УДК 512.4

FILTERS AND THEIR TRIVIALITY

Yuriy Maturin

Institute of Physics, Mathematics and Computer Science
Drohobych State Pedagogical University,
Stryjska Str., 3, Drohobych, 82100
e-mail: yuriy maturin@hotmail.com

Filters of modules are studied. Necessary and sufficient conditions for all preradical filters to be trivial are given.

Key words: ring, module, preradical.

All rings are considered to be associative with unit $1\neq 0$ and all modules are left unitary.

Let R be a ring. The category of left R-modules will be denoted by R-Mod. We shall write $N \leq M$ if N is a submodule of M. The set of all R-endomorphisms of M will be denoted by End(M). Let J(M)denote the Jacobson radical of M. Let $N \leq M$ and $f \in End(M)$. Put

$$(N:f)_M = \{x \in M \mid f(x) \in N\}, \quad End(M)_N = \{f \in End(M) \mid f(M) \subseteq N\}.$$

Let E be some non-empty collection of submodules of a left R-module M.

Consider the following conditions:

$$L \in E, L \le N \le M \Rightarrow N \in E; \tag{1}$$

$$L \in E, f \in End(M) \Rightarrow (L:f)_M \in E;$$
 (2)

$$N, L \in E \Rightarrow N \cap L \in E; \tag{3}$$

$$N \in E, N \in Gen(M), L \le N \le M \land \forall g \in End(M)_N : (L : g)_M \in E \Rightarrow L \in E;$$
 (4)

Definition 1. A non-empty collection E of submodules of a left R-module M satisfying (1), (2), (3) is called a preradical filter of M (see [2]).

Definition 2. A non-empty collection E of submodules of a left R-module M satisfying (1), (2), (4) is called a radical filter of M (see [2]).

[©] Maturin Yu., 2013

Definition 3. A preradical (radical) filter E of a left R-module M is said to be trivial if either $E = \{L \mid L \leq M\}$ or $E = \{M\}$.

Theorem 1. Let M be a left R-module such that $M = M_1 \oplus M_2 \oplus ... \oplus M_n$, where $M_i = Tr_M(M_i)$ for each $i \in \{1, 2, ..., n\}$ and $\forall S : S \leq M \Rightarrow S \in Gen(M)$. If E_i is a radical [preradical] filter of M_i for each $i \in \{1, 2, ..., n\}$, then $E = \{J_1 + J_2 + ... + J_n | J_i \in E_i (i \in \{1, 2, ..., n\})\}$ is a radical [preradical] filter of M.

Proof. Let E_i is a radical [preradical] filter of M_i for each $i \in \{1, 2, ..., n\}$. Put

$$E = \{J_1 + J_2 + \dots + J_n | J_i \in E_i (i \in \{1, 2, \dots, n\})\}.$$

- (1) Let $J_1 + J_2 + ... + J_n \leq S \leq M$, where $J_1 \in E_1, J_2 \in E_2, ..., J_n \in E_n$. As in the above, by a similar argument, $S = S_1 + S_2 + ... + S_n$, where $S_i = Tr_S(M_i) = f_i(S)$. Hence $J_i \leq S_i$ for any $i \in \{1, 2, ..., n\}$. By (1) for radical [preradical] filters, $S_i \in E_i$ for any $i \in \{1, 2, ..., n\}$. Hence $S \in E$.
- (2) Let $J_1 \in E_1, J_2 \in E_2, ..., J_n \in E_n, F \in End(M)$. Since M_i is fully invariant for any $i \in \{1, 2, ..., n\}$, $F(M_i) \subseteq M_i$ for any $i \in \{1, 2, ..., n\}$. Consider

$$F_i: M_i \to M_i, F_i(m) = F(m), (m \in M_i).$$

Hence $F_i \in End(M_i)$. We claim that

$$(J_1:F_1)_{M_1}+(J_2:F_2)_{M_2}+\ldots+(J_n:F_n)_{M_n}=((J_1+J_2+\ldots+J_n):F)_{M_n}$$

Indeed, let $x \in M, x = x_1 + x_2 + ... + x_n, \forall i \in \{1, 2, ..., n\} : x_i \in M_i$. Hence

$$x \in (J_1:F_1)_{M_1} + (J_2:F_2)_{M_2} + \ldots + (J_n:F_n)_{M_n} \Leftrightarrow \forall i \in \{1,2,\ldots,n\}: x_i \in (J_i:F_i)_{M_i} \Leftrightarrow \{1,2,\ldots,n\}: x_i \in$$

$$\Leftrightarrow \forall i \in \{1,2,...,n\}: F_i(x_i) \in J_i \Leftrightarrow \forall i \in \{1,2,...,n\}: F(x_i) \in J_i \Leftrightarrow$$

$$\Leftrightarrow F(x) \in J_1 + J_2 + \dots + J_n \Leftrightarrow x \in ((J_1 + J_2 + \dots + J_n) : F)_M.$$

