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It is proved that a normal functor of finite degree acting in the coarse category
admits an extension onto the Kleisli category of the hyperspace monad if and only
if this functor is isomorphic to the symmetric power functor.
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1. The coarse category (i.e. the category of coarse spaces and coarse maps) was
introduced by Roe in [4]. This theory turned out to be an appropriate universe for
studying asymptotic properties of structures more general then metric spaces. Some
results in the direction of asymptotic algebra (i.e. those concerning algebraic properties
of coarse structures) are obtained [1],[8].

In particular, in [1] the hyperspace functor acting in the category of coarse topological
spaces was considered. It was proved in [1] that the hyperspace functor determines a
monad in the coarse category.

In [8] the author considered the notion of normal functor in the coarse category and
established some properties of the normal functors. The aim of this note is to characterize
the class of G-symmetric power functor in the coarse category by means of their extension
onto the Kleisli category of the hyperspace monad. The main result is a counterpart of
the characterization theorem proved in [7].

2. Preliminaries. We briefly recall some necessary definitions and results concerning
the functors in the coarse category and also the Kleisli categories of monads.

2.1. Functors in the coarse category. For the convenience of reader we recall some
definitions of the coarse topology; see, e.g. [4], [2] for details.
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Let X be a set and M, N C X x X. The composition of M and N is the set
MN = {(z,y) € X x X | there exists z € X such that (z,z) € M, (z,y) € N},

the inverse of M is the set M~1 = {(z,y) € X x X | (y,x) € M}.
A coarse stucture on a set X is a family £ of subsets, which are called the entourages,
in the product X x X that satisfies the following properties:

1. any finite union of entourages is contained in an entourage;

2. for every entourage M, its inverse M ~! is contained in an entourage;

3. for every entourages M, N their composition M N is contained in an entourage;
4. UE =X x X.

A coarse space is a pair (X, &), where & is a coarse structure on a set X.
Let (X, d) be a metric space. The family

Ei={{(z,y) e X x X | d(z,y) <n}|ne N}

forms a metric coarse structure on X.

Given M € £ and A C X we define the M -neighborhood M(A) of A as follows:
M(A) ={z € X | (a,x) € M for sone a € A}. We use the notation M ({a}) instead of
M(a). A set A C X is bounded if there exists x € X such that A C M(z).

Let (X;,&:), i« = 1,2, be coarse spaces. A map f: X; — X5 is called coarse, if the
following two conditions hold:

1. for every M € &; there exists N € & such that (f x f)(M) C N;
2. for any bounded subset A of X5 the set f~1(A) is bounded.

Let f,g: X1 — X2 be coarse maps. If there exists U € & (here & is the coarse
structure on Xs) such that (f(x),g(x)) € U for every z € X; then the maps f, g are said
to be U-close. Define the relation ~ on the set of all coarse maps as follows: f ~ ¢ if and
only if f and g are U-close, for some U. It is easy to see that ~ is an equivalence relation
on the set of coarse maps from X — 1 to X5. We denote by [f] the equivalence class of ~
which contains f.

The composition of the equivalence classes of the maps in the next way: [gf] = [g][f]

It is easy to see that the coarse spaces and coarse maps form a category. We denote it
by CS and by CS/.. we denote the category whose objects are coarse spaces and whose
morphisms are the equivalence classes of the morphisms of the category CS.

We briefly recall some notions from the theory of normal functors in the category
Comp of compact Hausdorff spaces; see, e.g., [9] for details. An endofunctor F in Comp
is called normal if F' is continuous , monomorphic, epimorphic, preserves weight of infinite
compacta, intersections, preimages, singletons and empty set. A normal functor is called
finitary if it preserves the class of finite sets.
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Now let F' be finitary normal functor of degree n > 1, (X, &) a coarse space. For any
U € & define

U ={(a,b) € FX x FX | there exist Wy,..., W € &,
fis-oos for € C(n, X), c1,...,c, € Fn such that
Wi...W, CU, are fo;_1, fo; U-close, i =1,... k,
i Ffi(c1) =a, Ffox(ck) = b,

Ffaj(cj) = Ffajp(cjr), j=1,....k =1}

Note that here we consider the set X as a discrete topological space, that is why it is
possible to consider the discrete space F'X, which is identified with the underlying set.
In [?] it is proved that the family {U|U € €} forms the coarse structure on FX.

See [8] for the proof of the following result.

Lemma 1. Let f,g: (X1,&1) — (X2, &2). If f ~ g then F(f) ~ F(g).

This lemma allows us to consider a functor F' in the category CS/. because of the
equality F[f] = [Ff].
Definition 1. A functor F': CS — CS is normal in CS if:

1) F preserves weight;

2) F is monomorphic;

3) F is epimorphic;

4) F preserves preimages;

5) F preserves () (i.e. bounded coarse spaces).

The corresponding functor in the category CS/ ~ is also called normal.

2.2. Kleisli category of the hyperspace monad. If T is an endofunctor in a category
Cand n:1l¢c — T and p: T? = TT — T are natural transformations, then T = (T, 7, i)
is called a monad if and only if the following diagrams commute:

nT pT
T —— T2 T3 ——T?2
Tnl/ x lu T,ul lu
T2 L>T T2 $T

See [1] for the definition of the hyperspace monad in the coarse category.

