УДК 512.624

НИЖНЯ МЕЖА ДЛЯ ПОРЯДКУ ЕЛЕМЕНТІВ У РОЗШИРЕННЯХ СКІНЧЕННИХ ПОЛІВ ВИГЛЯДУ F_{p^p}

Роман ПОПОВИЧ

Національний університет "Львівська політехніка", вул. Бандери, 12, Львів, 79013 e-mail: rombp07@gmail.com

Явно будуємо в скінченних полях вигляду F_{p^p} для $p \geq 2$ елементи великого мультиплікативного порядку.

Ключові слова: скінченне поле, мультиплікативний порядок.

У низці прикладних застосувань із використанням скінченних полів часто потрібні елементи великого порядку [8, 9]. В ідеалі хотілось би мати змогу отримувати примітивний елемент для будь-якого скінченого поля. Якщо не маємо розвинення порядку мультиплікативної групи поля на прості множники, невідомо як досягти мети. Тому розглядають менш претензійне питання: збудувати елемент доказово великого порядку. У цьому разі достатньо отримати нижню межу для порядку. Питання розглядають для загальних і для спеціальних скінченних полів. Скінченне поле з q елементів позначаємо F_q .

С. Гао [7] дав алгоритм побудови елементів великого порядку для багатьох (згідно з висловленою ним, проте не доведеною, гіпотезою для всіх) загальних розширень F_{q^n} скінченого поля F_q з нижньою границею для порядку $\exp(\Omega((\log m)^2/\log\log m))$. Й. Волох [12] запропонував метод побудови елементів порядку принаймні $\exp(\Omega(\log m)^2)$).

Для часткових випадків скінченних полів можна збудувати елементи, які мають набагато більші порядки.

Розширення, пов'язані з поняттям гауссівського періоду, розглянуті в [3, 10]. Нижня границя на порядок дорівнює $\exp(\Omega(\sqrt{m}))$. Розширення на підставі полінома Куммера набувають вигляду $F_q[x]/(x^m-a)$. Їх, зокрема, застосовують у криптографії, що ґрунтується на спарюванні. У [6] з'ясували, як будувати елементи великого порядку в таких розширеннях за умови $q \equiv 1 \pmod{m}$. У цьому разі отримано нижню границю $\exp(\Omega(m))$. Елементи великого порядку збудовано в [5] для розширень вигляду $F_q[x]/(x^{2^t}-a)$ та $F_q[x]/(x^{3^t}-a)$ без умови $q \equiv 1 \pmod{m}$. Нижні границі на

[©] Попович Р., 2013

мультиплікативні порядки дорівнюють $\exp(\Omega(\log m)^2))$, де $m=2^t$ та $m=3^t$, відповідно. Повністю умова $q\equiv 1 \pmod m$ для розширень вигляду $F_q[x]/(x^m-a)$ знята в [11].

Групу, породжену елементом v, позначаємо $\langle v \rangle$. Кількість сполучень з n елементів по k елементів позначаємо $\binom{n}{k}$.

Явно будуємо елементи великого порядку в спеціальних розширеннях Артіна-Шраєра скінченних полів, подаємо явну оцінку знизу на їхній мультиплікативний порядок. Для будь-якого простого числа p розширенням Артіна-Шраєра скінченого поля F_p є поле F_{p^p} . Відомо [8, 9], що x^p-x-a нерозкладний поліном над F_p для будь-якого ненульового елемента a з F_p . Тому з обчислювальної точки зору можна вважати, що $F_{p^p} = F_p[x]/(x^p-x-a)$. Нехай $\theta = x \pmod{x^p-x-a}$. Зрозуміло, що $\theta^p = \theta + a$.

Точніше, йдеться про таке. В [1] довели таке: коли $p \geq 41$, то для будь-якого ненульового елемента b поля F_p елемент $\theta+b$ поля F_{p^p} має порядок більший від 4^p . Ми знімаємо умову $p \geq 41$, тобто даємо оцінку знизу для порядків елементів вигляду $\theta+b$ для розширень Артіна-Шраєра з характеристикою $p \geq 2$. Для отримання результатів використовуємо теоретичні міркування та комп'ютерні обчислення.

Приймаємо лінійний двочлен від елемента, який задає розширення, та всі його спряжені, що також належать до підгрупи, породженої цим двочленом, і будуємо їхні різні добутки. Усі спряжені згаданого лінійного двочлена також є лінійними двочленами. Ідею запропонував П. Берізбейтіа [4] як вдосконалення алгоритму АКЅ [2] та розвинута в [6, 11] для розширень Куммера.

Нагадаємо, що для поля F_q характеристики p автоморфізм Фробеніуса — це відображення $\varphi: F_q \to F_q$, яке кожному елементу α з F_q ставить у відповідність елемент α^p [8, 9]. Два елементи α, β з F_q називаємо спряженими (над F_p), якщо

$$\alpha = \varphi^t(\beta)$$

для деякого степеня φ^t автоморфізму Фробеніуса.

