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The existence and uniqueness of a weak solution of the Fourier problem for
nonlinear parabolic equations with a variable delay are investigated and its a
priori estimate is obtained.
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1. INTRODUCTION

The boundary value problems for the nonlinear parabolic equations with a time
depended delay are considered. A typical example of the equations being studied here is

n t

Uy — Z az](w7t)u$m1+ao(xat)u+ / Co(.'II,t, s)u(m,s)ds :f(l',t), (1)
=1 t—T(t)
(z,t) € Q = Q x (—00,0], where n € N, Q is a domain in R", @;; = a;;(¢,j =

1,n),a0,co are measurable bounded functions, and there exists ¥ = const > 0 such
that >0, @iz, 0)6& > v, & for ae. (z,t) € Q and for all (&,...,&,) € R,

ess inf ag(z,t) > 0, 7 is a nonnegative continuous function, f is an integrable function, u
(z.t)eQ
is un unknown function.

Fourier problems for evolution equations arise in modeling different nonstationary
processes in nature that started a long time ago and initial conditions do not affect on
them in the actual time moment, but boundary conditions do affect it. Thus, we can
assume that the initial time is —oo, while 0 is the final time, and initial conditions can be
replaced with the behaviour of the solution as time variable tends to —oo. The Fourier
problem for evolution equations has been widely studied. They appear in modeling in
many fields of science such as economics, physics, ecology, cybernetics, etc. (see, e.g.,
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[31, [, [51, [9], [10], [110, [18], [19], [20], [24], [22], [23]). A lot of information concerning
results on problems without initial conditions can be found in [9].

Equations with time delay arise in modelling population dynamics, in non-
Newtonian filtration, heat flux, etc. ([13]). The equations of type on finite time
interval with constant delay were investigated in [I], [2], [I7], [I4], [15], etc. Good
reference overview on such papers can be found in [I7]. We remark that in these papers
the semigroup theory is used.

Partial differential equations with a variable delay are less studied, and we known
only publications of Rezounenko and Chueshov (in particular, [12], [2I]), where equations
of type (1) on finite time interval, with 7 = 7(u), are considered. In [I2], a certain abstract
parabolic problem with the state dependent delay term of a rather general structure is
considered. In [21], the nonlinear partial functional differential equations with main linear
elliptic operator and non-local nonlinear term are considered. For proving existence of
solutions of problems considered in [12], [21] the Galerkin approximations are used.

Fourier problems for parabolic equations with constant time delay were investigated
in [I6], [7] (see also references therein).

To the best of our knowledge, the Fourier problems for parabolic equations with time
depended delay is an untreated topic in the literature. These problems are considered in
our paper. Existence and uniqueness of solution of the problem are proved. The methods
of investigation as in [6] are used.

The paper is organized in the following way. In Section 2, the main notations and
functional spaces are introduced. The statement of the problem and formulation of the
main result are given in Section 3. The main result is proved in Section 4.

2. NOTATION AND AUXILIARY FACTS

Let n be a positive integer number, R™ be the standard linear space of ordered
collections = = (x1, ..., 2,,) of real numbers with the norm |z| := (|Jz1|? + ... + |z,]?)Y/2.
Suppose that Q C R” is a bounded domain with the piecewise smooth boundary 0f2.
Also, we denote S := (—00,0], @ :=Q x5, Q:=Qx 85, ¥:=90 xS.

Let us define some functional spaces. Firstly, denote by C2°(€2) the space of infi-
nite differentiable functions on Q with compact supports. Denote by H!(Q) := {v €
L2(Q) | vy, € L*(Q) (i = 1,n)} the Sobolev space, which is a Hilbert space with the
scalar product (v, w) 1 () == [ {VvVw + vw} dz, where Vv := (va,,...,v,,) and the

Q

corresponding norm |[v||g1q) = ([ {|Vo|* + |v|2}dx)1/2. By H}(Q2) we denote the
Q

closure of C°(Q) in H(Q).
Let us remind Friedrichs’ inequality

/|v|2dx < Ky / |Vol?de Vv e Hy(Q), (2)
Q Q

where K is a positive constant independent of v. It is known that 1/Kj is the first
eigenvalue of the problem: —Av = Av, v|gq = 0.