The Kleisli category of T is the category Cr defined as follows: |Cr| = |C], C1(X,Y) =
C(X,TY), and the composition g * f of morphisms f € Cr(X,Y), g € Cp(Y, Z) is given
by g f=pZoTgof.

Define the functor I: C — Crby Ix X = X, X € |Cland If =nY o f for f € C(X,Y).

A functor F: Cr — Cr called an extension of the functor F': C — C on the Kleisli
category Cr if I[F = F1I.

In the sequel we will need the following result.

Theorem 1. There ezists a bijective correspondence between extensions of functor F

onto the Kleisli category Cr of monad T and natural transformations £: FT — TF
satisfying
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1. £Eo Fn=nF;

2. pFoTEoT =¢Eo0 Fp.

3. Characterization theorem.

Theorem 2. A normal functor F of degree n > 1 in the category CS/ ~ can be extended
onto the category (CS/ ~)m if and only if F ~ SPZ, for some subgroup G of S,,.

Proof. For every coarse space X, define {x: SPl(expX) — expSPAE(X) by the
formula:

Ex([Ar, ..., An)e) ={la1, .. an]g | a; € A; for all i < n}).

That the natural transformation ¢ satisfies the the properties of Theorem 1., is
remarked in [1] (the corresponding natural transformation is denoted by d herein). We
supplement the proof from [1] by explicit proof that £x is a coarse map. Recall that,
given a coarse structure £ on X, we define a coarse structure £ on SPE(X) as follows:
E={U | U e &}, where ([a1,...,an]c,[b1,-..,bn]g) € U if and only if there is a
permutation o € G such that (a;,b,(;y) € U, for every i <n.

Recall also that we consider the Hausdorff coarse structure € on exp X:given U € &,
we define

U={(A,B)eexpX xexpX | ACU(B), BCU(A)}

and let £ ={U | U € £}.

Now, let U € € and ([A1,.. ., Anla, [B1,- -, Bala) € U. Then there is a permutati-
on ¢ € G such that (A;, By;)) € U, for every i < n. For any [a1,...,ax]c €
£x([A1,...,An]g) and any i < n, one can find a point, which we denote by b, ),

such that (a;,b,(;)) € U. We conclude that £x(U) € U and therefore the map £x is
coarse uniform. One can easily see that the map x is coarsely proper.

Now assume that there exists a natural transformation & = ({x): SPiexp —
exp SPJ satisfies the conditions of Theorem 1.. For every object A of the category ICy,
let S(A) = A x N x N and define a metric d on S(A) as follows:

d((x1,m1,n1), (X2, m2,n2)) = |m7" — my?| + max{mi, ma}o(z,y),

where ¢ denotes the discrete metric on A. That d is a metric on S(A) can be easily
verified and we leave this to the reader. Given a map f: A — B in K,, denote by
S(f): S(A) — S(B) the map defined as follows: S(f)(x,m,l) = (f(z), m,1). Clearly, we
obtain a covariant functor S: IC,, — CS.

For any A in K,,, write {s(a) = [¥a], where ¢ 4: SPZexp A — exp SPEA is a map.

Since 14 is a coarse map, for any m € N there exists I(m) € N such that ¢4 (A4 x
{m} x {l}) C A x {m} x {1}, for all n > i(m).

Since all the spaces in IC,, are finite and K, is a finite category, the fact that the
distances between the distinct points in B x {m} x {l} (and consequently in F’'(B x
{m} x {l}), for any B in K,, and any finitary normal functor F’) are > m implies the
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following: there exist m,n € N such that, for any map f: A — B in K,, the diagram

Flexp A x {m} x {1}) —2 o exp F(A x {m} x {1})

F(expS(f))...l/ lepr(S(f))---

Flexp B x {m} x {1}) —221 L exp F(B x {m} x {1})

is commutative (for brevity, we drop the explicit indication of spaces onto which the
restriction is considered). Note that m,n can be chosen as large as we wish.

This allows us to define a natural transformation ¢': Fexp — exp F in K, by the
condition ¥4 (x, m,l) = (Y4 (x), m,1).

If m,n are large enough, the natural transformation 1)’ satisfies the conditions of
Theorem 1. (with & replaced by ¢’) in K,,. It follows from the results of [7| that F is
isomorphic to SPS for some subgroup G of the symmetric group S,.

4. Remarks. In [6] the symmetric power functors are also characterized as those having
an extension onto the Kleisli category of the probability measure monad. We leave as an
open question that of finding a counterpart of this result in the coarse category.
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Xapakrepu3saiigd pyHKTOpPiB (G-CHMETPUYHOTO CTeneHsd B rpy0iit
KaTeropii
Bikropis ®@Ppigep, Muxaitio 3apiunmii

Jveiscoruli HayionaavHul yrisepcumem imeni Isana DPpanka,
sy.a. Yuisepcumemcoka, 1, 79000 Jlveis, Ykpaina

IoBeneHo, Mo HOpMAJIbHUN (DYHKTOP CKIHYEHHOTO CTEIeHs, M0 i€ B rpyodiit
KaTeropii, Mae IpOIOBXKeHH Ha Kareropito Kireiicii MoHaau rimepapocTopy, AKIo i
TinbKH AKIO el pyHrTop i3omMopduuil GyHKTOPOBI CHMETPUIHOIO CTEIEH.

Karowosi caosa: rpyba kareropis, GyHkTop G-CUMETPUYHOrO CTEIEHs, MOHA/IA
rimeprpocTopy.
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