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The nonhomogeneous initial-boundary value Dirichlet problem for the
equation
wr — Au+ g(z, ) [u] "2y = f(z,t)
in cylinder domain is considered. If the condition 1 < go < ¢(z,t) < @ <2is
satisfied, then the existence of the mild solution of this problem is proved.
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1. Introduction. In this paper, we continue our study of semilinear parabolic
equations from [1]. Let n € N and T" > 0 be fixed numbers, 2 C R™ be a bounded
domain with the boundary 09, Qo1 = © x (0,T].

We seek the mild solution u of the following problem

ur — Au + g(z, t)|u|q<m’t)_2u = f(z,t), (x,t) € Qor, (1)
u|8Q><(O,T) = d(Ia t)v (2)
uli=0 = uo(w). (3)

Here Au = g2, + Ugyzy + - - + Uz, is the Laplace operator, g,q, f are real valued
functions on Qo 7, d is a real valued function on 99 x (0,T), ug is a real valued function
on (.

Under some conditions for data-in of problem (1)-(3), using the Green function
technique, we prove a solvability of these problems with variable exponents of nonlineari-
ty.

The existence of the Green function and its various properties it is well known
(see for instance [2], [3], [4], and the references given there). The various problems with
variable exponents of nonlinearity and homogeneous boundary conditions are investigate
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in [5], [6], [7], [8], [9], [10]. The Green function technique for some semilinear parabolic
problems with variable exponents of nonlinearity and homogeneous boundary conditions
are investigated in [1], [11], [12]. The extensive literature is reviewed in [1].

This paper is organized as follows. In Part 2, we give some definitions and main
results. Auxiliary facts are given in Part 3. In Part 4, we prove the main theorem.

2. Motivation of the definition and main results.

2.1. Case of the linear problem. First we consider the problem

ug — Au = h(z,t) in Qor, (4)

ulpoxo,r) =0, uli=o = 0. (5)

Recall that a function G = G(x,t,{,s) x,& € Q, t > s >0, is called the Green
function (see [13, p. 1118]) of the Dirichlet mixed problem for parabolic equation (4)
if for every (£,s) € Qo the function G satisfies homogeneous equation (4), and the
boundary condition G|352X(07T) = 0 with respect to the variables x € Q, ¢t > s > 0, and

for every function ¢ € C(£2) we have

lim G(Ia t,&,8)p(€) d§ = p(x).

t—s+0
Q

It is well known that the solution of problem (4)-(5) is

u(z,t) = G(x,t,{,s)h({,s) déds. (6)
/]

Further we consider a problem with a nonhomogeneous initial condition, i.e.

u—Au=0 in Qor, (7)
ulaax(0,r) =0, (8)
=0 = up(x). 9)
Its solution is
u(wt) = [ Glat.£.0)u0€) dé. (@.0) € Qur. (10)
Q
Now let us consider a problem with a nonhomogeneous boundary condition, i.e.

w—Au=0 in Qor, (11)
ulpox o, = d(2,t), (12)
u|t:0 = O (13)

We assume that there exists a function d = d(x, ) such that
de ngtl(Qo,T) NC(Qo,r), Cﬂaszx(o,T) =d(x,t). (14)

If we replace u by d+ u*, we obtain a new problem
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up — Au* =h"(z,t) in Qor, (15)

u*|aax0,1) = 0, (16)

u*li=o = ug(z), (17)

where h* = —d; + Ad, ufy = —c/l\|t70. According to (6), (10), we have

*(x,t) /Gx L€, 0)ug (& d§+//Gx s)h* (€, s) déds. (18)
Therefore the solution of problem (11)-(13) is

(@, ) = diz,t) — /G(:v, 1,€,0)d(€,0) de —
Q

/ / G, 1,6 9)(@ (6, 9) ~ Ad(E, ) deds, (2,1) € Qo (19)