From Friedrichs’ inequality it follows that the norm in Hg(£2) can also be written
as |[v]| iz (o) ::£|Vv|2d:c.
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For an arbitrary Banach space X by LIOC(S; X) we denote the linear space of (classes
of) measurable functions defined on S with values in X such that their restrictions on
any interval [a,b] C S belong to L?(a,b; X). Denote by LI (Q) (1 < p < oo) the linear
space of (classes of) measurable functions defined on @ such that their restrictions on
any bounded measurable set Q' C @ belongs to LP(Q’).

Denote by C1(I), where I is an interval, the linear space continuously differentiable
finite functions defined on I, moreover, if I = (t1,t2), then we will write CL(¢;,t2) instead
of C(l.((tl, tg))

Denote by F(Q) the space of vector-functions (fo, f1,..., fn) such that f; € LE .(Q)
for each i € {0,1,...,n}.

Let w € R, X be a Hilbert space with the scalar product (-, -) x and the corresponding
norm || - || x. Denote

I(5:X) = { € 12(5:) | [ lrolfar < o).
L2(S; X) is a Hilbert space with the scalar product
(Fezgsn) = [ (0).a(0)x i
and the norm L
Iz = ([ sk ar) )

The following auxiliary result, which had been proved in [6], will be used in the sequel.

Lemma 1. Let w € L%(t1,t2; Hi(S2)), where t1,t2 € R (t; < t3), satisfing the following
identity

//{ —woy' + 9071—1-291% Jp}dadt =0, ve Hy(Q), o€ Clty,t2), (4)

t1 Q
for some g; € L*(Q x (t1,t2)) (i = 0,n). Then w € C([t1,t2]; L*(Q)) and
/|wx t |2dx - —f//|w\ H'dxdt—i—//{gow—i—z:gzng }odzdt =0 (5)
01 Q2 01 Q

for any o1,09 € [t1,t2] (01 < 02), for every 0 € C1([t1,12]).
3. STATEMENT OF THE PROBLEM AND MAIN RESULT

In this paper we consider weak solutions u : Q — R of the problem
t

ut—z s (z,t,u, Vu) + ao(z, t,u, Vu) + / c(z,t,s,u(x, s))ds =
t—7(t) (6)

:_Za i(x,t) + fo(z, 1), (z,t) € Q,

u‘z =0, (7)



Olga Ilnytska

140 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2016. Bumyck 82
li 2wt t 2 dr =
Jim e /|u(x, )|“dz =0, (8)
Q

for some w € R. Here 7 : S — R is a continuous bounded function such that 7(¢) > 0 for
alte S anda; : QxR 5 R c:QxSXxR—=R, f;: Q— R (i =0,n) are given
real-valued functions from the corresponding classes of initial data.

We introduce the following classes of the initial data.

Define A to be the set of the collections (ag, a1, ...,a,) of the functions a; : @ X
R¥*" — R (i € {0,1,...,n}) which satisfy the following conditions:

(Ap) for every i € {0,1,...,n}, a; is a Caratheodory function (i.e., a;(z,t,-,) :
R*" — R is a continuous for a.e. (x,t) € @, and a;(-,-,p,&) : @ — R is
measurable for every (p, &) € R1™"), and a;(x,t,0,0) = 0 for a.e. (z,t) € Q;

(Az) for every i € {0,1,...,n}, for a.e. (z,t) € Q and for every (p,£) € R**™ the
estimate

j=1
is valid, where C; > 0 is constant and h; € L2 _(Q);

loc

(A3) for a.e. (z,t) € Q and for every (p1,&b), (p2,£€2) € R1T™ the inequality

Z(ai(x,t,pl,fl) - ai(xatvp27£2))(€i1 - 522) + (ao(x7t7pla€1)_
i=1 § )
—ao(x,t,p2,€%)) (o1 — p2) = K1 3 _[&} = &> + Kalpr — p2|®
=1

holds, where K; > 0, Ko € R are constants.