- By (2) for radical [preradical] filters, $(J_i:F_i)_{M_i}\in E_i$ for any $i\in\{1,2,...,n\}$. Therefore $((J_1+J_2+...+J_n):F)_M\in E$.
- (3) $J_1 \in E_1, J_2 \in E_2, ..., J_n \in E_n, T_1 \in E_1, T_2 \in E_2, ..., T_n \in E_n$. By (3) for preradical filters, $J_1 \cap T_1 \in E_1, J_2 \cap T_2 \in E_2, ..., J_n \cap T_n \in E_n$. Hence

$$(J_1 + J_2 + \dots + J_n) \bigcap (T_1 + T_2 + \dots + T_n) = J_1 \bigcap T_1 + J_2 \bigcap T_2 + \dots + J_n \bigcap T_n \in E.$$

(4) Let $N_1 \in E_1, N_2 \in E_2, ..., N_n \in E_n, L \leq N \leq M, \forall g \in End(M)_N : (L:g)_M \in E$, where $N = N_1 + N_2 + ... + N_n$. As in the above consideration, we obtain $L = L_1 \oplus L_2 \oplus ... \oplus L_n$, where $L_i = Tr_L(M_i) = f_i(L)$. Since $L \leq N$, it is easily seen that $L_i \leq N_i$ for any $i \in \{1, 2, ..., n\}$. Let g_i be an arbitrary element of $End(M_i)_{N_i}$. Consider

$$g: M \to M, x_1 + x_2 + ... + x_i + ... + x_n \mapsto g_i(x_i), (x_1 \in M_1, x_2 \in M_2, ..., x_n \in M_n).$$

Hence $g \in End(M)_N$. It is obvious that $f_i((L:g)_M) = (L_i:g_i)_{M_i}$. Since $(L:g)_M \in E$, $(L_i:g_i)_{M_i} = f_i((L:g)_M) \in E_i$.

Claim that

$$\forall s \in \{1, 2, ..., n\} \ \forall K \leq M_s: \ K \in Gen(M_s).$$

Indeed, let $K \leq M_s$. Since $K \in Gen(M)$, $Tr_K(M) = K$. By Proposition 8.20 [1], $K = Tr_K(M) = \sum_{i=1}^n Tr_K(M_i)$. But $Tr_K(M_i) \leq K \bigcap Tr_M(M_i) = K \bigcap M_i \leq M_s \bigcap M_i = 0$ for any $s \neq i$. Hence $K = Tr_K(M) = Tr_K(M_s)$. Therefore $K \in Gen(M_s)$.

Whence $N_i \in Gen(M_i)$ for any $i \in \{1, 2, ..., n\}$. Now we obtain $N_i \in E_i, N_i \in Gen(M_i), L_i \leq N_i \leq M_i \land \forall g_i \in End(M_i)_{N_i} : (L_i : g_i)_{M_i} \in E_i$. By (4) for radical [preradical] filter E_i of M_i , $L_i \in E_i$. Therefore $L = L_1 + L_2 + ... + L_n \in E$.

Corollary 1. Let $R = R_1 \oplus R_2 \oplus ... \oplus R_n$, where R_i is a non-zero two-sided ideal for each $i \in \{1, 2, ..., n\}$. If E_i is a radical [preradical] filter of R_i for each $i \in \{1, 2, ..., n\}$, then $E = \{J_1 + J_2 + ... + J_n | J_i \in E_i (i \in \{1, 2, ..., n\})\}$ is a radical [preradical] filter of R.

Proof. It is easy to see that $R_i = Tr_R(R_i)$ for each $i \in \{1, 2, ..., n\}$ and $\forall S : S \leq R \Rightarrow S \in Gen(R)$.

Theorem 2. If M is a left R-module with $J(M) \neq M$, then every preradical filter of M is trivial if and only if M is a finitely generated semisimple module and all minimal submodules of M are isomorphic.

Proof. (\Rightarrow) Assume that every preradical filter of M is trivial. Let Ss be the class of all semisimple modules of M. Consider

$$F := \{ L \le M \mid M/L \in Ss \}.$$

Since $J(M) \neq M, F \neq \{M\}$.

- (1) Let $L \leq K, L \in F$. Then there exists an exact sequence $M/L \to M/K \to 0$. Hence $K \in F$.
- (2) Let $L \in F, f \in End(M)$. Since there exists an exact sequence $0 \to M/(L:f)_M \to M/L, (L:f)_M \in F$.
- (3) Let $L, N \in F$. Since there exists an exact sequence $0 \to M/(L \cap N) \to M/L \times M/N, L \cap N \in F$.

Therefore F is a preradical filter.

Since F is a preradical filter and $F \neq \{M\}, 0 \in F$. Hence M is semisimple.

