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Notion of open-multicommutativity, introduced by Kozhan and Zarichnyi [5],
is investigated. Weakly normal covariant functor of upper-continuous capacities is
considered. The main result of the paper is that this functor open-multicommutative.
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1. The impact of the non-additive probability theory in the modern economic theory
and finance increased significantly during the last decades. This theory is based on the
notion of the capacity which was first introduced by Choquet [2]. By the 80’s the number
of authors (Quiggin [7], Yaari [10], Schmeidler [8]) presented an axiomatization of indivi-
dual’s preferences and developed non-expected utility theory which based on the notion
of the Choquet integral.

From the topological point of view capacities were considered by Zhou [12]. He
investigated the structure of the space of upper-continuous capacities and an integral
representation of continuous comonotonically additive functionals with respect to them.

Here we study the space of upper-continuous capacities from the viewpoint of the
categorical topology. We prove an analogical result which was investigated in the case of
the probability measures space. The notion of open-multicommutativity which combines
properties of a covariant functor to be open and bicommutative has been introduced in
[5]. The main result of their paper is that the functor of probability measures is open-
multicommutative in the category of compact Hausdorff spaces. Here we extend an area
of this investigation and consider the functor of upper-continuous capacities. Although,
this functor turns out to be weakly-normal, it satisfies the open-multicommutativity

property.
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The paper is organized as follows. In Section 2 we remind some definitions which we
use below. Section 3 contains a proof of the finite open-multicommutativity. The main
result is given at the end of this Section.

The author gratefully thanks Michael Zarichnyi for helpful ideas, discussions and
comments.

2. Notations and Definitions.
2.1. Functor of upper-continuous capacities. Let X be a compact Hausdorff space
and F a o-algebra of its Borel subsets.

Definition 1. A real-valued set function p on F is called a capacity if p(0) = 0, p(X) =
1 and u(A) < u(B) for all AC B, A,B e F.

Definition 2. A capacity p is upper-continuous if lim p(A4,) = u( ?jolAn) for any
monotonic sequence of sets Ay D Ay D Az D ... with A, € F, n € N.

We denote a set of all upper-continuous capacities on X as M (X). Due to Zhou [12]
we can identify the set M (X) with the set of all comonotonically additive, monotonic
and continuous functional on C(X) by the formula

0

u(h) = [utr=vd+ [ s =0 -t
0 —00
The above integral is called the Choquet integral.

Let us endow the set M (X) with the weak-* topology. The base of this topology
consists of the set of the form

Opo, f1 s fry€) = {p € M(X): po(fi) — p(fi)l < &,i=1,....n},

where po € M(X), f1,..., fn € C(X) and £ > 0.

We can consider M : Comp — Comp as a covariant functor in the category Comp
and as it is shown in [6] that it is also weakly normal. Another important property of
this functor is that it is open and bicommutative.

Proposition 1. Functor M is bicommutative.

Proof. Let us consider an arbitrary bicommutative diagram

o x (1)

ih

in the category Comp. In order to prove that M is a bicommutative functor it is sufficient
to show that for every p € M(X) and v € M(Y') such that Mh(u) = Ms(v) =7 € M(T)
there exists a capacity A € M (Z) with

)
~——N

R
S

i-<

Mf(A) = pand Mg(X) = v. (2)
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Due to condition (2) for every A € Fx and B € Fy it must hold
M f7HA)) = u(A) and Mg~ (B)) = v(B).
Denote S = {f~'(A),g'(B): A€ Fx,B € Fy}. Let X be an inner measure defined as
A(D) = sup{u(f(C)),v(9(C)): C € D,C € S}