Define C to be the set of the real-value functions ¢ : @ x S x R — R which satisfy
the following conditions:

(C1) cis a Caratheodory function (i.e., ¢(x,t,s,-) : R — R is a continuous function
for a.e. (z,t,s) € @ x S, and ¢(+,-,+, p) : @ x S — R is a measurable function for
every p € R), in addition, c¢(z,t,s,0) = 0 for a.e. (z,t,s) € Q X S;

(Cq) there exists a constant L > 0 such that for a.e. (z,t,s) € Q x .S and for every p;,
p2 € R the inequality

‘c(xatvsvpl) - c(‘rat7sap2)’ < L|p1 - p2| (10)
holds.

Remark 1. The condition (C;) (more precisely, c(x,t,s,0) = 0) and (C) imply that for
a.e. (z,t,8) € Q x S, and for every p € R the following estimate is valid:

le(,t, s, p)| < Lipl. (11)

Now we can give a definition of the weak solution of problem (6)—(g).
Definition 1. Let (ap,a1,...,an) € A, ¢ €C, (fo,f1,---,/fn) € F(Q). A function
u € LY (S;HY(Q)) N C (S;L2()) is called a weak solution of problem (6)—(8) if it

loc
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satisfies condition , and the integral equality

t

// al x,t,u, Vu)vg, o + ao(z, t, u, Vu)vp + v /c(;v,t,s,u(x,s)) ds
t—7( (12)

_ uvgp da:dt // Zflvm o+ fovgo} dxdt
i=1

holds for every v € H}(Q) and ¢ € CL(—0,0).

Denote
+ ifw=0
T = t = T ! ’ 13
T ) { S —1), iw#o. 13)
We consider the inequality
w+2L\/7’+X(LU) <K1/K0—|—K2, (14)

where K5 is from @
It is obvious that w 4+ 2Ly/7%x(w) — —oo when w — —oo, because x(w) — 0 when
w — —oo. Hence, inequality (14]) has solutions.

Theorem 1. Let (ag,a1,...,a,) € A, ¢ € C, (fo,f1,---,fn) € F(Q), and let w
satisfies . If problem @7 has a solution, then it is unique.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled, and f; € L2/(S;L?*())
(i = 0,n). Then there ezists a unique solution of problem @7, and it satisfies the
following estimates:

e [lu(z, 0)* dr < Co /62Wt||f(~7t)||%2(ﬂ) dt, oesb, (15)

Q —0o0

lullLz (s;mi ) < Cs [ fllrz s;22)), (16)

where Cy, C3 are positive constants depending on 77, w, L, Ky, K1, Ko only.

4. PROOF OF THE MAIN RESULTS

For a function w : Q — R we denote

a;(w)(z,t) = a;(z, t,w(z,t), Vw(z,t)), (z,t)e€eQ, j=0,n,

c(w)(z, t,s) = c(x, t, s,w(zx,s)), (x,t,8)€QxS. (17)

Proof of Theorem 1. Suppose the contrary. Let u; and us be two distinct weak solutions
of the problem. Denote w := u; — uy. Considering the difference between for u = uq
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and u = u1, we obtain

— //wvap’ dxdt—l—//{i(ai(ul) — ai(uz))vzi—F(aO(Ul) - aO(U2))U
Q

¢ =1
¢ (18)

+v / (c(ur) — c(uz))ds}pdxdt =0 Yo € H} (), Yo € CH(—o0,0).
t—7(t)

It is clear that from for u = us and u = u; we have

2wt 2
e /|w(x,t)| dxt_>—_>DO 0. (19)
Q
According to Lemma 1, setting 6(t) = e?**, t € R, from equality we get

oo
1 1
562“’”2/\w(m,02)|2 dx — 562“"”/|w(3§,01)|2dm— w//62”t|w(x,t)|2 dxdt+
Q Q 010

+/Q/ et {;(ai(ul) = ai(u2)) (U2, — ug.e;) + (a0(u1) — ao(uz))(ur —uz)+  (20)