Finally let us cons1der the general Dirichlet mixed problem for the model equation
— Au=h(z,t) in Qor, (20)

ulpox o, = d(2,t), (21)

uli=o = uo(w). (22)

Let again G = G(:C, t,€, s) be the Green function of the homogeneous Diriclet problem
(4)-(5); d = d(=,t) be a function such that d|sqx0,1r) = d(z,1);

d* (x, 1) /Gx ,0) d¢ —

// (2,8, 8)(de(€,5) — Ad(E, s)) déds. (23)
Q

Clearly if we replace (20)-(22) by three problems, i.e. (4)-(5), (7)-(9), and (11)-(13),
then, using formulas (6), (10), (19), we get a solution of problems (20)-(22) such that

u(z,t) = d*(x,t) + | G(x,t,& 0)ug(€) dé + G(z,t,&, 5)h(&, s) déds. (24)
fe [

Let p > 1 be a fixed number. We introduce the following notion (see for comparison
[14], [15]). A function u is called a mild solution of problem (20)-(22) if u € LP(Qo 1), u
satisfies equality (24) for a.e. (z,t) € Qo 7. In the same manner we define a mild solution
of the mixed problem for parabolic equation (1). More precisely, we replace the function h
by f— g|u|q<1’t)_2u and consider equality (24) as nonlinear integral equations. A solution
of this integral equation is a solution for problem (1)-(3).
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2.2. Main results. Suppose that the following conditions hold:
(G): g € L*=(Qo,r);
(Q): g € L>®(Qo.1), 1 < qo < q(,t) < ¢° < 400, where
go = essinf q(x,t), " = esssup q(z,t);
(z,t)€EQo,T (z,t)€Qo,T

(DFU): for some p > 1 we take ug € LP(Q), f € LP(Qo.1), de WhP(Qor) N
LP(0,T; W2P(Q)) N C([0, T); LP(Q2)) such that

dloax (o,r) = d(x,1).
Let G(z,t,&,5) be the Green function of the mixed problem (4)-(5) such that the
Gaussian estimate

M (=) Lol
Glat,6,5)] < X007 9) a5 (25)

— n

(t—s)2

holds. Here My, My > 0 are constants, X (o,40)(2) is the indicator function of the segment

(0, +00). Let d* be given by (23), where d is taken from condition (DFU).
Now we provide Definition of the solution and the main theorem.

Definition 1. A real valued function w € LP(Qo 1) is called a mild solution of problems
(1)-(3) if for a.e. (z,t) € Qo1 the equality

t
u(z,t) = d*(x,t) + [ G(x,t,& 0)up(€) dE + G(x,t,&,8)f(&,s) déds —
/ /]

- / / Gla.t, €, 9)g(€, 9)[u(€, )| &9 "2u(E, 5) deds (26)
0 Q

holds.

Theorem 1. Suppose that conditions (Q) with ¢° < 2, (DFU) with p € (1 + %,+00),
and (G) are satisfied. If there exists the Green function of problem (1)-(3) such that the
Gaussian estimate (25) is executed, then problem (1)-(3) has a mild solution.

In particular, the conditions of Theorem 1 are the conditions on 9f). For example,
we recall some facts from [4]. First let us consider a nondecreasing bounded half-additive
function w : Ry — Ry such that

wit) _,uls)  wlt) _ Gwls)
t = s T sY

, 0<s<t,

where v € (3, 1), C > 0. By definition, put

T

F(t) = /“(S) ds, t>0, ®(r) :/w(t) dt

—=dt, 72>0.
s t
0
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Suppose that there exist constants o > 0, C > 0 such that

F(o) < +00, ®(0) < 400, /w(s) ds < C

t

Let m, N € N be fixed numbers, O C R¥. Let C™(Q) be the space of all functions ¢
which, together with all their partial derivatives D®¢ of orders |a| < m, are continuous
on O. The set of all functions ¢ € C™(O) such that

