0} \right) = \\ &= \left(b_1^{i_1} \dots b_p^{i_p} a_1^{j_1} \dots a_p^{j_p}, \bar{0} \right) = \\ &= \left(a_1^{j_1} \dots a_p^{j_p} b_1^{i_1} \dots b_p^{i_p}, \bar{0} \right), \end{split}$$

which implies that $(x_{\varpi} \cdot x)\mathfrak{I} = (x_{\varpi})\mathfrak{I} \cdot (x)\mathfrak{I}$.

Therefore we have showed that $(x_{\mathbb{I}})\mathfrak{I}$ is the identity element of $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})/\sigma$ and $(x_{\varpi})\mathfrak{I}\cdot(x_{\varpi})\mathfrak{I}=(x_{\mathbb{I}})\mathfrak{I}.$

Next we shall show that so defined map \mathfrak{I} is a homomorphism from $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)/\sigma$ into the semigroup $\mathfrak{AM}_{\omega} \rtimes_{\mathfrak{Q}} \mathbb{Z}_2$. Fix arbitrary elements x and y of $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})/\sigma$. We consider the following four possible cases:

- (i) $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x\subseteq\mathsf{H}^1$ and $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_y})\alpha_y\subseteq\mathsf{H}^1$ for any $\alpha_x,\alpha_y\in\mathscr{P}\!\mathscr{O}_\infty(\mathbb{N}^2_\leqslant)$ such that $(\alpha_x)\mathfrak{P}_\sigma=x$ and $(\alpha_y)\mathfrak{P}_\sigma=y;$
- (ii) $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x\subseteq \mathsf{V}^1$ and $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_y})\alpha_y\subseteq \mathsf{H}^1$ for any $\alpha_x,\alpha_y\in\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ such that
- $(\alpha_x)\mathfrak{P}_{\sigma} = x \text{ and } (\alpha_y)\mathfrak{P}_{\sigma} = y;$ $(iii) \ (\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x\subseteq\mathsf{H}^1 \text{ and } (\mathsf{H}^1_{\mathrm{dom}\,\alpha_y})\alpha_y\subseteq\mathsf{V}^1 \text{ for any } \alpha_x,\alpha_y \in \mathscr{P}\!\mathscr{C}_{\infty}(\mathbb{N}^2_{\leqslant}) \text{ such that }$ $(\alpha_x)\mathfrak{P}_{\sigma} = x \text{ and } (\alpha_y)\mathfrak{P}_{\sigma} = y;$
- (iv) $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_x})\alpha_x\subseteq \mathsf{V}^1$ and $(\mathsf{H}^1_{\mathrm{dom}\,\alpha_y})\alpha_y\subseteq \mathsf{V}^1$ for any $\alpha_x,\alpha_y\in\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ such that $(\alpha_x)\mathfrak{P}_{\sigma} = x$ and $(\alpha_y)\mathfrak{P}_{\sigma} = y$

Assume that (i) hods. Then we have that $\alpha_x, \alpha_y, \alpha_x \alpha_y \in \mathscr{P}\!\mathcal{O}^+_{\infty}(\mathbb{N}^2_{\leq})$. Since σ is a congruence on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$, we may choose an element $\alpha_{xy} = \alpha_x \alpha_y \in$ $\mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$. Then $(\alpha_{xy})\mathfrak{P}_{\sigma}=xy$ Also, since $\mathfrak{P}_{\sigma}\colon \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})\to \mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})/\sigma$ is the natural homomorphism generated by the congruence σ on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leq})$ we get that

$$(xy)\mathfrak{I} = ((\alpha_{xy})\mathfrak{P}_{\sigma})\mathfrak{I} = ((\alpha_{xy})\mathfrak{H}_{\sigma}, \bar{0}) = ((\alpha_{x}\alpha_{y})\mathfrak{H}_{\sigma}, \bar{0}) = ((\alpha_{x})\mathfrak{H}_{\sigma} \cdot (\alpha_{y})\mathfrak{H}_{\sigma}, \bar{0} \cdot \bar{0}) = ((\alpha_{x})\mathfrak{H}_{\sigma}, \bar{0}) \cdot ((\alpha_{y})\mathfrak{H}_{\sigma}, \bar{0}) = (x)\mathfrak{I} \cdot (y)\mathfrak{I}.$$