+w /(c(ul) - c(uz))ds} dzdt = 0,

t—7(t)

for arbitrary o1,09 € S (01 < 02).
From condition (Aj3), for a.e. (z,t) € Q we have

// 2wt [Z(ai(ul) — a;j(u2))(u1,0, —u2,z,) + (ao(u1) — ao(u2)) (w1 — u2)| dedt >

e (21)

o2
> //ew [K1|Vw|2 +K2|w|2} dzdt.
0'19

Now, we consider the last term from equality . Using condition (Cs), the Fubini
Theorem and the Cauchy—Schwarz inequality, for a.e. € Q we obtain

g2

/ (1) / (e, 1,5) — (o) (1, 8)) ds ) | <
o1 t—7(t)

¢
< L/e%t|w(x,t)| /|w(m7s)|ds dt <
t—r+

g1
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o2 /2, oy ¢ 1/2
< LVr+ /e2wt|w(x,t)|2dt /eQWt( /\w(m,s)|2ds>dt L (22)
<1 o1 t—7t

Changing order of integration and assuming w(x,t) =0 for x € Q, t > 0, for a.e. x € Q
we have

) t o2 s+rT
/62“’t( /|w(x,s)\2ds)dt< / lw(z, s)|?ds / e2tdt =
o1 t—r+ o1—7+t s
g2 g1
—x@)( [ Past [ lutes)ds), (23)
o1 o1—1+

where y(w) is defined in (13).

Substituting in the last term from the obtained above chain of relations instead

of the first one, and using the inequalities: vab < a+b, va + b < a+vb (a > > 0),
we obtain

‘/ 2oty (a, t) /((m)(x,t,s)—c(uQ)(:c,t,s))dsdt‘

t—7(t)

<1 T+X(w)(2/62wt|w(x,t)|2dt+ [ ettt pd). (24)
o1 oy—7+t

Using (21] . from we obtain
2‘”‘72/|w z,00)*dx — 2””1/\111 z,00)}de + K, // 2 Vw(z t)|2dxdt

01 Q2
HEKs — 2L/t x(w) —w) // Xt w(z, t)|? dedt — L/ (w / / e*tlw(z,t)* dedt < 0.
o1 o1—1tQ

From this, using (2), we get

1 1
§€2WU2/|’LU($,O'2)‘2 de — 5chwl/|w(x,o'1)|2 dx
Q

+ (Kl/Ko + Ky —2L+\/7Tx(w) —w) //eth|w(x,t)|2dxdt
o1 Q

—L/7tx(w //2wt|th)| dxdt < 0.

o1—711tQ
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Since w is a solution of inequality (14 E

2“"’2/\111 z,09))* dz <62‘*"’1/|w z,01)[* de 420/ x(w / / 2 Mw(x,t)|* dedt.
o1—1+Q
(25)
Let as fix an arbitrary o, in (25), and let oy tends to —oo. According to condition ([L9),
the first term from the right side of inequality tends to 0. Obviously, the second
term from the right side of inequality also tends to 0. Indeed,

o1
/ /62Wt|w(a:,t)\2da:dt <77 max 2‘”t/|w x,t) |2dx) — 0.
telo1,01—77F] 01——00

1—T+Q

Thus, we get the equality e“72 |w(z, 02)|? dz = 0. Since o5 € S is arbitrary, we obtain
O

w(x,t) =0 for a.e. (z,t) € Q, this contradicts our assumption. Therefore, the solution of

problem @7 is unique. O
Proof of Theorem 2. For each m € N denote Q,, 1= Qx (—m, 0], 7, := m<i£1<0(t—7(t)).

Denote f; m (1) :== fi(-,t) if —m <t <0, and f; p(-,t) := 0 if t < —m. We consider the
problem: to find a function u,, € L?(—m,0; H}(Q)) N C([—Tm,0]; L?(2)) which satisfies
the initial condition
Um(2,t) =0, (2,t) € Q X [~Tpn, —m, (26)
and equation @ in @,, in the sense of integral equality, i.e.,
¢

// Zaz (@, ty Uy VU ) Vg, p+ap(z, t um,Vum)vcp—i—vcp/ c(um)(z,t,8) ds—unmve }dmdt

t—7(t)
Qm =1

Existence and uniqueness of a solution of this problem follows from the paper [8].
For each m € N we extend u,, by 0 onto ) and denote this extension by u,, again.

