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In the paper, an inverse boundary value problem for a second order elliptic
equation is investigated. At first the initial problem is reduced to the equivalent
problem for which the existence and uniqueness theorem of the solution is
proved. Further, using these facts, the existence and uniqueness of the classic
solution of the initial problem is proved.
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1. Introduction. The inverse problems are favorably developing section of up-to-
date mathematics. Recently, the inverse problems are widely applied in various fields of
science.

Different inverse problems for various types of partial differential equations have
been studied in many papers. First of all we note the papers of A.N. Tikhonov [1],
M.M. Lavrentyev [2,3], A.M. Denisov [4], M.I. Ivanchov [5] and their followers.

The goal our paper to prove the uniqueness and existence of the solution of a
boundary value problem for a second order elliptic equation with integral condition.

The inverse problems with an integral predetermination condition for parabolic
equations were investigated in [6-10].

In the papers [11-15] the inverse boundary value problems were investigated for a
second order elliptic equation in a rectangular domain.

2. Problem statement and its reduction to equivalent problem. Consider
the equation

Ut (2, 1) + Uz (2, 1) = at)u(z, t) + f(x,t) (1)
and substitute for it in the domain Dy = {(x,t) : 0<z <1, 0<¢t<T} an inverse
boundary value problem with boundary conditions

u(ac,O) = (p(.’L‘), ut(va) = ¢($) (O Sz < 1)7 (2)
we(0,8) =0, (0<t<T), (3)
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with integral condition
1
/u(:z:, tyde =0 (0<t<T) (4)
0
and additional condition
u(0,t) = h(t) (0<t<T), (5)

where f(x,t), p(z), ¥(x), h(t) are the given functions, and u(z,t), a(t) are the desired
functions.
Definition 1. A classic solution of problem (1)-(5) is a pair {u(z,t), a(t)} of functions
u(z,t) and a(t) possessing the following properties:

1) the function u(x,t) is continuous in D together with all its derivatives contained

in equation (1);
2) the function a(t) is continuous on [0,T];
3) all the conditions (1)-(5) are satisfied in the ordinary sense.

For investigating problem (1)-(5), at first consider the following problem:
y'(t) = al)y(t) (0<t<T), (6)

y(0) =0, (1) =0, (7)
where a(t) € C[0,T] is a given function, y = y(¢) is a desired function, and under the
solution of problem (6),(7) we understand a function y(t) € C?[0,T] satisfying in [0, T]
equation (6) and conditions (7).

The following lemma is valid.

Lemma 1 ([14]). Let a function a(t) € C[0,T] be such that
la(®)ll o) < R = const.
Furthermore,
%TQR <1 (8)
Then problem (6),(7) has only a trivial solution.

Alongside with inverse boundary value problem consider the following auxiliary
inverse boundary value problem. It is required to determine a pair {u(z,t), a(t)} of
functions u(z,t) and a(t) possessing the properties 1) and 2) of the definition of the
classic solution of problem (1)-(5) from relations (1)-(3), and

up(L,t) =0 (0<t<T), 9)
R (t) + w2 (0,t) = a(t)h(t) + f(0,¢) (0<t<T). (10)
The following lemma is valid.

Lemma 2. Let o(z), ¥(x) € C[0, 1], h(t) € C20,T], h(t) £0 (0 < t < T), f(z,1)
C(Dr), fo x,t)dz =0 (0 <t <T), and the following consistency conditions be fulfilled:

jgp(m)dw =0, jw(x)dac =0, (11)
0 0
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(0) = h(0), (0) =H(T). (12)
Then the following statements are true:
1) each classic solution u(zx,t), a(t) of problem (1)-(5) is the solution of problem

(1)-(3), (9), (10) as well;
2) each solution u(x,t), a(t) of problem (1)-(3), (9), (10) is such that

1
ST a0 legory < 1 (13)
is the classic solution of problem (1)-(5).

Proof. Let u(z,t), a(t) be a solution of problem (1)-(5). Integrating equation (1) with
respect to z from 0 to 1, we have:

1 1 1
a2
d—/u:vtd:c—i—uw(lt) +(0,1) /u dac—i—/fxtdx 0<t<T). (14)
0 0 0

Hence, by means of fo f(z,t)de =0 (0 <t <T)and (3) we obtain (9).
Substituting = 0 in equation (1), we find:
(0, 8) + g (0,8) = a(t)u(0,t) + f(0,) (0<¢t<T). (15)
Further assuming that h(t) € C?[0,T], and differentiating (5) twice, we have:
u(0,8) = h"(t) (0<t<T).