If (ii) hods then by Propositions 1 and 3 from [5], $\alpha_x \varpi, \alpha_y, \alpha_x \alpha_y \varpi \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leq})$ and by Lemma 2 without loss of generality we may assume that

$$\alpha_x = \gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p} \varpi \quad \text{and} \quad \alpha_y = \gamma_1^{s_1} \dots \gamma_p^{s_p} v_1^{t_1} \dots v_p^{t_p},$$

for some non-negative integers $p, i_1, \ldots, i_p, j_1, \ldots, j_p, s_1, \ldots, s_p, t_1, \ldots, t_p$, where $\gamma^0 = v^0 = \mathbb{I}$. This and the fact that σ is a congruence on the semigroup $\mathscr{P}\mathscr{C}_{\infty}(\mathbb{N}^2_{\leqslant})$, Proposition 9 imply that

$$\begin{split} (xy)\mathfrak{I} &= ((\alpha_x\alpha_y\varpi)\mathfrak{H}_\sigma,\bar{1}) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\varpi\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p}\varpi)\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}v_1^{s_1}\ldots v_p^{s_p}\varpi\varpi\gamma_1^{t_1}\ldots\gamma_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}v_1^{s_1}\ldots v_p^{s_p}\varpi\varpi\gamma_1^{t_1}\ldots\gamma_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}v_1^{s_1}\ldots v_p^{s_p}\gamma_1^{t_1}\ldots\gamma_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left(a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p}b_1^{s_1}\ldots b_p^{s_p}a_1^{t_1}\ldots a_p^{t_p},\bar{1}\right) = \\ &= \left(a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p}(a_1^{s_1}\ldots a_p^{s_p}b_1^{t_1}\ldots b_p^{t_p})\mathfrak{f},\bar{1}\cdot\bar{0}\right) = \\ &= \left(a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p},\bar{1}\right)\cdot \left(a_1^{s_1}\ldots a_p^{s_p}b_1^{t_1}\ldots b_p^{t_p},\bar{0}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p})\mathfrak{H}_\sigma,\bar{1}\right)\cdot \left((\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p})\mathfrak{H}_\sigma,\bar{0}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\varpi\varpi)\mathfrak{H}_\sigma,\bar{1}\right)\cdot \left((\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p})\mathfrak{H}_\sigma,\bar{0}\right) = \\ &= \left((\alpha_x\varpi)\mathfrak{H}_\sigma,\bar{1}\right)\cdot \left((\alpha_y)\mathfrak{H}_\sigma,\bar{0}\right) = \\ &= (x)\mathfrak{I}\cdot (y)\mathfrak{I}. \end{split}$$

If (iii) hods then by Propositions 1 and 3 from [5], $\alpha_x, \alpha_y \varpi, \alpha_x \alpha_y \varpi \in \mathscr{P}\mathscr{O}^+_{\infty}(\mathbb{N}^2_{\leqslant})$ and by Lemma 2 without loss of generality we may assume that

$$\alpha_x = \gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p} \quad \text{and} \quad \alpha_y = \gamma_1^{s_1} \dots \gamma_p^{s_p} v_1^{t_1} \dots v_p^{t_p} \varpi,$$

for some non-negative integers $p, i_1, \ldots, i_p, j_1, \ldots, j_p, s_1, \ldots, s_p, t_1, \ldots, t_p$, where $\gamma^0 = v^0 = \mathbb{I}$. Since σ is a congruence on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$, this and Proposition 9 imply that