Лема 1. У випадку поля $F_{p^p} = F_p[x]/(x^p - x - a)$ спряжені влемента $\theta + b$ ($b \in F_p$) набувають вигляду $\theta + b + ia$ для i = 0, ..., p - 1.

Доведення. Доведемо, що $(\theta+b)^{p^i}=\theta+b+ia$, що для будь-якого натурального i. Доведемо це індукцією по i.

Очевидно, що для i=0 рівність виконується. Припустимо, що вона виконується для деякого i. Тоді для i+1 отримаємо

$$(\theta + b)^{p^{i+1}} = [(\theta + b)^{p^i}]^p = (\theta + b + ia)^p = \theta^p + b + ia = \theta + b + (i+1)a.$$

Отже, рівність правильна для будь-якого натурального i.

Варто зауважити, що елементи $\theta + b + ia$ є різними для i = 0, ..., p - 1.

Лема 2. Всі елементи вигляду $\theta+b+ia$ (i=0,...,p-1) мають однаковий мультиплікативний порядок.

Доведення. Приймемо довільні два елементи α, β згаданого вигляду. Згідно з лемою 1 ці елементи спряжені. Тобто існує такий степінь φ^t автоморфізму Фробеніуса, що

$$\alpha = \varphi^t(\beta).$$

Зрозуміло, що φ^t також є автоморфізмом. Якщо φ^t – автоморфізм і $\beta^k=1$, то тоді $\varphi^t(\beta^k) = \alpha^k = 1.$

Зафіксуємо цілі числа $1 \le c_- \le c \le p-1$. Нехай $S(p,c_-,c)$ множина таких відображень f з множини $\{0,...,p-1\}$ в множину цілих чисел, що

I)
$$|\{i|f(i)<0\}|=c_-;$$

II)
$$-\sum_{i,f(i)<0} f(i) \leq c$$

$$\begin{split} \hat{\mathbf{I}} & |\{i|f(i)<0\}| = c_-; \\ & \mathbf{II}) - \sum_{i,f(i)<0} f(i) \leq c; \\ & \mathbf{III}) \sum_{i,f(i)\geq0} f(i) \leq p-1-c. \end{split}$$

В [1] доведено таку лему.

Лема 3. Число елементів множини $S(p, c_{-}, c)$ дорівню ϵ

$$\left(\begin{array}{c}p\\c_-\end{array}\right)\left(\begin{array}{c}c\\c_-\end{array}\right)\left(\begin{array}{c}2p-c_--c-1\\p-c-1\end{array}\right).$$

Наступна лема дає оцінку знизу для числа елементів множини $S(p, c_-, c)$.

Лема 4. $S(p, c_{-}, c) > 4^{p}$ для $p \ge 13$.

Доведення. Приймемо у визарі з леми $3 c_{-} = c = 4$. Тоді

$$S(p, c_-, c) = \begin{pmatrix} p \\ 4 \end{pmatrix} \begin{pmatrix} 2p - 9 \\ p - 5 \end{pmatrix} > \frac{p(p-1)(p-2)(p-3)}{4} \begin{pmatrix} 2(p-5) \\ p - 5 \end{pmatrix}.$$

Використовуючи нерівність для центрального біноміального коефіцієнта

$$\left(\begin{array}{c} 2(p-5) \\ p-5 \end{array}\right) \ge \frac{4^{p-5}}{2\sqrt{p-5}},$$

одержимо

$$S(p, c_-, c) > \frac{p(p-1)(p-2)(p-3)}{4096\sqrt{p-5}}4^p.$$

Позаяк $p(p-1)(p-2(p-3) \ge 4096\sqrt{p-5}$ для $p \ge 13$ (оскільки p – просте число, то значення 12 не враховуємо), то отримуємо $S(p, c_-, c) > 4^p$.

Лема 5. У випадку поля F_{p^p} мультиплікативній порядок всіх елементів вигляду $\theta + b \ (b \in F_p) \ \partial opiehne:$

$$3$$
 для $p=2$,

13 для
$$p = 3$$
,

781 для
$$p = 5$$
,

137257 для
$$p = 7$$
,

$$28531167061$$
 для $p=11$.

Доведення. Розглянемо відповідні скінченні поля та виконані в них комп'ютерні обчислення.

1. Випадок поля F_{2^2} .

Характеристика поля дорівнює p=2. Згідно з виконаними комп'ютерними обчисленнями кількість елементів мультиплікативної групи поля дорівнює $2^2-1=3$ і мультиплікативнй порядок елемента $\theta-3$. Тоді згідно з лемою 3 мультиплікативний порядок всіх елементів вигляду $\theta + b \ (b \in F_p)$ також дорівнює 3.