Bub(u) — DB(z
Wl = Y sup Dou(y) + Y sup PN ZDWE)

yeO lﬁ‘:my,zeo w(|y—z|)

is called the Dini space and is denoted by C(™)(0).
Further for our domain 2 C R™ we put S = 9§2. We say that the surface S belongs
¢

< 400,

laf<m

to the Dini sets C("™) if § = |J Sk, where for every k € {1,...,£} the open surface
k=1
Sy, is given by the rule z; = gpf(x;), T = (T1,. 0 Tj—1, T4 1, -+, Tn) € OF, and the
following conditions hold:
1) O% is a bounded domain from R"~';  2) o € Cmw)(OF).
Finally we recall Theorem.

Example 1 (see Theorem 2.8 [4, p. 136]). If 9Q € C3%) then there exists the Green
function of problem (1)-(3) such that the Gaussian estimate (25) is executed.

3. Auxiliary facts.

8.1. A fized point theorem. First we recall some definitions. Let X,Y be normed
spaces, A : X — Y. A subset M of a normed space X is called a compact set if every
sequence of points in M has a subsequence converging in X to an element of M (see [16,
p. 6]). M is called a precompact set if its closure M (in the norm topology) is compact
(see [16, p. 7]).

An operator A : X — Y is called a compact operator if A(M) is precompact in YV’
whenever M is bounded in X (see [16, p. 8]). A is a completely continuous operator if it
is continuous and compact (see [16, p. 9]). Every bounded linear operator is continuous.
Hence every compact linear operator is completely continuous.

Further let us consider some examples.

Example 2. 1) Clearly if A,B : X — Y are completely continuous operators, and
a, B € R, then the operator aA + BB also is completely continuous.

2) (see Lemma 1 [1, p. 81]) Let X, Y, Z be Banach spaces, A: Y - Z, B: X —»Y.
If A is completely continuous, and B is bounded continuous, then the composition of the
operators Ao B : X — Z is a completely continuous operator.

3) Clearly, every constant operator, i.e. an operator C': X — X such that

dyeX VeeX: Cx=y (27)
is a nonlinear (if y # 0) completely continuous operator.

Suppose that G is a measurable on Qo, 7 X Qo,r real valued function such that almost
everywhere in Qo 7 X Qo,r we have Gaussian estimate (25). In particular, G=0ift <s.
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By LP(2), where p > 1, we denote the standard Lebesgue space with respect to the norm

s @)l = ([ ol ).

In the same manner we define the space LP(Qo 7).

Example 3. (Lemma 3 [1, p. 83]). Suppose the measurable real valued function G
satisfies Gaussian estimate (25), the integral operator J is given by equality

(Tz)(x,t) //G ,8) déds, (z,t) € Qo,r. (28)

If p> 1+ %, then the operator J : LP(Qo,r) — LP(Qo,r) is completely continuous.
The following theorem plays main role in the proof of our results.

Proposition 1 (the Schauder fixed point theorem). ([17, p. 229]). Let X be a Banach
space, A: X — X be a completely continuous operator, M C X be a nonempty bounded
closed convex set. If A(M) C M, then A has a fized point.

3.2. Some properties of the integral operators. We will need the following Proposition
and Lemmas.

Proposition 2. (Lemma 2 [1, p. 83]). Suppose that r € [1,+00) is a fized number, G is
a measurable real valued function such that Gaussian estimate (25) holds,

(z,t,8) /|G:17 S| de, Tt s) = /|Gx s)|" dx (29)

fora.e. z,6 € Q, 0<s <t. Then there exists a constant C(T) > 0 such that

C(r) -~ C(r)
0< Jr(z,t,5) < ma OSJT(gvtus)Sm' (30)

Remark 1. From (29), (30) it follows that if the measurable real valued function G
satisfies Gaussian estimate (25), then there exists a constant # > 0 such that

ess sup /|G s)|dé < M, esssup /|G s)| dx < M. (31)
(z,t)€Qq, T te(0,T)
s€(0,T) (£,9)€Qo, T