$$\begin{split} (xy)\mathfrak{I} &= ((\alpha_x\alpha_y\varpi)\mathfrak{H}_\sigma,\bar{1}) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p}\varpi\varpi)\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p}\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left(a_1^{i_1}\ldots a_p^{i_p}b_1^{j_1}\ldots b_p^{j_p}a_1^{s_1}\ldots a_p^{s_p}b_1^{t_1}\ldots b_p^{t_p},\bar{0}\cdot\bar{1}\right) = \\ &= \left((\alpha_1^{i_1}\ldots\alpha_p^{i_p}v_1^{j_1}\ldots v_p^{j_p})\mathfrak{H}_\sigma,\bar{0}\right)\cdot\left((\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\gamma_1^{i_1}\ldots\gamma_p^{i_p}v_1^{j_1}\ldots v_p^{j_p})\mathfrak{H}_\sigma,\bar{0}\right)\cdot\left((\gamma_1^{s_1}\ldots\gamma_p^{s_p}v_1^{t_1}\ldots v_p^{t_p})\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= \left((\alpha_x)\mathfrak{H}_\sigma,\bar{0}\right)\cdot\left((\alpha_y\varpi)\mathfrak{H}_\sigma,\bar{1}\right) = \\ &= (x)\mathfrak{I}\cdot(y)\mathfrak{I}. \end{split}$$

Assume that (iv) hods. Then by Propositions 1 and 3 from [5] we have that $\alpha_x \varpi, \alpha_y \varpi, \alpha_x \alpha_y, \alpha_x \varpi \alpha_y \varpi \in \mathscr{PO}^+_{\infty}(\mathbb{N}^2_{\leq})$ and by Lemma 2 without loss of generality we may assume that

$$\alpha_x = \gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p} \varpi$$
 and $\alpha_y = \gamma_1^{s_1} \dots \gamma_p^{s_p} v_1^{t_1} \dots v_p^{t_p} \varpi$,

for some non-negative integers $p, i_1, \ldots, i_p, j_1, \ldots, j_p, s_1, \ldots, s_p, t_1, \ldots, t_p$, where $\gamma^0 = v^0 = \mathbb{I}$. Since σ is a congruence on the semigroup $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$, this and Proposition 9 imply that

