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OPENNESS POINTS OF THE PROJECTION MAP OF
CONVEX BODIES OF CONSTANT WIDTH
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It is proved that the set of points at which the projection map of the hyperspace
of compact convex bodies of constant width in R* onto the corresponding hyperspace
in R? is not open, is dense in the hyperspace. A similar result can be proven for the
projection of R™ onto R?, where n > 2.
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1. Let cc(R™) denote the set of all compact convex subsets in R" endowed with
the Hausdorff metric. For m < n, we assume that R™ is embedded in R™ as the set
(z1,...,Zm,0...,0). For m < n, the projection map pr: R” — R™ induces the natural
map A — pr(A4): cc(R™) — cc(R™). It is well-known that the induced map (we preserve
the notation pr for it) is open. Moreover, this map is even soft.

A closed convex body C'in R" is of constant width d > 0 if

C—-C={z—-y|z,yeC}=DBJ0)

(the closed ball in R™ of radius d > 0 centered at the origin). This is equivalent to the
following: the distance between the two supporting planes to the body in given direction
is independent of direction and equals d.

Let cwy(R™) denote the set of all convex bodies of constant width d > 0 in R™. We
endow this set with the Hausdorff metric. This metric, dg, is in fact defined on the family
exp R"” of all nonempty compact subsets in R™:

dy(A,B)=inf{e >0| AC O.(B), BC O:(A)}, A,B € exp X.
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It is proved in [2] (see also [1] for an alternative proof) that, for n > 2, the space cwq(R™)
is a manifold modeled on the Hilbert cube @ (a @-manifold). This result corresponds to
the well-known result due to Nadler, Quinn and Stavrokas [7] that cc(R™) is a Q-manifold
if n > 2. However, there is no complete analogy between the case of compact convex sets
and that of compact convex sets of constant width. Namely, it is proved in [1] that the
induced projection map pr: cwg(R3) — cwy(R?) is not open.

Recall that a map of topological spaces is open if the image of every open set is open.
We say that a map is open at a point if the image of any neighborhood of this point
is a (not necessarily open) neighborhood of the image of the point. If a surjective map
f+ X — Y of metric spaces is open at a point € X, then for every sequence (y;) in Y’
converging to f(z) there exists a sequence (z;) in X converging to = such that y; = f(z;),
i=1,2,....

A map f: X — Y is soft if for every commutative diagram
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|
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where i: A — Z is a closed embedding into a paracompact space Z, there exists a map
®: Z — X such that ®|A = ¢ and f® = . The notion of soft map was introduced by
E.V. Shchepin [10].

The aim of this note is to show that the set of points at which the map pr: cwg(R3) —
cwy(R?) is not open is dense in cw,y(R?).

By 0A we denote the boundary of A. If A is a convex body in R"™ of constant width
d > 0 then any chord [v,w] in A with d(v,w) = ||v — w|| = d is said to be a diameter of
A.

2. Result. We will need the following geometric statement.

Proposition 1. Let A € cwy(R™). For every € > 0, there exists § > 0 which satisfies
the following property. For every compact convex B with diamB < d and dy(A, B) < 9,
and every B’ € cwyg(R™) with A’ D B, we have dg(A’, A) < e.

Proof. Tt is sufficient to prove that B’ C O.(A4). In turn, it is sufficient to prove that
OB’ C Oc(A).

Let © € OB’. There exists y € B’ such that ||z — y|| = d. There exists a diameter
[a,b] in A parallel to [z,y]. Moreover, we assume that y — 2 = b — a. Then there exist
ai,b1 € B such that |ja; —al| <, ||by —b|| < 0. Let by = b+ (a1 — a), then the linear
segments [z, y| and [a, bo] are parallel. Note that ||a; — b2 — d| < 24.

There exists b3 € R™ such that the linear segments [z, y] and [a, bs] are parallel and
|la = bs|| = || — y|| = d. Denote by h the height of the parallelogram P with vertices
x,y,a,bs, i.e. the distance between the lines containing [z,y] and [a,bs] respectively.
Denote by C the maximal length of the diagonal of P. Then C > v/d? + h2 > d+ h. On
the other hand, C' < d+ 5¢, whence h < 5e. Let ¢ be a point on the line containing [a, b3)
such that the segments [z, c] and [a, b3] are orthogonal. Since C' < d + 5e, we conclude
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that ||ja — ¢|| < 5e. Then
|z —a| < |lz—c¢|| +|lc—al|l < 5e+ 5e =10e

and we are done.

Let C be a set of constant width in R2. A subset V of dC (the boundary of C) is
said to be a pinching set of C if every diameter (a maximal chord) of C' is incident with
at least one point of V. We say that a set of constant width is a Reuleaux polygon if it
has a finite pinching set. It is well-known (see, e.g. [4]) that the family of all Reuleaux
polygons of width d is dense (with respect to the Hausdorff distance) in cwg(R?). We
consider the projection pr: R? — R2.

It is well-known (and easy to prove) that, for every A € cwy(R?), we have pr(4) €
cwq(R?). We denote by e(A) the set AN (pr=1(dpr(A))). It is easy to see that the map
prie(A): e(A) — Ipr(A) is a homeomorphism.

Lemma 1. The map A — e(A) is continuous with respect to the Hausdorff metric as a
map from cwy(R3) to the set exp R3.

Proof. Let (A;) be a sequence in cwy(R?) that converges to A. It is well-known that
the sequence (0A;) converges to A and, similarly, the sequence (Opr(A4;)) converges to
Opr(A).