Lemma 1. Suppose that the measurable real valued function G satisfies Gaussian esti-
mate (25) and the integral operator Jy is given by the equality

meﬂ:/aLMﬁM©%7@ﬁ€%m (32)
Q

Then for every p € (1,400) the linear operator Jo : LP(Q) — LP(Qo,r) is bounded
(therefore it is a continuous operator). In addition, there exists a constant Ly > 0 such
that for every v € LP(QY) the estimate

| Tov; LP(Qo,1)| < Lo||v; L*(Q)]] (33)
holds (notice that Ly depends on p but does not depend on v).
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Proof. Clearly the complete proof of this Lemma follows from estimate (33). Let
p,p’ € (1,400), 1—17 + 1% = 1. Using the Holder inequality, we obtain

1T0v; LP(Qo.z)|[” = / ‘/G(x,t,{,())v({) dg‘p drdt <

Qo,r
/ ’/|G|s olp IG|s= 0|P|v| dg‘ da:dt</ /|G|S 0|d§ /|G|s ol [v[P dg) dxdt.
Qo,r Qo7 Q

Taking into account estimates (31), the equality 5 = p — 1, and the Fubini theorem, we
get

ya
|| Jov; LP(Qo.1)| [P < MV / dxdt/|G|S:0| [P d€ = MP~1 x
Qo

/dt/dx/mx SO ()P de = HP- / /dt/|Ga: &0 de) [o(©) de <

<y /(/Mdt) woF de<Th? [ ool de.
Q 0 Q
Therefore (33) is true, and the Lemma is proved. OJ

Lemma 2. Suppose that the measurable real valued function G satisfies Gaussian esti-
mate (25), the integral operator J is given by equality (28). Then for every p € (1,+00)
the linear operator J : LP(Qo,r) — LP(Qo,r) is bounded (therefore it is a continuous
operator). In addition, there exists a constant L > 0 such that for every z € LP(Qo 1)
the estimate

1T 2; LP(Qo,r)I| < L[5 LP(Qo,1)l (34)
holds (notice that the constant L depends on p but does not depend on z).
Proof. Again it is enough to show only estimate (34). Let p,p’ € (1, +00), 1—17 + 1% =1.

Using the methods of Lemma 1, we obtain
172 LP(Qor)I” = /]/Gx 2(6,5) déds|” dudt <
Qo,1 Qo,t

< /‘/ CI7 (GIP 2| deds|”

Qo, 7 Qo,t

D
< / (/ Gl déds)” (/ |G |27 dgds) dadt.
Qo, 7 Qo,t Qo.t
Using estimate (31), equality § = p — 1, and the Fubini theorem, we get

drdt <

172 LP(Qox)|P < (T M)¥ / dadt / Gl |[? deds =
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t

— (T Hp /T it / da [ ds [ (Glat.65)||z(6. )7 de =
0 Q

0

— (T My /Td/ /Tdt/|G<x,t,§,s>| dr) |=(€., 9)P de <
0 Q

Q s

< (T My~ 1/ds/ /Mdt) I2(, 8)|P de < (T My? / 12(¢, 5)|P deds.
Q s Qo,T
This inequality yields (34). The Lemma is proved. O
3.3. Generalized Lebesgue spaces and Nemytskii operator with the variable exponent
of nonlinearity. First let us introduce some notation and functional spaces. Suppose that
q € L>=(Qor) satisfies condition (Q). Consider a linear subspace L% (Qq r) of the
space L*(Qo,r) which consists of v such that p,(v,Qo 1) < oo, where

pq(v, Qo,r) : / lv(z, )| dzdt.
Qo, 1T
It is the Banach space with respect to the Luxemburg norm