$$\begin{split} (xy)\mathfrak{I} &= ((\alpha_x\alpha_y)\mathfrak{H}_\sigma,\bar{0}) = \\ &= \left((\gamma_1^{i_1} \ldots \gamma_p^{i_p} v_1^{j_1} \ldots v_p^{j_p} \varpi \gamma_1^{s_1} \ldots \gamma_p^{s_p} v_1^{t_1} \ldots v_p^{t_p} \varpi) \mathfrak{H}_\sigma, \bar{0} \right) = \\ &= \left((\gamma_1^{i_1} \ldots \gamma_p^{i_p} v_1^{j_1} \ldots v_p^{j_p} v_1^{s_1} \ldots v_p^{s_p} \varpi \varpi \gamma_1^{t_1} \ldots \gamma_p^{t_p}) \mathfrak{H}_\sigma, \bar{0} \right) = \\ &= \left((\gamma_1^{i_1} \ldots \gamma_p^{i_p} v_1^{j_1} \ldots v_p^{j_p} v_1^{s_1} \ldots v_p^{s_p} \gamma_1^{t_1} \ldots \gamma_p^{t_p}) \mathfrak{H}_\sigma, \bar{0} \right) = \\ &= \left((\gamma_1^{i_1} \ldots \gamma_p^{i_p} v_1^{j_1} \ldots v_p^{j_p} v_1^{s_1} \ldots v_p^{s_p} \gamma_1^{t_1} \ldots v_p^{t_p}) \mathfrak{H}_\sigma, \bar{0} \right) = \\ &= \left(a_1^{i_1} \ldots a_p^{i_p} b_1^{j_1} \ldots b_p^{j_p} b_1^{s_1} \ldots b_p^{s_p} a_1^{t_1} \ldots a_p^{t_p}, \bar{0} \right) = \\ &= \left(a_1^{i_1} \ldots a_p^{i_p} b_1^{j_1} \ldots b_p^{j_p} \cdot (a_1^{s_1} \ldots a_p^{s_p} b_1^{t_1} \ldots b_p^{t_p}) \mathfrak{f}, \bar{1} \cdot \bar{1} \right) \\ &= \left(a_1^{i_1} \ldots a_p^{i_p} b_1^{j_1} \ldots b_p^{j_p}, \bar{1} \right) \cdot \left(a_1^{s_1} \ldots a_p^{s_p} b_1^{t_1} \ldots b_p^{t_p}, \bar{1} \right) = \\ &= \left((\gamma_1^{i_1} \ldots \gamma_p^{i_p} v_1^{j_1} \ldots v_p^{j_p}) \mathfrak{H}_\sigma, \bar{1} \right) \cdot \left((\gamma_1^{s_1} \ldots \gamma_p^{s_p} v_1^{t_1} \ldots v_p^{t_p}) \mathfrak{H}_\sigma, \bar{1} \right) = \\ &= \left((\gamma_1^{i_1} \ldots \gamma_p^{i_p} v_1^{j_1} \ldots v_p^{j_p} \varpi \varpi) \mathfrak{H}_\sigma, \bar{1} \right) \cdot \left((\gamma_1^{s_1} \ldots \gamma_p^{s_p} v_1^{t_1} \ldots v_p^{t_p} \varpi \varpi) \mathfrak{H}_\sigma, \bar{1} \right) = \\ &= \left((\alpha_x \varpi) \mathfrak{H}_\sigma, \bar{1} \right) \cdot \left((\alpha_y \varpi) \mathfrak{H}_\sigma, \bar{1} \right) = \\ &= (x) \mathfrak{I} \cdot (y) \mathfrak{I}. \end{split}$$

Thus the map $\mathfrak{I}: \mathscr{P}\!\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)/\sigma \to \mathfrak{A}\mathfrak{M}_{\omega} \rtimes_{\mathfrak{Q}} \mathbb{Z}_2$ is a homomorphism. Also, since $(x_{\mathbb{I}})\mathfrak{I} = (e,\bar{0}), (x_{\varpi})\mathfrak{I} = (e,\bar{1})$ and for any $\alpha_x = \gamma_1^{i_1} \dots \gamma_p^{i_p} v_1^{j_1} \dots v_p^{j_p}$, where $p, i_1, \dots, i_p, j_1, \dots, j_p$ are some positive integers, our above arguments imply that

$$(x)\mathfrak{I} = \left(a_1^{i_1}\dots a_p^{i_p}b_1^{j_1}, \bar{0}\right) \qquad \text{and} \qquad (y)\mathfrak{I} = \left(a_1^{i_1}\dots a_p^{i_p}b_1^{j_1}, \bar{1}\right),$$

where $x = (\alpha_x)\mathfrak{P}_{\sigma}$ and $y = (\alpha_x \varpi)\mathfrak{P}_{\sigma}$. This implies that the homomorphism \mathfrak{I} is surjective.