Now, we shall get estimates of u,, for each m € N. First, remark that for each
m € N the function u,, belongs to L?(S; H}(Q)) N C(S;L?(2)) and satisfies integral
equality with f; ,, instead of f; (i = 1,n), i.e., the following equality holds:

// aZ Ty by U, VUi ) Uz, @ + a0 (X, Ty Uy Vg, )vp+

t

+v<p/ c(um)(z,t, s)ds — umvcp’}dxdt

t—7(t)

- //{z”: fimVe, @ + fo,mmp} drdt, ve HY(Q), ¢eCl{—o0,0). (28)

Q i=1



THE FOURIER PROBLEM FOR NONLINEAR PARABOLIC EQUATIONS ...
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2016. Bumyck 82 145

Applying Lemma 1 with 0(t) = 2e2%!, ¢t € S, and [0y, 0] C S, 01 < —m, to equality ,
we obtain

2““’2/|um z,09)|? dx — 2‘*"71/|um z,01))? de—

_2w// 2wt|um (z,t |2 dajdt+2// ZWt Zaz U ) U2y + @0 (U ) U+

0182 0182
t
+ Uy, / c(tm)(x,t s)ds} dxdt = 2// Zwt Zf’ mUm,z; + fo mum} dxdt. (29)
t—7(t) o1 Q)

According to the Cauchy inequality for a.e. t € S we have

// QUJt Zfzmumz7+f0mum}dmdt

0’19

€ 2wt 2 2wt
5// IVt + [11yn dxdt+—// Z|fm| dedt,  (30)

01 Q)

for arbitrary € > 0.
Similar to , from for a.e. x € 2 we can get

‘/ Wty (1) / (um)(x,t,s)dsdt‘g

t—7(t)

o2 g1
<L T+X(w)(2/eM|um(z,t)\2dt+ / 62‘*’t|um(x,t)|2dt>. (31)
o1 oy—1+t

By (A1), (A3) and (2) we obtain that

o2

al um Um,x; ap\Um )Um 2 1 U 2|Um T
//M{Z + ag () }da:dt>// “tK|V 2+ K| |}ddt

=1

o1 Q o1 Q2
://62‘“{(6—1-1—5)K1|Vum|2—|—K2|um|2}dzdt
o010
> / / (1= 6 K[V + (5K /Ko + Ka) [um |2 } dad, (32)
g1 Q

where § > 0 is a constant close to 1.
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By using estimates , and , and condition , and taking o1 < —m

we obtain

2Wz/mm (2,09)[2 d + (2(1 — 6y — ¢) // €2, (2, 1) [2dadt

—mQQ

( ((5K1/K0+K2—&)—2L\/T+X ) // 2, (z,t)|Pdxdt

—mQQ
—1// 2“’t2|flmxt|dxdt (33)
—m Q

If we take e = min{0 K1 /Ko + K3 — w — 2L+/7tx(w), (1 — 0) K1}, then

2“"2/|um(x o) > dx + Cy // !V [* dzdt < 05// 2wtz|f””| drdt,

—mQ —m
(34)

where C4 and Cj are positive constants depending on Ky, K1, Ko, L, 77 and w only.
It is clear that wu,, belongs to L2 (S; H}(Q)). Therefore, from we obtain

/|um(a:a| dx+C4// 2V, |* dedt < 05// 2“’tz:|f1m| dxdt, o€S.