Taking into account the last relation and condition (5) in (15) we obtain (10).
Now suppose that u(z,t), a(t) is a solution of problem (1)-(3), (9), (10), moreover,
(13) is fulfilled. Then from (14), allowing for (3) and (9), we find:

1

1

d2

pE] u(z, t)dr — a(t /u =0 (0<¢t<T). (16)
0 0

By (2), and (11), it is obvious that

ju(z,())dx - j@(z)d:z: —0, jut(x,T)da: - /11/)(17)6117 —0. (17)
0 0 0 0

Since by Lemma 1, problem (16), (17) has only a trivial solution, thenfo1 u(z,t)dr=0
(0 <t <T)ie. condition (4) is satisfied.
Further, from (10) and (15) we get:

@ @(0,1) (1)) = a(t)(u(0,1) ~ h(t) (O <t<T) (18)

By (2) and agreement conditions (12) we have:
u(0,0) = h(0) = p(0) — h(0) =0, wy(0,T) = W'(T) = p(0) — W(T) =0.  (19)

From (18) and (19), by Lemma 2 we conclude that condition (5) is satisfied. The
lemma is proved.
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3. Investigation of the existence and uniqueness of the classic solution of
the inverse boundary value problem.

Let us look for the first component u(z,t) of the solution w(z,t), a(t) of problem
(1)-(3), (9), (10) in the form:

u(a,t) = uk(t)cos \ex (A = k), (20)
k=0
where
1
ug(t) = my, /u(x,t) cos \gzdzr (k=0,1,2,...),
0
moreover,
(1, k=0
METN 2, k=1,2,....
Then applying the formal scheme of the Fourier method, from (1), (2) we get
uk(O) :¢k7 U;C(T) :/l/}k (k:O, 172,"')’ (22)
where )
Fi(t;u,a) = fu(t) + at)ur(t), fe(t) =mi [ f(z,t)cos \grdx
0
1 1
o = my, [ p(x)cos Agadr, Yr =my [P(x)cos \gzdr (k=0,1,2,...)
0 0
From (21), (22) we obtain:
T
w(t) = oo + vt + [ Golt,7)Fa(rsu,a)dr, (23)
0
W =) shut)
_c k —t S Kkt . —
wi(t) = Lo o I +/Gk(t,T)Fk(T,u, a)dr (k=1,2....), (24)
0
where
o _tv t € [077-]5
Golb:m) = { —r, telnT) (25)

WM[Sh(Ak(T +t—71)) = sh\(T = (t+71)))], te]l0,7],

Gk(“)—{ s [SAOW(T = (t 4+ 7)) = sh(A(T = (t =), ¢ € [1.T).

(26)

After substituting the expressions from (23), (24) into (20), for determining the
component of the solution of problem (1)-(3), (9), (10) we get

T
u(z,t) = @o + tho + f Go(t, 7)Fo(T;u,a)dr+
0

T

) ch(M (T — 1)) sh(Axt) / .

- ; WD) E T NchOWT) Uk + [ Gi(t, 7)Fi(Tiu,a)dr o cos Az, (27)
B 0
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where
1
Fr(t;u,a) = fr(t) + mk/ Yu(z,t)) cos \pxdx (k=0,1,2,...).
0

Now, from (10), allowing for (20) we have:

a(t)=h~ (){h” Z)\kuk } (28)

For obtaining an equation for the second component a(t) of the solution {u(x,t),
a(t)} of problem (1)-(3), (9) , (10), substitute expression (24) into (28):

a(t)—hl(t){h”(t) £(0,8) — E/\Q [T

T
%‘”ﬁ/ Gi(t, ) Fi(rsw,a)dn)]}. (29)
0
where
Fi(tiu,a) = fr(t) + 2/ Ju(z,t)) cos \pzdz  (k =1,2,...).
0

Thus, problem (1)-(3), (9), (10) was reduced to system (27), (29) with respect to
the unknown functions u(z,t) and a(t).