for every D € Fy. Defined in such way set function A is an upper-continuous capacity
(see, for instance, [11]). Let us show that condition (2) is satisfied. Let A € Fx and
A" = f~Y(A) C Z. Obviously that sup{u(f(C)): C C A’,C € S} = u(A). We assume
that there exists a subset B C Y such that B’ = g=}(B) C A’ and v(B) > u(A). Note
that the set A = h~1(s(B)) C A. Indeed, due to the definition of this set for every point
a € A we can find b € B such that h(a) = s(b). Because of the bicommutativity of
diagram (1) there exists point z € Z satisfying f(z) = a and ¢g(z) = b. Since B’ is a full
preimage of the set B it is necessary that b € B’ C A’. This implies a € A. Due to the
condition (2) we have

v(B) < 7(s(B)) = u(h~"(s(B))) = n(A) < u(A),

which contradicts our assumption. Thus, A(f~1(A)) = u(A) for every A € Fx. Analogi-
cally we can prove that A\(¢g~1(B)) = v(B) for each B € Fy. Therefore, condition (2) is
satisfied.

Proposition 2. Functor M is open.

Proof. This proposition is proved in [6].

2.2. Open-multicommutative functors and characteristic map. Let us recall the
notion of the multi-commutativity of a weakly-normal functor which is introduced in [5].

Suppose that G is a finite partially ordered set and we also regard it as a finite
directed graph. Denote by VG the class of all vertices of graph G and by £G the set of its
edges. A functor O: G — Comp is called a diagram. A cone over O consists of a space
X € |Comp| and a family of maps {X — O(0)},cvg that satisfy obvious commutativity
conditions. Given such a cone, C = ({X — O(0)}oevg), we denote by xc: X — lim O its
characteristic map.

We say that the cone C is open-multicommutative if its characteristic map is an open
onto map.

Definition 3. A normal functor F in Comp is called open-multicommutative (finite
open-multicommutative) if it preserves the class of open-multicommutative diagrams
(which consist of finite spaces).

The following result can be found in [4].

Proposition 3. For a weakly normal open bicommutative functor F the following
properties are equivalent:

F' is open-multicommutative;

F' is finite open-multicommutative.
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3. Case of discrete spaces. In this section we assume that all spaces O(0), 0 € VG
are finite and discrete. According to Proposition 3. for the open-multicommutativity of
the functor M it is sufficient to show that it is finite open-multicommutative, i.e. the
characteristic map x: M (lim O) — lim M (O) is open and surjective. Let us assume also
that VG is finite.

Let us also recall that lim O can be defined in terms of threads. We say that the point

T = (o)oevg € ][] O(o) is a thread of the diagram O if for every 01,02 € VG with
oeVg
01 < 0z it holds pro, () = ©o,0.PT02(x). It is well known that imO C [] O(o) and
o€VG
since all O(o) are discrete, the limit of the diagram is also discrete space.

Let \’ € M(lim Q) be a capacity on the space lim O and u8 € M(O(0)) be its
marginals for o € VG. Let O(\°, fi, ..., fn,€) be an arbitrary weak-* neighborhood of the
point A°.

In order to prove the openness of the characteristic map it is sufficient to find a
neighborhood of the point (10),evg such that every point from this neighborhood can
be covered by some capacity from O(\°, f1, ..., fn, ).

Lemma 1. Let X be a discrete compactum. The base of the weak-* topology on M(X)
consists of the sets of the form

O(p, Fr, ... Fn,e) ={v e M(X): [vo(F;) — u(EFy)| < e,i=1,...,n},

o € M(X) and F; C X,i=1,...,n.

Proof. Let us show first that for every set of the form O(u, F1, ..., F,,&) we can find a
basis neighborhood O(y, f1, ..., fi,d) for some f; € C(X) and 6 > 0, i =1, ..., k. Indeed,
if we set f; = 1p, and 6 = ¢ we get

