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We construct a distributional solution to a linear initial-boundary hyperbo-
lic problem with integral boundary condition whose initial and boundary data
are strongly singular distributions. Our result covers the Lotka McKendrick
problem with a variable coefficient in the differential part.
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1. Introduction and main result. The paper concerns a singular initial-boundary
problem for the general linear first-order one-dimensional hyperbolic equation of the
following type:

(at + )‘(zat)az)u = p(:c,t)u + g(:c,t), (:L',t) €1l (1)
u|t:0 - a’T(x) + 5(m) (:L' - g;’{), HS [07 L)v (2)
L
ulz=o = (cr(t) + (5(j)(t —t1)) /(b,«(x) + 6™ (x — x1))udz, t € [0,00), (3)
0

where x; > 0, 27 > 0, t; > 0, m, j,n € Ny, and
O={(z,t)eR? | 0<xz <L, t>0}.

This problem can be easily generalized to the case when the initial and the boundary data
have singular supports at finitely many points. Without loss of generality we assume that
a2} < x1. The system (1)-(3) arises in the theory of population dynamics (see [1, 7, 9, 10]),
where u denotes the distribution of individuals having age x > 0 at time ¢ > 0,
ar(z) + 6(™ (z — x7) is the initial distribution, —p(z,t) denotes the mortality rate,
by(x) + 60 (x — x1) denotes the age-dependent fertility rate, c,(t) + 6U)(t — t;) is the
specific fertility rate of females, g(x,t) is the distribution of migrants, L is the maximum
age attained by individuals.

© Kmit 1., 2011



Iryna KMIT
138 ISSN 2078-3744. Bicuux JIppiB. yu-ty. Cepis mex.-mar. 2011. Bumyck 75

The evolution of u is governed by (1)-(3). Since (1)-(3) is a continuous model of
a discrete structure, in many problems of such a kind it is natural to consider strongly
singular initial and boundary data (see [7]).

A partial case of the problem (1)-(3) where A = 1 is investigated in [4]. Here we
develop our approach from [4] and construct a distributional solution to (1)-(3) in the case
of the variable coefficient A, what has meaning for applications to problems of population
dynamics (see, e.g. [2]).

Initial-boundary semilinear hyperbolic problems with distributional data were stu-
died in [8, 5, 6], where the authors constructed delta-wave solutions. In contrast to these
papers, we here show that the problem (1)-(3) is solvable in the distributional sense and
construct the distributional solution by means of multiplication of distributions in the
sense of Hormander [3].

We impose the following conditions for (1)-(3):

Al. Xz, t) > 0 for all (z,t) € R2.
A2. a7 (0) = 0,¢”(0) = 0 for all i € N.
A3. bSi)(L) = 0 for all i € Ny and there exists € > 0 such that b,(x) = 0 for = € [0, £].

A4. The functions ), p, and g are smooth in R?, a,. is smooth on [0, L), b, is smooth
on [0, L], and ¢, is smooth on [0, c0).

These assumptions are not particularly restrictive from the practical point of view.
In particular, Assumption A3 is a consequence of the fact that [0, L] covers the fertility
period of females. Note that Assumption A2 ensures the arbitrary order compatibility
between (2) and (3).

It is well known that, under the assumptions Al and A4, for every (z,t) € R?
there exists a unique characteristic of (1) expressed in one of two forms { = w(7;,t) or
T = w(&;x,t), where w and @ are smooth functions with respect to all their arguments.
Below we will use both of the forms.

Definition 1. Let I, = |J I, [n], where I [n] are subsets of R? defined by induction as
n>0
follows.
e [.[0] is the union of the characteristics w(t; x7,0) and w(t;0,t1).
e Letn > 1. If It [n — 1] includes the characteristic w(t;x1,t), then I[n] includes
the characteristic w(t;0,t).

For characteristics contributing into I, denote their intersection points with the
positive semiaxis x = 0 by #7,¢3,.... We assume that ¢; < {7, for j > 1. The union of
all singular characteristics of the initial problem, as it will be shown, is included into the
set 1. In fact, we will show that singsuppu C . Assume that

A5 w(0;21,t1) # x5, ©(0;21,t1) # t* for all t% < ty.