2. Випадок поля F_{3^3} .

Характеристика поля дорівнює p=3. Згідно з виконаними комп'ютерними обчисленнями кількість елементів мультиплікативної групи поля дорівнює $3^3-1=26$, а мультиплікативний порядок елемента $\theta-13$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ ($b\in F_p$) також дорівнює 13.

3. Випадок поля F_{5^5} .

Характеристика поля дорівнює p=5. Згідно з виконаними комп'ютерними обчисленнями кількість елементів мультиплікативної групи поля дорівнює $5^5-1=3124$, а мультиплікативнй порядок елемента $\theta-781$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ ($b\in F_p$) дорівнює 781.

4. Випадок поля F_{77} .

Характеристика поля дорівнює p=7. Згідно з виконаними комп'ютерними обчисленнями кількість елементів мультиплікативної групи поля дорівнює $7^7-1=823542$, а мультиплікативнй порядок елемента $\theta-137257$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ ($b\in F_p$) також дорівнює 137257.

5. Випадок поля $F_{11^{11}}$.

Характеристика поля дорівнює p=11. Згідно з виконаними комп'ютерними обчисленнями кількість елементів мультиплікативної групи поля дорівнює $11^{11}-1=285311670610$, а мультиплікативнй порядок елемента $\theta-28531167061$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ ($b\in F_p$) дорівнює 28531167061.

Теорема 1. а) Якщо p = 2, то елементи поля F_{2^2} вигляду $\theta + b$ ($b \in F_2$) мають порядок 3;

- б) якщо p=3, то елементи поля F_{3^3} вигляду $\theta+b$ ($b\in F_3$) мають порядок 13; в) якщо p=5, то елементи поля F_{5^5} вигляду $\theta+b$ ($b\in F_5$) мають порядок 781;
- г) якщо $p \geq 7$, то елементи поля F_{p^p} вигляду $\theta + b$ $(b \in F_p)$ мають порядок більший від 4^p .

Доведення. З леми 5 випливають частини (а), (б) і (в) теореми. З леми 5 випливає також частина (г) для p=7 (оскільки $4^7<137257$) та для p=11 (оскільки $4^{11}<28531167061$).

За лемою 4 отримаємо, що $S(p,\,c_-,\,c)>4^p$ для $p\geq 13$. Звідси випливає твердження теореми.

Комп'ютерні обчислення, описані в лемі 5, виконані на двоядерному процесорі Intel Pentium P6200 2,13 GHz у двох варіантах. У першому варіанті використано власну програму в середовищі Delphi. У другому варіанті для порівняння використано середовище Maple. В обидвох варіантах отримали однакові результати.

Оскільки не всі визнають доведення з застосуванням комп'ютерних обчислень, то подаємо також ескіз доведення леми 5 без комп'ютерних обчислень. Для цього достатньо взяти розклади відповідних порядків мультиплікативних груп скінченних полів на прості множники та обчислити степені елемента θ . Хоча ці результати отримали з використанням комп'ютерних обчислень, проте їх можна перевірити вручну. Зокрема, для піднесення до степеня можна використати відомий швидкий ("індійський") алгоритм послідовних піднесень до квадрата та множень.

Доведення леми 5 без застосування комп'ютерних обчислень. Розглянемо відповідні скінченні поля та порядки елементів у них.

- 1. Оскільки випадок поля F_{2^2} потребує нескладних обчислень, то їх не подаємо.
- 2. Випадок поля F_{3^3} .

Кількість елементів мультиплікативної групи поля дорівнює $26=2\cdot 13$. Можна безпосередньо перевірити, що $\theta^{13}=1$. Отож, мультиплікативний порядок елемента θ дорівнює 13. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ також дорівнює 13.

3. Випадок поля F_{5^5} .

Кількість елементів мультиплікативної групи поля дорівнює $3124 = 4 \cdot 11 \cdot 71$. Можна безпосередньо перевірити, що

$$\theta^{11} = \theta^3 + 2\theta^2 + \theta \neq 1,$$

$$\theta^{71} = 4\theta^4 + 2\theta^3 + 4\theta^2 + 3\theta + 1 \neq 1,$$

$$(\theta^{71})^{11} = 1.$$

Отже, мультиплікативний порядок елемента θ дорівнює $781=11\cdot71$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ дорівнює 781.

4. Випадок поля F_{7^7} .