We shall show that all minimal submodules of M are isomorphic. Suppose that L,N are non-isomorphic minimal submodules of M. Hence $Tr_M(L), Tr_M(N)$ are fully invariant submodules of M. Since L,N are non-isomorphic, $Tr_M(L), Tr_M(N)$ are independent. Hence $Tr_M(L) \bigcap Tr_M(N) = 0$. Since $0 \neq L \subseteq Tr_M(L) \& 0 \neq N \subseteq Tr_M(N) \& Tr_M(L) \bigcap Tr_M(N) = 0$, $0 \neq Tr_M(L) \neq M$. Taking into account that $Tr_M(L)$ is a fully invariant submodule of M, it is easily seen that $\{B \leq M | Tr_M(L) \leq B\}$ is a non-trivial preradical filter of M, contrary to the fact that every preradical filter of M is trivial.

Since all minimal submodules of M are isomorphic, M has exactly one homogeneous component.

Suppose that M is not a finitely generated module. Hence $M = \bigoplus_{i \in A} P_i$, where $P_i \cong P$ for some minimal submodule $P \leq M$, $Card(A) = \infty$.

Put

$$E := \{T \mid T \leq M, M/T \text{ is finitely generated } \}.$$

Let $a \in A$. Put

$$K := \sum_{i \in A \setminus \{a\}} P_i.$$

It is obvious that $M/K = (K \oplus P_a)/K \cong P_a$ is finitely generated. Therefore $K \in E$. Since $M/0 \cong M$ is not finitely generated, $0 \notin E$.

Hence $E \neq \{T | T \leq M\}$ and $E \neq \{M\}$.

- (1) Let $L \in E, L \leq N \leq M$. There exists an exact sequence $M/L \to M/N \to 0$. Since M/L is finitely generated and M/N is an epimorphic image of M/L, M/N is finitely generated. Hence $N \in E$.
- (2) Let $L \in E$, $f \in End(M)$. By Lemma 1 [3], $M/(L:f)_M \cong f(M)/(f(M) \cap L)$. By Corollary 3.7 (3) [1, p. 46], $f(M)/(f(M) \cap L) \cong (f(M)+L)/L$. Since (f(M)+L)/L is a submodule of a finitely generated semisimple module M/L, $M/(L:f)_M$ is finitely generated. Hence $(L:f)_M \in E$.
- (3) Let $N, L \in E$. Hence M/N, M/L are finitely generated semisimple modules. It follows from this that $M/N \times M/L$ is finitely generated semisimple. Since there exists an exact sequence $0 \to M/(N \cap L) \to M/N \times M/L$ and $M/N \times M/L$ is finitely generated semisimple, $M/(N \cap L)$ is finitely generated. Hence $N \cap L \in E$.

Now we obtain that E is a non-trivial filter, contrary to the fact that every preradical filter of M is trivial. It means that M is finitely generated.

 (\Leftarrow) Assume that M is a finitely generated semisimple module and all minimal submodules of M are isomorphic. Hence M is a finitely generated semisimple module with a unique homogeneous component. Arguing as in the proof of Theorem 4 [3] we can show that all preradical filters of M are trivial.

Corollary 2. All preradical filters of R are trivial if and only if $R \cong M_n(T)$ for some division ring T and $n \in \mathbb{N}$.

Proof. By Theorems 2 and 13.4 [1].

Acknowledgements. I would like to thank Professor M.Ya. Komarnytskyi and Associate Professor O.L. Horbachuk for helpful discussions.

References

- 1. Anderson F.W. Rings and categories of modules / F.W. Anderson, K.R. Fuller // Berlin-Heidelberg-New York: Springer, 1973. 340 p.
- Kashu A.I. Radicals and torsions in modules / A.I. Kashu // Chisinau: Stiintca, 1983. 156 p.
- 3. $Maturin\ Yu$. Preradicals and submodules / Yu. $Maturin\ //$ Algebra and discrete mathematics. -2010. Vol. 10, N1.

Стаття: надійшла до редакції 28.05.2013 прийнята до друку 16.10.2013

ФІЛЬТРИ ТА ЇХНЯ ТРИВІАЛЬНІСТЬ

Юрій Матурін

Інститут фізики, математики та інформатики Дрогобицького державного педагогічного університету імені Івана Франка, вул. Стрийська, 3, Дрогобич, 82100 e-mail: yuriy_ maturin@hotmail.com

Вивчено фільтри модулів. Наведено необхідні та достатні умови для тривіальності всіх напередрадикальних фільтрів.

Ключові слова: кільце, модуль, напередрадикал.

ФИЛЬТРЫ И ИХ ТРИВИАЛЬНОСТЬ

Юрий Матурин

Институт физики, математики и информатики Дрогобычского государственного педагогического университета имени Ивана Франко, ул. Стрыйская, 3, Дрогобыч, 82100 e-mail: yuriy maturin@hotmail.com

Изучено фильтры модулей. Указано необходимые и достаточные условия для тривиальности всех предрадикальных фильтров.

Ключевые слова: кольцо, модуль, предрадикал.