Without this assumption the distributional solution does not exist, because there
appears multiplication of the delta function onto itself.

We proceed similarly to [4] and start with the distributional solution in the domain
of influence (or determinacy) of the problem (1)-(3):

Q={(z,t) €R?* | z <w(t;L,0)}.
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Definition 2. A distribution u is called a D'(Q)-solution to the problem (1)-(3) if the
following conditions are met.
1. The equation (1) is satisfied in D' (Q): for every ¢ € D()

<(at + )‘(:L'a t)az - p(l’, t))ua 50> - (g(:c, t)a 50>

2. u is restrictable to [0, L) x {0} in the sense of Hormander [3].

3. ulmo = ay(z) + 0™ (x — %), x€[0,L).

4. The product [(b.(z) + 6™ (z — x1)) @ 1(t)] - u(x,t) exists in D'(II) in the sense of
Hérmander [3].

L
5. [[(br(z)+ 6 (x —21)) @ 1(t)]Judz for t > 0 is a distribution v(t) € D'(R.) defined by
0

(W(t), »(1)) = ([(br(x) + 6™ (x — 21)) ® L(1)] - u(z, 1), L(z) @ U(1)),  $(t) € D(Ry),

where b.(x) =0, ¢ [0, L].

6. There exists € > 0 such that v(t) restricted to (t1 — e,t1 + €) is a smooth function.
7. w is restrictable to {0} x [0,00) in the sense of Hormander [3].

8. ulp=o = (cr(t) + 6D (t —t1)) - v(t), t€[0,00).

9. singsuppu C Q\ {(z,1) |z = w(¢;0,0)}.

Our next objective is to define the solution concept for (1)-(3) on II. To defi-
ne the restriction of u € D'(II) to the boundary of II so that the initial and the
boundary conditions are meaningful, let us make the following observation: Note that
I\ {(L,0)} C Q. Let Q9 C Q be a domain such that IT\ {(L,0)} C Qo and u be a
D’(2)-solution to the problem (1)-(3) in the sense of Definition 2. Then u restricted to
Qg is a D'(Qp)-solution to the problem (1)-(3) in the sense of the same definition. This
suggests the following definition.

Definition 3. Let u be a D'(Q2)-solution to the problem (1)-(3) in the sense of Definiti-
on 2. Then u restricted to I is called a D’ (II)-solution to the problem (1)-(3).

Set
O ={(z,t) € 2]z > 0,t > 0}.
We are now prepared to state the existence result.

Theorem 1. 1. Let Assumptions A1-A5 hold. Then there exists a D' (Q)-solution u to
the problem (1)-(3) in the sense of Definition 2 such that:

the restriction of u to any domain €Y', D Q. such that any characteristic
of (1) intersects 0, at a single point does not depend on the values of (4)
the functions X, p and g on \ Q.

2. Let Assumptions A1-A5 hold. Then there exists a D'(II)-solution to the problem (1)-
(8) in the sense of Definition 3.

2. Construction of the D’-solution. It is sufficient to solve the problem in the
domain

Q' ={(z,t) € Q | w(t0,T) <z, -T<t<T}
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for an arbitrary fixed T > 0. Observe that Q7 is the intersection of the strip R x (=7, T)
with the domain of determinacy of (1) with respect to the set ([0, L) x {0})U({0} x[0,T)).
Fix T > 0 and start with a subdomain

O = {(z,1) € Q7 | w(t;0,0) <z < w(t; L,0)}.

In the case that the initial data are functions, a unique solution to the problem
(1)-(2) on O can be written in the form

u(z,t) = S(x,t)a,(w(0;x,t)) + Si(x,t) + S(Jc,t)é(m) (w(0;x,t) — 1), (5)
where
S(z,t) = exp / p(r+ax—t,7)dr 3, (6)
0(x,t)

0(z,t) = ©(0;z,t), and

Si(a.1) = / glw(rz,t),7) drt

: e ™)
+ / p(w(r;z,t), 7)dr / glw(r;w(rma,t),7),m)dm +....
0(e,t) 0(z,t)

Observe that S and S; are smooth and the equalities
t
Sty =1+ [ plalrie ). S s0.7)dr