Кількість елементів мультиплікативної групи поля дорівнює $823542 = 2 \cdot 3 \cdot 29 \cdot 4733$. Можна безпосередньо перевірити, що

$$\theta^{29} = \theta^5 + 4\theta^4 + 6\theta^3 + 4\theta^2 + \theta \neq 1,$$

$$\theta^{4733} = \theta^6 + 5\theta^5 + 2\theta^4 + 5\theta^3 + 4\theta^2 + 2\theta + 5 \neq 1,$$

$$(\theta^{4733})^{29} = 1.$$

Отож, мультиплікативний порядок елемента θ дорівнює $137257=29\cdot 4733$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta+b$ також дорівнює 137257.

5. Випадок поля $F_{11^{11}}$.

Кількість елементів мультиплікативної групи поля дорівнює $285311670610 = 2 \cdot 5 \cdot 15797 \cdot 1806113$. Можна безпосередньо перевірити, що

$$\theta^{15797} = 2\theta^{10} + 3\theta^9 + 2\theta^8 + 3\theta^7 + 4\theta^6 + 8\theta^5 + 6\theta^4 + 4\theta^3 + 3\theta^2 + 8\theta \neq 1,$$

$$\theta^{18061137} = 3\theta^{10} + 4\theta^9 + 8\theta^8 + 8\theta^7 + 6\theta^6 + 7\theta^5 + \theta^4 + 5\theta^3 + 4\theta^2 + 6 \neq 1,$$

$$(\theta^{1806113})^{15797} = 1.$$

Отже, мультиплікативний порядок елемента θ дорівнює $28531167061 = 15797 \cdot 1806113$. Тоді згідно з лемою 2 мультиплікативний порядок всіх елементів вигляду $\theta + b$ дорівнює 28531167061.

Список використаної літератури

- 1. *Попович Р.* Елементи великого порядку в розширеннях Артіна-Шраєра скінченних полів / *Р. Попович* // Матем. студії. 2013. Т. 39, №2. С. 115-118.
- Agrawal M. PRIMES is in P. / M. Agrawal, N. Kayal, N. Saxena // Ann. of Math. 2004.
 Vol. 160, №2. P. 781-793.
- 3. Ahmadi O. Multiplicative order of Gauss periods / O. Ahmadi, I.E. Shparlinski, J.F. Voloch // Int. J. Number Theory. − 2010. − Vol. 6, №4. − P. 877-882.

- 4. Berrizbeitia P. Sharpening Primes is in P for a large family of numbers / P. Berrizbeitia // Math. Comp. 2005. Vol. 74:252. P. 2043-2059.
- Burkhart F. Finite field elements of high order arising from modular curves / F. Burkhart et al. // Designs, Codes and Cryptography. – 2009. – Vol. 51, №3. – P. 301-314.
- Cheng Q. On the construction of finite field elements of large order / Q. Cheng // Finite Fields Appl. - 2005. - Vol. 11, №3. - P. 358-366.
- Gao S. Elements of provable high orders in finite fields / S. Gao // Proc. Amer. Math. Soc. 1999. Vol. 127, №6. P. 1615-1623.
- 8. Lidl R. Finite Fields / R. Lidl, H. Niederreiter. CRC Press, 2013. 755 p.
- 9. Mullen G.L. Handbook of finite fields. / G.L. Mullen, D. Panario. Cambridge University Press, 1997. 1068 p.
- 10. Popovych R. Elements of high order in finite fields of the form $F_q[x]/\Phi_r(x)$ / R. Popovych // Finite Fields Appl. 2012. Vol. 18, Nº 4. P. 1615-1623.
- 11. Popovych R. Elements of high order in finite fields of the form $F_q[x]/(x^m-a) / R$. Popovych // Finite Fields Appl. 2013. Vol. 19, №1. P. 86-92.
- 12. Voloch J.F. Elements of high order on finite fields from elliptic curves / J.F. Voloch // Bull. Austral. Math. Soc. 2010. Vol. 81, N23. P. 425-429.

Стаття: надійшла до редакції 10.10.2013 прийнята до друку 11.12.2013

LOWER BOUND FOR ELEMENTS ORDER IN FINITE FIELDS EXTENSIONS OF THE FORM F_{p^p}

Roman POPOVYCH

Lviv Polytechnic National University, Bandery Str., 12, Lviv, 79013 e-mail: rombp07@gmail.coml

We construct explicitly in any finite field of the form F_{p^p} for $p \geq 2$ elements with high multiplicative order.

Key words: finite field, multiplicative order.

НИЖНЯЯ ГРАНИЦА ДЛЯ ПОРЯДКА ЭЛЕМЕНТОВ В РАСШИРЕНИЯХ КОНЕЧНЫХ ПОЛЕЙ ВИДА F_{p^p}

Роман ПОПОВЫЧ

Национальный университет "Львовская политехника", ул. Бандеры, 12, Львов, 79013 e-mail: rombp07@gmail.com

Явно строим в конечных полях вида F_{p^p} для $p \geq 2$ элементы большого мультипликативного порядка.

Ключевые слова: конечное поле, мультипликативный порядок.