O(/J“’ Flv ceey Fn) = O(/J“’ fla ceey fnv 6)'
Conversely, consider an element of the sub-base O(u, f, €). Since the space X is discrete we

k
can represent f = > «;1p, such that Iy C Fy C ... C Fy,. It is clear (see [1]) that for every
i=1

k
capacity v € M(X) holds v(f) = Y a;v(F;). Let us consider a set O(u, F1, .., Fy, =),
=1

where a = max{|aq], ..., |ag|}- Con?onotonicity of functions 1, implies that for every
capacity v € O(u, F1, .., Fy, =) we have that

k k &
u(f) = v = 1Y _ei(u(Fy) = v(E)]| < Z|aillu(ﬂ) —u(Fy)| < ZZO; -

i=1

Hence, O(u, I, .., Fi, =) C O(u, f,€).
According to Lemma 1. we can assume without loss of generality that functions
fis-s fn are of the form f;(z) = { (1)’ i;?’ for every x € lim D with Fi,..., F,

are subsets of lim O.
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We consider a neighborhood

U= O(u?, {x%}, . {x,lnl},é) X ... X O(ug, {x’f}, e {x’fnk},d),

where X; = {x, 7.%?”!} Let (p1,..., ) be an arbitrary point in U. Let us define a
capacity A on lim O.
For every subset A C lim O we define

la= {ré%é{max{uof(W): W C O(),( H O(o) x W)Nlim O C A}}.
° 0eVG\{o'}

Analogically,

Uy = mi&lg{min{uo/(W): W C O(),( H O(0) x W)NlimO D A}}.
e 0EVG\ {0’}
Note that the interval [[4,u4] is not empty and in order A to be well defined it should

satisfies inequalities
la < )\(A) <ua

for every subset A C lim O. Recall also that (u1,...,ux) € U and this implies that for
every A C lim O we have I4 — 6 < \°(A) < ua + 6.
Lemma 2. [f AC B thenls <l and ua < up.

Proof. It is clear that for every W C O(0) such that ( [[ O(o) x W)NlmO C A
0eVG\{o'}
we have that (  [[ O(o) x W)Nlim O C B for every j = 1,..., k. This implies that
0eVG\{o’'}
la <lIp.
The analogical result for the upper bounds can be derived from the statement

( JI o) xw)nlimo02>A2B.
0€VG\{o'}

For a Borel set A C lim O we define a capacity A as
AMA) = max{l4, min{ua, Ao(A)}}.

Lemma 3. The set function X is a well-defined capacity.

Proof. First of all, l(1im, 0) = %(im ©0) = 1 this implies that A(lim O) = 1.

lgp = ug = 0 this implies that A(0) = 0.

Let us check now a monotonicity of A\. We suppose that A C B C lim Q. Consider
three cases:

1). Ao(A) € [la,u4]. In this case

la < A(A) = X(A4) < min{ua, Ao(B)} < min{up, \o(B)} = A(B).
2). Ao(A) > us. We have
la < AMA) =us <minfug, Ao(4)} < min{up, \o(B)} = A(B).
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3). Ao(A) < l4. This condition implies that

AA) =14 <l < A(B).

Let us set now 6 = €. In this case we obtain for every ¢ = 1,...,n that
IA(F) = Ao(F)| < =e.

This leads to A € O\, f1, ..., fn, ).
Due to the definition of [4 and w4 it is easy to check that

e 1 ow@xw)nimo) = o (W)
oeVG\{o'}
and
U I 0@)xW)nlim0) = Ho (W)
oeVG\{o'}
for every o’ € VG and W C X,. This implies that A(( [ O(o) x W)NlimO) =
0eVG\{o'}
1o (W) and hence Mpry (M) = po for all o' € VG.
Hence we proved that the inverse to the correspondence map is open in the case of
discrete O(0), o € VG. Thus, applying this fact to Proposition 3. we obtain

Theorem 1. The correspondence map x of the diagram O is open and surjective for
every O(o) € |Comp|, 0 € VG.

A special case of open-multicommutativity was considered by Eifler [3]. One can
get this case setting the set £G = (). Eifler proved that the functor of the probability
measures preserves surjectivity and openness of the characteristic maps of such kind of
diagrams. Thus, the result of Theorem 1. is an extension of Eifler’s theorem on the case
of non-additive measures.
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