: e : ®)
Sy (1) = / glw(ria,t),7) dr + / p((rs 2, 8), 7)S1 (w(rs 2, 1), 7) dr
0(x,t) 0(x,t)

hold. Let A;(x,t) = 6 (z)®1(t) and B;(x,t) = 1(x)®6@ (t) be the distributions defined
by the equalities

<Ai(Ia t)v <p(x, t))

(~1) / £0(0,1) dt,

<Bi(Ia t)v <p(x, t))

(—1) / o (2,0) da

for all ¢ € D(R?).
Let f be the smooth map

fi(z,t) = (z,w(0;z,t) — x7).

The inverse
7l () = (2, (2, 1))
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is unique and maps the z-axis to the curve ¢ = r(z,0) and the ¢-axis onto itself. Here
7 =r(x,t), is a smooth function for which we have ¢ = w(0; z, r(x,t)) — «5. Furthermore,

/ — 1 0
[, t) = < Wi (0;2,t)  wi(0;2,) )
with

W (052, 1) = oxp / No(€(r) 7y dr | |

wy(0;z,t) = —A(z,t) exp /)\'5(5(7'),7') dr

By A1, A(z,t) # 0 for all (x,t) € R%. Hence

J(f) = 1f"| = w052, 1) # 0,

where J(f) is the Jacobian of f. Hence f*B,, = 6™ (w(0;z,t) — x%), the pullback of B,,
by f (see [3]), is well defined. Similarly, f*B,, is the m-th derivative of the delta function
supported along the curve t = r(z,0).

Definition 4. A distribution u is called a D' (Q)-solution to the problem (1), (2) if
Items 1-3 of Definition 2 with Q replaced by QF hold.

Lemma 1. u(z,t) given by the formula (5) is a D'(QL)-solution to the problem (1)-(2).

Proof. From the classical theory of first-order linear partial differential operators it follows
that the sum of the first two summands in (5) is a unique smooth solution to the problem
(1)-(2) with the singular part of the initial condition (2) identically equal to 0. It is obvious
that this solution satisfies the latter problem in a distributional sense. Our goal is now
to prove that the third summand in (5) is a distributional solution to the homogeneous
equation (1) with singular initial condition 6(™) (2 — z%). Indeed, for all ¢ € D(QF), we
have

(O + 202) (S (w(0; 2, 8) — @), ) = —(S6™ (W (05 2, t) — 27), @1 + (Ap)a) =
= —(6" (W(0;2,t) — 27), St + S(Ap)a) =
= — (0" (w(0;2,t) — 27), (S9)t + (AS@)x — St — ASup).

Since w = 6™ (w(0;z,t) — %) is a distribution in w(0;z,t), this is a weak solution to
the equation (9; + \J,)w = 0. Note that S¢ € D(QI). Therefore

(O (@ (03, 1) — 21), (S@)e + (ASp)s) = 0.
Using (8) and (9), we obtain

t

S+ AS, = pS+/ <W + A(z,t)W) (peS + pSy) dr = pSS,

as desired.
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It remains to prove that S(z,t)0™ (w(0;x,t) — 2}) may be restricted to the initial
interval X = [0, L) x {0}. Observe that f restricted to Qf is a diffeomorphism. We have
to check the condition (see [3])

WFE(Sf*B,,) N N(X) =0, (10)
where the normal bundle N(X) to X is defined by the formula

N(X) = {(:L'atafan) | (:L',t) € Xﬂ <T(w,t)(X)a (5777» = 0}
and T(, 4 (X) is the space of all tangent vectors to X at (,t). It is clear that in our case

N(X) ={(2,0,0,n), n#0}.
Let us now look at WF (S f*B,,). By Proposition 2, we have

WEF(Sf*B,,) C WF(f*Byp,).
Recall that by definition

WE(f*Bm) = {(z,t,dfz - (&) : (f(2,t),6,n) € WF(Bm)}.
Moreover,
WF(Bm) C WF(BO) = {(I’ 0,0, 77)7 n# 0}
It follows that f(x,t) is equal to (x,0). Therefore (z,t) = (x,r(z,0)). Furthermore,
t 1w, O;IL',t t=r(x,0 t _ w;, O;l‘,t t=r(z,0 n
dfo = ( 0 W?((Oifﬂat))ﬂt:r((x,o)) ) ’ dfa- (0777) B ( WZ((O5zat))||t=r((x,O))77 ) '
As a consequence,