[[o; L7 (Qo,r)|| == inf{A > 0 | pg(v/A, Qorr) < 1}
(see [19, p. 599]) and it is called a generalized Lebesgue space. This space was first
introduced by W. Orlicz in [18]. Note that if g(z,t) = go = const for a.e. (z,t) €
Qo.T, then ||-; LY@ (Qq 7)|| equals to the standard norm ||-; L% (QO)T)H of the Lebesgue
space L% (Qo 7). According to [19, p. 599|, the conjugate space [La, t)(Qo 7)]* equals
L9 (@ t)(QO 7), where the function ¢’ is defined by the equality (z o+ (x = =1 for a.e.
(z,t) € Qo,r. Note also that the set C’(QQT) is dense in L4 (Qq.r) (see [19, p. 603]). In
addition, the continuous embedding L9®% (Qq 1) O L™®Y(Qq.r) holds if q(x,t) > r(x,t)
(see [19, p. 599-600]).
Suppose that the function ¢ satisfies condition (Q),

s, sel0,1], sV selo,1],
Sq(s)_{sqo s>1 Sl/q(s)_{sl/qo s>[1 | (35)

where the constant qo, ¢° are given by (Q) (see Lemma 1 [8, p. 168], Remark 3.1 [10, p.
453]). We will need the following Propositions.

Proposition 3. (Lemma 4 |1, p. 85]). Suppose that conditions (Q) with ¢° < 2, (G),
are satisfied, the Nemytskii operator N is defined by the formula
(N2)(z,1) = g2, t)]2(z, ) |9 22 (2, ), (2,t) € Qo (36)

Then for every number p € [1,400) the operator N : LP(Qo.r) — LP(Qo,r) is bounded
and continuous. In addition, there exists a constant N, > 0 such that for every
u,v € LP(Qo.1r) we have

1/
INu = Mo 22 (Qor)l| < p{ Suyn (11w — v 27(@om)IIP) } (37)
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‘@\)—‘

N P QoI < Wpd Suyn (Il 27(Qom)I1P) } (38)

_ 1
q(z,t)—1"

4. Proof of Theorem 1. We define the operators D, K, N, 7, A by the following
identities. D is a constant (see (27)) operator such that

(Dz)(z,t) = d*(x,t), (z,t) € Qo,T, (39)

where d* is given by (23), d is taken from (DFU). K is a constant operator such that

where Sy, is a continuous function from (35), and h(z,t) =

(Kz)(x,t) /G t,&,0)uo(€ d§+//G f(&,5) deds. (40)

The nonlinear Nemytskii operator A is given by (36). The linear integral operator J is
given by (28). The operator A is a combination of the operators D, K, N, J, namely

A=D+K—-TJoN. (41)
Taking into account these notation, we rewrite equality (26) as
u = Au. (42)

Then the existence of the solution to problems (1)-(3) means the existence of the fixed
point of the operator A. We will show that conditions of the Schauder theorem are
satisfied.

Step 1. Lemmas 1, 2 mean that K(LP(Qo,r)) C LP(Qo 1), and

1Kz LP(Qo,2)Il < Lolluo; LP ()| + LI|f; L*(Qo,1) ]l (43)

where Ly > 0 is taken from (33), L > 0 is taken from (34). Similarly D(LP(Qo,r)) C
C LP(Qo,1), and the estimate

||Dz; LP(Qo,1)|| <

< |\d: LP(Qor)ll + Lolldli=o; LP()|| + Llld: — Ad: LY (Qor)| (44)

holds. Recall that the constant operators are completely continuous.

Step 2. From Proposition 3 it follows that N : LP(Qo.r) — LP(Qo,r) is continuous
and bounded operator. In addition, we have estimates (37), (38).

From Example 2 it follows that the operator J : LP(Qo,1) — LP(Qo,r) is completely
continuous. In addition, estimate (34) holds.