The following lemma is important for studying the uniqueness of the solution of
problem (1)-(3), (9), (10).

Lemma 3. If {u(z,t), a(t)} is any solution of problem (1)-(3), (9), (10), then the
functions

1
mk/u x,t)cos \gzdxr (k=0,1,2,...)
0

satisfy system (23), (24) in [0,T).

Proof. Let {u(x,t), a(t)} be any solution of problem (1)-(3), (9), (10). Then, having
multiplied the both sides of equation (1) by the function mycos gz (kK =0,1,2,...),
integrating the obtained equality with respect to  from 0 to 1, and using the relations

1 1
mk/utt(a:,t) cos \gzdr = — k/u x,t)cos \pzdzr | =up(t) (k=0,1,2,..),
0 0
1 1
mk/um(x t) cos \gzdr = — A3 k/u (z,t) cos \pzdr | = —Ajup(t) (k=0,1,2,..),
0 0

we get that equation (21) is satisfied.
Similarly, from (2) we get that condition (22) is fulfilled.
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Thus, uk(t) (k= 0,1,2,...) is a solution of problem (21), (22). Hence it directly
follows that the functions ug(t) (k =0,1,2,...) satisfy on [0, 7] system (23), (24). The
lemma is proved.

Remark 1. From Lemma 3 it follows that for proving the uniqueness of the solution of
problem (1)-(3),(9),(10), it suffices to prove the uniqueness of the solution of system (27),
29).

In order to investigate problem (1)-(3), (9), (10), consider the following spaces:
Denote by Bj , the set of all the functions of the form

u(z,t) = Zuk(t) cos \gz (A, = k)
k=0

considered in Drp, where each of the functions ux(t) (k = 0,1,2,...) is continuous on
[0,T7], and

hw:wmmmwﬁ(ZXﬁmwmmwﬂ < .

k=1
In this set, we determine the operation of addition and multiplication by the number

(real) in the usual way: under the zero element of this set we understand the function
u(x,t) =0 on Dy, and determine the norm in this set by the formula

1)l g, = ().

Prove that all these spaces are Banach spaces. Indeed, the validity of the first two
axioms of the norms is obvious, and validity of the third axiom of the norm is easily
established by means of the summator inequality of Minkowsky; consequently, B%T is a
linear normalized space. Now prove its completeness. Let

oo
Up(x,t) = Zukn(t) cos gz (n=1,2,...)
k=0
be any sequence which is fundamental in B;T. Then for any € > 0 there exists a number

ne such that

”“n(xv t) - um(x,t)HBg’T = ”uO,n(t) - uO,m(t)Hc[o,T] +

+ <Z ()\2 Huk,n(t) - 'U:k,m(t)Hc[o’T])2> <e (30)

k=1
Yn,m > n.
Consequently, for any fixed k¥ (k=1,2,...):

l[uo,n(t) — uO,m(t)”c[o,T] <¢

1k (8) = s ()| o,z < € Vo = e (31)
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This means that the sequences {ug(t)}52; and for any fixed & (k=1,2,...) : the
sequences {ug.,(t)}5° ; are fundamental in C[0, 7] and consequently by the completeness
of C[0,T] they converge in the space C[0,T7:

c
uo,n (%) 71 uo,0(t) € C[0,T] as n — oo,
wn®) BT wo(t) € CI0,T] as n - oo, (32)
Further, by (30), for any fixed number N:
v N
[0, (t) = vo,m ()l oo 77 + (Z ()\2 [[2ke,n (t) — uk7m(t)||C[O)T]> ) <e Vn,m > n..
k=1
(33)
Using relations (32) and passing to limit as m — oo in (33), we obtain
v N
[[uon(t) — UO,O(t)”c[o,T] + (Z ()‘2 (| wk,n (t) — uk,m(t)”c[o,T]) ) <e Vn>n.. (34)
k=1
Hence, by arbitrariness of N (or equivalently, passing to limit as N — 00), we obtain
o0 5\ 2
l[wo,n () — w0,0(t)llcpo. 1) + <Z (Ai [t (£) — uk,o(t)ucm) ) <e Vn>n. (35)
k=1
Accept the denotation
uo(x,t) = Z ug,0(t) cos Agz. (36)
k=0

Since ug(x, t) = [uo(x,t) = tn, (2, )]+ un, (2, 1), and by (35) uo(x,t)—un, (z,t) € B 1,

and also u,, (z,t) € B 1, we get that
uo(z,t) € B3 1.
Then, by (35) for any € > 0 there exists a number n. such that
ltn (2, t) — uo(x,t)HBg’T <e Vn > ne.

And this means that the sequence u,(z,t) converges in B3, to the element
uo(z,t) € B%T. This proves the completeness and consequently the Banach property of
the space BS 7.

Denote by E3. the space B3 - x C[0, T of the vector-functions z(z, t) = {u(x,t), a(t)}
with the norm

(e )5, = e, Ol g, + la(®logomy-
It is known that Bj , and E}. are Banach spaces.
Now, in the space E3 consider the operator
(I)(’U,, a) = {(I)l(ua a)v (1)2(u7 CL)} ’

where

Oy (u,a) =z, 1) = > ik(t) cos A\,
k=0



Yashar MEHRALIYEV
152 ISSN 2078-3744. Bicuuk Jlbsis. yu-Ty. Cepis mex.-mart. 2012. Bumyck 77

Dy (u,a) = alt),
Uo(t), ur(t) (k=1,2,...) and a(t) equal the right sides of (23), (24) and (29), respectively.
It is easy to see that

S;((:’“?) 1 (0<t<T), %gl 0<t<T),
[¢ k C k
C k @ k
sh(\e(T — (¢ +17))) sh(\e(T — (t — 7))
BOWT) <1 (0<7<t<T), OnT) <1 (0<7<t<T).

Taking into account these relations by means of simple transformations we find

|to(t)] < |<P0|+T|1/10|+2Tf|f0 |d7'+2Tf| ) uo(7)| d,

()] < lokl + 55 ] + 5 VT (f|fk )| dT) + 1T la@®ll oo,z 1wk Ollcpory-

la(®)l < |1 ()| {IR" (1) — £(0, )]

X (kojlrli)% l< (A2 1oxl) >%+ (i_ol (N2 |¢k|)2)%+
+%\/T (;fp 02 e 2d7’> > +\/L€T||a(t)||c[o,:r] <§1 (Ai ||Uk(t)||C[O,T])2>§] }7

a0 (®)ll 0,71 <
1

2

t
< lol + T [tho| + 2TVT (/|f0(7)|2d7) +27%[la(®) oy oWl o (B7)
0

(f (AR |ﬁk(t)|c[0,T])2)é <2 (f (A2 |gak|)2)é +2 (ki_'fl (2 |¢k|)2) L

k=1 k=1

TOO
+2/T A2 S dr
[/ Eewerre)

k=

1
2

+ 2T [la(t) [l ¢ 0,1 <Z (A7 [l (¢ ||COT)2> , (38)
k=1

=

|30 g < 17 Ol {Hh"(t) = £ODllopr + 75 (5_'3 (A} |sok|>2)2
% T ~ %
+z (E (AR [nl)? ) + 4 VT g‘k; (AR L )|)2d7> +

[N

oo

+% T la(®) oo (H(Az |uk<t>|cm,ﬂ>2> ] } (39)

Suppose that the data of problem (1)-(3), (9), (10) satisfy the following conditions:
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1) ¢(z) € C2(0,1), " (x) € L2(0,1) and ¢'(0) = ¢'(1) = 0;

2) P(x) € C0,1], ¢"(x) € L2(0,1) and ¢’'(0) = ¢'(1) = 0;

3) f(I,t), fm(xvt) € C(DT)v fl‘m(xat) LQ(DT) and

f2(0,8) = fo(1,) =0 (0<t<T);

4) h(t) € C?[0,T], h(t)#£0 (0<t<T).