—o0o —oo
(35)
By the definition of f; ,,, from we have
() iy < Cs [ MZ Ui OBy dte oS, (30)
[umll L2 (s:m2(0)) < Cs Z | fill 2 (s;L2()) (37)

i=0

where C5 > 0,Cg > 0 are positive constants depending on w, 7", Ko, K1, K2 and L only.
Let us show that {u,,} is a Cauchy sequence. Taking arbitrary k,! € N such that

k <l and considering difference between u; and wu;, similarly as estimate , for any

o € S such that —k < o < 0 one can obtain

/|uk x,0) —w(z,0)|? d$+C7// XV (uy, — wy)|? dadt

—-1Q

08// MZIL — fual?

-1 Q
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where C7 and Cy are positive constants independent of k,[. Thus

€29 g (- 0) — (-, 0) 20 < Cs / MZM, Vo dt, —k<o<0, (39)

e = vl simpca < / MZ 1. By (40)
2
The condition f; € L2(S; L?*()) implies that the right-hand sides of inequalities
and tend to zero when & and [ tend to +oo. This means that the sequence
{um }_, is a Cauchy sequence in the space L2 (S; H}(Q)) N C(S; L?(£2)). Consequently,
we obtain the existence of the function v € L2 (S; H}(Q)) N C(S; L*(Q)) such that

Uy — U strongly in L2 (S; H3(Q)) N C(S; L*(Q)). (41)

m—roo
Using condition (Cs), the Cauchy-Schwarz inequality and we get
t t

(o2} 5
//‘ / c(um)(x,t,8)ds — / c(u)(m,t,s)ds‘ dxdt <
o1 Q

t—7(t)

~ 7/( j |c(um)(z’t’3)C(U)(Lt,S)st) dxdt <
<L +// / [um (2, 5) — u(z, s)|*ds dtdz <

Q o1 t—7t

o2 s-Q—TJr

< L27+/ / / [t (2, 8) — u(z, 8)|*dt dsdx =

Qo—7+ s

o2
= L2712 / /|um(w7t) —u(z, t)Pdtde — 0.

m— o0
o1t Q
Thus, we obtain

t t

/ c(um)ds — / c(u)ds strongly in L% _.(Q). (42)
t—7(t) t—7(t)

By (A2) and estimate we have that for each o1,09 € S(01 < 02) the estimate

o2 g2
// |a; (um)|? dedt < Cw/ (Jtm|* + [V |* + |h]?) dzdt < Ciy (43)

019 o1 Q

is correct, where C1g and C4; are positive constants independent of m.
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Hence, from we obtain that the function a;(u,,) is bounded in L (Q). This
and yield that there exists a subsequence of {u,, }5°_; (denoted also by {u.,,}2°_;)

and functions y; € L2 .(Q) (i = 0,n) such that

loc
U > Uy Umg; > Uy 2. 00 Q, 1=0,n, (44)
a;(Um,) X weakly in L2 .(Q), i=0,n, (45)
Condition (A;) and yield
a;(Um) T a;(u) ae.onQ, ¢=0,n. (46)
By Lemma 1.3 from [18], and we obtain
a;(um,) % ai(u) weakly in L _(Q), i=0,n. (47)

Let us show that the function u is a weak solution of problem (), , (8). For
this purpose, we tend m — oo in identity , taking into account (41), (42),
and the definition of the function f;,,. As a result we obtain identity (12). Now, taking
into account (|{I), we let m — +oo in (36)). From the resulting inequality and condition
f € L2(S;L*(Q2)), we obtain condition (8). Hence, we have proven that u is a weak

solution of problem (6)), (7), (8)-
It is easy to show that inequalities similar to , , with u instead of u., hold.

Thus, estimates , hold. O
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3AJAYA ®YP’E€ IJId MANKE JITHIMHUX ITAPABOJITYHUX
PIBHAHD 31 SMIHHUM 3AIIIBHEHHAM
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HocmimKeHo iCHYBaHHS Ta €IWHICTH y3arajJbHEHUX PO3B’d3KiB 3ajadqi 6e3
IIOYATKOBUX YMOB /I HEJIHIMHUX MapaboJivHuX PIBHAHD 31 3MIHHMM 3arii3-
HeHHM. Tak0oXX OTPHMAHO ANpiOpHI ONIIHKY PO3B’SA3KIB PO3TJISHYTOI 3a7adi.
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