Using Example 1 and the properties of the operators A/, 7, we see that J o N is a
completely continuous operator as a composition of completely continuous and bounded
continuous operators. Consequently, A is a completely continuous operator as a sum of
the completely continuous operators D, K, and J o N (see Example 1).

Step 3. Take a sufficiently small ¢ € (0, min{3,2 — ¢°}), where ¢° € (1,2) is taken
from condition (Q). Then e < 1, that is 1 — 2¢ > 0. In addition, ¢ < 2 — ¢°, i..
2-¢"—e>0.
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Let R > 0 be a sufficiently large number such that

R® > max{\/||d; L(Qo.7)||, |ldle=o; LP(Q)]], ||d: — Ad; LP(Qo.1)|l,

uos LY, 115 L2(Qo,)ll> Loy L, 1}, (15)
5 N
Rl1-2¢ + R2—50—€ <1

where the constants Lo, L are taken from (33), (34), and the constant &, is taken from
(38). By definition, put

Br ={ue€ LP(Qor) | |lu; LP(Qo1)|| < R}.

We will show that A(Br) C Br. Take a function v € Bg. Using the monotonicity of the
function Sy, from estimations (34), (43), (38), (44), and (45), we have

[ Au; L2 (Qo,0)l| < [P+ K =T o N)(u); L (Qo,r)l| <

< |1Du; LP(Qo,r)| + [1Ku; LP(Qo,r)l| + [T (Nu); LP(Qo,r)|| <
< ||Du; LP(Qo,)l| + [IKus; LP(Qo,r)l| + LN u; LP(Qo,r)|| <

< \ld: L7 (Qo.)l | + Lolldli—o; LX) + Lild: — Ad: L (Qor)| +
%
+ Lolluos (@)1 + LIS 2 (Qo)ll + LUy { Suyn (Ils L (@) 1)} <

< 5R* RENP{Sl/h (RP)}%,

where h(z,t) = (1(171)71. Taking into account (35), from inequality R > 1 it follows that

1 1 1
Sl/h (Rp) _ (Rp) ess infh(z,t) _ (Rp) ess 1nfm _ (Rp) ﬁ _ Rp(qf)_l)'
By the choice of R, we get

0_ 5 N
|| Au; LP(Qo,)|| < 5R* + N,R*H9 —1 = (R1—2€ + R27§0*5
i.e. A(Br) C Bpr. Therefore, the operator A satisfies the conditions of the Schauder
theorem (see Proposition 1), and has a fixed point. Theorem is proved. O

)RSR,

Remark 2. Using monotonicity method, and the additional condition g(x,t) > 0 it is
easy to show the uniqueness of the solution u € L2(0,T; H}(Q)) N C([0,T]; L*(Q)) of
problem (1)-(3) (notice that Theorem 1 does not show that the solution u belongs to
L2(0,T; HA(®)) N C(0, T; L2(2))).

Remark 3. The results of Theorem 1 can be extended on to the second and third mixed
problems for equation (1) and its generalization.
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HocmimkeHno HeogHOpiaHy Mimany 3asady ipixie s piBHAHHS
ur — Au+ g, ) |ul* %0 = f(x,t)
B uuHApuuHii obnacti. 3a ymoBu 1 < g0 < ¢(z,t) < ¢® < 2 noeemenHo
icHyBamHs cj1abKOro po3B’sI3Ky Iiel 3amaci.

Knmowosi caosa: weminiiine mapabosidHe piBHSHHS, HEOJHOPiTHA 3aada,
MilmaHa 3aJ/a4a, 3MIHHUN MOKa3HUK HEJIIHIWHOCTI, y3arajbHeHi mpocTopu Jle-
6era i CobosieBa, ciaabkuii po3s’si30K, dpyHKIsa ['pina.
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Uccnenosano cMemmannyio 3agady Jupuxie qjs ypaBHeHUs
up — Au+ gz, 1) [ul* %0 = f(x,1)
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