Suppose that a sequence (x;) is such that z; € e(A4;), for every 4, and x; — z as
i — 00. Then z € A. Obviously, pr(z;) — pr(z) and, since (9pr(4;)) — dpr(A), i — oo,
we see that pr(z) € 0A.

On the other hand, suppose that x € e(A). Then y = pr(z) € d(pr(4)) and, since
(Opr(A;)) — 9pr(A), i — oo, there exists a sequence (y;) in R? such that y; € dpr(4;),
1 €N, and y; — y as ¢ — oo.

Lemma 2. Let A be a Reuleauz polygon in R?. Then, for any C' € cwq(R3) with pr(C) =
A, the set e(C) is planar (i.e. is located in a plane in R3).

Proof. Let V be the set of vertices of A (i.e. the minimal pinching set). Given v € V,
denote by A, the set of endpoints (distinct of v) of the diameters with endpoint v. For
any w € A,, we have d(v,w) = d and therefore, d(v',w') = d for any v',w’ € C with
pr(v') = v, pr(w’) = w. Thus, v/, w’ are located on a plane parallel to R?. This implies
that A, is located on a plane parallel to R? and therefore e(C) is a planar set.

Theorem 1. Given d > 0, let
N = {A € cwq(R?) | pr is not open at A}.

Then the set N is dense in cwq(R?).

Proof. Let A € cwq(R?). Suppose first that the set e(A) is not planar. We are going to
show that pr is not open at A. Indeed, suppose the contrary. Consider a sequence (B;)°,
of Reuleaux polygons that converges to dprA. Since pr is open at A, it follows from well-
known properties of open maps that there exists a sequence (A4;)2; that converges to A
and such that pr(A4;) = B;, i = 1,2,.... By Lemma 2., every set A; is planar and, by
Lemma 1., so is the set e(A), which gives a contradiction.
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Now we consider the case when the set e(A) is planar. Passing, if necessary, to a closed
neighborhood of a suitable homothetic copy of A, one may assume that the boundary
DA is of the class C!. Then the closed curve e(A) is also of the class C*.

There exist diameters [v;, w;], ¢ = 1,...,k, of the set A N 7, which is obviously of
constant width in 7, such that the set {vy, ..., vg, w1, ..., wi} is close enough to O, (ANT).

As usual, by k we denote the unit vector in the direction of the z-axis. Let A’ be an
affine copy of A with center at an interior point of A and coefficient ¢ < 1 sufficiently
close to 1. There exists 7 > 0 such that the set

A" = A"U{vg, ... vp, wa, .., wi U {vr + 7k, wy + nk}

is of diameter d. It follows from the results of [6] that there exists a convex body A of
constant width d that contains A”. Simple geometric arguments show that one can make
A" as close to A as we wish by choosing ¢ < 1 close enough to 1 and 1 > 0 close enough
to 0. Then

e(A”) D {va, ... vk, wa, ..., wi} U{vy + nk, wy + nk}

and therefore e(A”) is not planar. As we have proven above, A” is not a point of openness
of the map pr. Therefore, the set N is dense in cwy(R3?).
One can similarly prove the following result.

Theorem 2. If n > 3, then the set
{A € cw(R") | pr is not open at A}
is dense in cw(R™).

3. Remarks. The notion of convex body of constant width can be defined also in any
Minkowski space (i.e. any finite-dimensional normed space). It was remarked in [1] that
the considered projection map of the hyperspaces of compact convex bodies of constant
width can be open for some choice of norms.

Question 1. Suppose that the unit balls of Minkowski spaces are strictly convez (i.e.,
the unit spheres do not contain linear segments). Suppose also that the projection
map preserves the constant width property. Is the projection map of the corresponding
hyperspaces of compact convex sets of constant open?

The notion of closed convex body of constant width can be defined in any normed
space. We conjecture that the AR-properties of the hyperspaces of closed convex sets in
normed spaces established in [8] (see also [9]) have their counterparts for the hyperspaces
of closed convex bodies of constant width.

One can formulate the question of openness of the projection map also in the case of
pairs. Recall that a pair (A, B) of compact convex bodies in R™ is said to be of constant
relative width [5] if A— B = B, (z) (the closed ball of radius r centered at a point z € R™).

One can conjecture that the property of planarity of the set e(A) characterizes the
sets A € cw(R3) at which the map pr is not open.

In connection to Theorem 1. the following general question arises.

Question 2. Let n > m > 2. Is the set of points in cwq(R™) at which the projection map
pr: cwg(R™) — cw(R™) is not open, dense in cwy(R™)?
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Touku BigKpuUTOCTi BiIOOpa>keHHA MPOEKTYBAHHS OMYKJIUX TiJI
CTaJIOl IIUPUHU

Jligis BasmaeBuu

Haugonanvrut ywieepcumem ,JIvsiscoka nostmexrnixae“,
eya. C. Bandepu, 12, 79013 Jlveis, Ykpaina

IloBeeHo, M0 MHOXKWHA, TOYUO0K, Y SKHUX BiJOOpaKeHHs MPOEKTYBAHHS TiTepPIIpo-
CTOPY KOMIIAKTHHX OIyKJIMX Ti1 craiol mupuan B R® Ha Bimnosigmmii rinepupocrip
B R? me Biakpure, € BCIOQM MLIBHOWO B 1poMy rinepipocropi. IoniGuuil pesyabrar
MOYKHA, IOBECTH 11t mpoexTyBanus R™ ma R?, ne n > 2.
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