Then from (37)-(39), we obtain:
(e, < A(T) + Ba(T) lalt) .z N ), (40)
la@®llco,r) < A2(T) + B2(T) lla®)ll oo,z lulz: )l g3 . » (41)

where

AU(T) = @) gy 0,0y + T 1Y@ 10,0 + 2TVT 1 (@O Ly oy +

+2 ||90W(I)”L2(0,1) +2 |W”($)HL2(0,1) + 2\/T Hfmc(xa t)HLQ(DT) )
By(T) = 2T(T + 1);

Ay(T) = Hh_l(t)Hc[oﬁT] {”h”( ) — f(0, t)”c[o nt = \/— HSD/H(‘T)HLQ(OJ) +

1 1
+ 2 10 @y + =T ||fm<x,t>|L2<DT>};

_ 1
Ba(T) = [0 O 75 T

From inequalities (40), (41) we obtain:
(e, Oll g, + 6O < AT) + B Ja®llogo zy e Dy, (42)

where
A(T) = Ay(T) + Ao(T), B(T) = B(T) + Bo(T).

So, we can prove the following theorem.
Theorem 1. Let conditions 1-4 be satisfied, and
(A(T) +2)°B(T) < 1. (43)
Then problem (1)-(3), (9), (10) has a unique solution in the ball K = KR(||2||E; <R=
= A(T) +2) of the space E3..
Proof. In the space E3. consider the equation
z=®z, (44)

where the components ®;(u,a) (i = 1,2) of the operator ®(u,a) are defined from the
right sides of equations (27) and (29).

Consider the operator ®(u,a) in the ball K = K from E3.. Similar to (42), we get
that for any z, z1, 29 € Kg the following estimates are valid:

192 gg. < A(T) + B(T) [la(®)llogo,7y llulz, ) ps . <

< A(T) 4+ B(T)R? < A(T) + B(T) (A(T) + 2)?, (45)
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[®z1 — Pzo gs < B(T)R (Hal(t) —ax(O)ll o,y + llwa(z, 1) — Uz(w,t)IIBg,T) <
< B(T) (A(T) +2) |21 — 22|l s, - (46)

Then allowing for (43), from estimations (45) and (46) it follows that the operator ®
acts in the ball K = Kr and is contractive. Therefore, in the ball K = K the operator
® has a unique fixed point {u,a} that is a unique solution of equation (44) in the ball
K = Kg, i.e. it is a unique solution of system (27), (29) in the ball K = Kp.

The function u(z, t) as an element of the space BS’)T is continuous and has continuous
derivatives uy(z,t), Uz, (2,t) in Dr.

From (21) it in easy to see that

<Z (/\k |ug(t)|c[O)T])2> <V2 ( ()\z ||uk(t)||c[o,T])2> +

k=1 k=1
V2 la®us w.8) + L@ Ollcon], o -
Hence it follows that w(x,t) is continuous in Dr.
It is easy to verify that equation (1) and conditions (2), (3), (9), (10) are satisfied
in the ordinary sense.
Consequently, u(z,t), a(t) is a solution of problem (1)-(3), (9), (10), and by Lemma
3 it is unique in the ball K = Kg. The theorem is proved.

By means of Lemma 2, a unique solvability of initial problem (1)-(5) follows from
the last theorem.

Theorem 2. Let all the conditions of Theorem 1 be satisfied
1

1 1
flz,t)de =0 (0<t<T), p(x)dx =0, Y(x)dx =0,
/ [romen ]

p(0) = h(0), 6(0) = H(T), S(A(T) +2)T* < 1.

Then problem (1)-(5) has a unique classic solution in the ball K = KR(”ZHE% <R=
= A(T) + 2) of the space E3..
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