Now suppose that $(x)\mathfrak{I}=(y)\mathfrak{I}=(u,g)$ for some $x,y\in\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)/\sigma$. Then there exist $\alpha_x,\alpha_y\in\mathscr{P}\mathscr{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ such that $(\alpha_x)\mathfrak{P}_{\sigma}=x$ and $(\alpha_y)\mathfrak{P}_{\sigma}=y$ in the case when $g=\bar{0}$, and $(\alpha_x\varpi)\mathfrak{P}_{\sigma}=x$ and $(\alpha_y\varpi)\mathfrak{P}_{\sigma}=y$ in the case when $g=\bar{1}$. If $g=\bar{0}$ then $x,y\in\mathscr{P}\mathscr{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ and the condition $\alpha_x\sigma\alpha_y$ in $\mathscr{P}\mathscr{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ implies the equality x=y. Similarly, if $g=\bar{1}$ then $x,y\in\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)\setminus\mathscr{P}\mathscr{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ and the condition $\alpha_x\varpi\sigma\alpha_y\varpi$ in $\mathscr{P}\mathscr{O}_{\infty}^+(\mathbb{N}_{\leqslant}^2)$ implies the equality x=y. Hence $\mathfrak{I}\colon\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leqslant}^2)/\sigma\to\mathfrak{A}\mathfrak{M}_{\omega}\rtimes_{\mathfrak{Q}}\mathbb{Z}_2$ is an isomorphism. \square

Acknowledgements. The authors acknowledge Taras Banakh and Alex Ravsky for their comments and suggestions.

References

- Bardyla S., Gutik O. On a semitopological polycyclic monoid // Algebra Discr. Math. 2016. — 21, №2. — P. 163–183.
- Clifford A. H., Preston G. B. The algebraic theory of semigroups. Providence: Amer. Math. Soc., 1961. — Vol. 1. — xv+224 p.; 1967. — Vol. 2. — xv+350 p.
- Eberhart C., Selden J. On the closure of the bicyclic semigroup // Trans. Amer. Math. Soc. - 1969. - 144. - P. 115-126.
- 4. Gutik O., Pozdniakova I. Congruences on the monoid of monotone injective partial selfmaps of $L_n \times_{\text{lex}} \mathbb{Z}$ with co-finite domains and images // J. Math. Sci. 2016. 217, Nº2. P. 139–148
- Gutik O., Pozdniakova I. On the monoid of monotone injective partial selfmaps of N²
 with cofinite domains and images // Visn. L'viv. Univ., Ser. Mekh.-Mat. 2016. 81. —
 P. 101–116.
- 6. Gutik O., Pozdnyakova I. On monoids of monotone injective partial selfmaps of $L_n \times_{\text{lex}} \mathbb{Z}$ with co-finite domains and images // Algebra Discr. Math. -2014. -17, Nº2. -P. 256–279.
- 7. Gutik O., Repovš D. Topological monoids of monotone, injective partial selfmaps of N having cofinite domain and image // Stud. Sci. Math. Hungar. 2011. 48, №3. P. 342–353.
- Gutik O., Repovš D. On monoids of injective partial selfmaps of integers with cofinite domains and images // Georgian Math. J. 2012. 19, №3. P. 511–532.
- Gutik O., Repovš D. On monoids of injective partial cofinite selfmaps // Math. Slovaca. 2015. — 65, №5. — P. 981–992.
- 10. Howie J.M. Foundations of semigroup theory. Oxford: Oxford Univ. Press, 1995. x+356 p.
- Mitsch H. A natural partial order for semigroups // Proc. Am. Math. Soc. 1986. 97, №3. — P. 384–388.
- 12. Shelah S., Steprāns J. Non-trivial homeomorphisms of $\beta N \setminus N$ without the Continuum Hypothesis // Fund. Math. 1989. 132. P. 135–141.
- Shelah S., Steprāns J. Somewhere trivial autohomeomorphisms // J. London Math. Soc. Ser. 3. — 1994. — 49, №3. — P. 569–580.
- 14. Shelah S., Steprāns J. Martin's axiom is consistent with the existence of nowhere trivial automorphisms // Proc. Amer. Math. Soc. 2002. $130, \, \text{Ne}7.$ P. 2097--2106.
- 15. Veličković B. Definable automorphisms of $\mathscr{P}(\omega)/\sin //\operatorname{Proc.}$ Amer. Math. Soc. 1986. **96**, Nº1. P. 130–135.
- Veličković B. Applications of the Open Coloring Axiom // Set Theory of the Continuum, H. Judah, W. Just et H. Woodin, eds., Pap. Math. Sci. Res. Inst. Workshop, Berkeley, 1989,

 Berlin: MSRI Publications. Springer-Verlag. Vol. 26, 1992. P. 137-154.
- 17. Veličković B. OCA and automorphisms of $\mathscr{P}(\omega)/$ fin // Topology Appl. 1993. 49, $\mathbb{N}^{2}1$. P. 1–13.
- 18. $Vagner\ V.V.$ Generalized groups // Dokl. Akad. Nauk SSSR 1952. **84**. P. 1119–1122 (in Russian).

Стаття: надійшла до редколегії 31.01.2017 прийнята до друку 27.02.2017

ПРО МОНОЇД МОНОТОННИХ ІН'ЄКТИВНИХ ЧАСТКОВИХ ПЕРЕТВОРЕНЬ МНОЖИНИ \mathbb{N}^2_\leqslant З КОСКІНЧЕННИМИ ОБЛАСТЯМИ ВИЗНАЧЕНЬ І ЗНАЧЕНЬ, ІІ

Олег ГУТІК, Інна ПОЗДНЯКОВА

Львівський національний університет імені Івана Франка, вул. Університетська 1, Львів, 79000, e-mails: o_gutik@franko.lviv.ua, ovgutik@yahoo.com, pozdnyakova.inna@gmail.com

Нехай \mathbb{N}^2_{\leq} — множина \mathbb{N}^2 з частковим порядком, визначеним як добуток звичайного лінійного порядку \leqslant на множині натуральних чисел $\mathbb N.$ Вивчаємо напівгрупу $\mathscr{P}\!\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ монотонних ін'єктивних часткових перетворень частково впорядкованої множини $\mathbb{N}_{\leq_1}^2$ які мають коскінченні області визначення та значення. Описуємо природний частковий порядок на напівгрупі $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2)$ і доводимо, що він збігається з природним частковим порядком, який індукується з симетичного інверсного моноїда $\mathscr{I}_{\mathbb{N}\times\mathbb{N}}$ над множиною $\mathbb{N} \times \mathbb{N}$ на напівгрупу $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$. Доводимо, що напівгрупа $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$ ізоморфна напівпрямому добутку $\mathscr{P}\!\mathscr{O}_{\infty}^{+}(\mathbb{N}_{\leqslant}^{2}) \rtimes \mathbb{Z}_{2}$ моноїда $\mathscr{P}\!\mathscr{O}_{\infty}^{+}(\mathbb{N}_{\leqslant}^{2})$ орієнтованих монотонних ін'єктивних часткових перетворень частково впорядкованої множини \mathbb{N}^2_{\leqslant} , які мають коскінченні області визначення та значення, циклічною групою \mathbb{Z}_2 другого порядку. Також описуємо конгруенцію σ на напівгрупі $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$, яка породжується природним частковим порядком \preccurlyeq на напівгрупі $\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}^2_{\leqslant})$: $\alpha\sigma\beta$ тоді і лише тоді, коли α та β є порівняльними в $(\mathscr{P}\mathscr{O}_{\infty}(\mathbb{N}_{\leq}^2), \preceq)$. Доводимо, що фактор-напівгрупа $\mathscr{P}\mathscr{O}_{\infty}^+(\mathbb{N}_{\leq}^2)/\sigma$ ізоморфна вільному комутативному моноїду \mathfrak{AM}_{ω} над нескінченною зліченною множиною і, що фактор-напівгрупа $\mathscr{P}\!\mathscr{C}_{\infty}(\mathbb{N}^2_{\leqslant})/\sigma$ ізоморфна напівпрямому добутку вільного комутативного моноїда \mathfrak{AM}_{ω} групою \mathbb{Z}_2 .

Ключові слова: напівгрупа часткових бієкцій, монотонне часткове відображення, природний частковий порядок, напівпрямий добуток, найменша групова конгруенція, вільний комутативний моноїд.