WF(Sf*Bm) C {(.ﬁ, T(I, 0)7(“)1(07 xz, t)'t:r(z,O)na wt(o; xz, t)'t:r(z,O)n)7 n 7é 0}

This means that S(z, )0 (w(0;x,t) — x7) is restrictable to X. Considering the distri-
bution ™) (w(0;x,t) — }) to be smooth in ¢ with distributional values in x, the initial
condition (10) follows from (5). This finishes the proof.

We have proved that u defined by (5) satisfies Items 1-3 of Definition 2 with
replaced by Q7. Ttems 5-9 on Q" do not need any proof. Item 4 will be given by Lemma 3
below.

Now we extend the solution over

QF = {(z,t) € QT | w(t;0,T) < x < w(t;0,0)}.
We use the fact that any u satisfying Item 9 of Definition 2 on Q7 is representable as
u(z,t) = up(x,t) + ur(z, t), (11)

where ug = u in D'(Q), ug is identically equal to 0 on Q_IT, up = u in D'(QF), and
uy is identically equal to 0 on Q_g. Indeed, Item 9 implies that the solution is smooth
in a neighborhood of {(z,t)|2 = w(¢;0,0)}. For an arbitrary ¢ € D(QT) consider a
representation
o(x,t) = p1(z,t) + p2(x,t) + p3(,t)
such that ¢;(z,t) € D(QT), supp p1 C QF, supp ¢2 Nsing supp u = 0, and supp 3 C QF.
Then
(uo + u1, @) = (uo, p1 + @2) + (u1, 2 + p3) =
= (u, 1) + (o, P2) + (u1, p2) + (u, p3) = (U, L1 + Y2 + ¢3) = (u, @)
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Using (11), we rewrite v(t) defined by Items 5 of Definition 2 in the form:

L L
v(t) = /b(m)uo(x,t) dx + /b(m)ul(x,t) dx.
0 0
Our task now is to compute the first integral
L
Io(t) = /b(m)uo(x,t) de, 0<t<T, (12)
0

that will be used in the construction. We have to tackle the multiplication of distributions
involved in the integrand. For technical reasons we extend a,(x) and b,.(z) over all R
defining them to be 0 outside [0, L]. Using (5), we rewrite (12) as follows

L
Io(t) = / by (2)(S (@, ) (w(0: 2, ) + S1 (2,1)) dt

w(t;0,0)

L
+/5<n> (z — 1) (S(x, t)ar (w(0; z, 1)) + S1 (2, 1)) du+
’ L
* / by (2)S (2, )6 (w(0; 2, 1)) — @) dar+
0

L
+/5(n) (z — 21)8(x, t)5(m) (w(0; 2, t) — x7) du.
0

To compute the second integral we take a test function ¥(t) € D(0,T) and consider the
action (see Definition 2, Item 5)

(6 (@ — 21)(S(, a, (@(052,1)) + 1 (2, 1)), 1(x) © (1))

— (5 (@ — 21) ® 1(8), (S(a, t)ar (w(052,1)) + Sy (2, ) (1)) =

= (~1)" (L), (S (@, Oar (@(0: 2, 8)) + S1 ()0 oy (1)) =
)

= (=1)"™((S(z,t)ar (w(0;z,t)) + S1($,t))§")|x=xl,w(t) .
To compute the third integral, consider the bijective map

q:(x,t) = (w(0;z,t) — 27, 1)
that is smooth both in x and ¢. The inverse of ¢ is unique and has form
gt (z,t) = (o(x,t), 1),
where 7 = p(z,t) is a smooth function, for which it holds = w(0; o(x,t),t) — 7. Hence
(S (2, 1)br (2)8"™) (w(0; 2, 1) — 27), L(z) @ (1)) = (¢"6™) (x), S (2, )by (x)0(t)) =
_ <5(m)(x)7 S(x, )b, (2)1(t) . q1> _

w! (0; z,t)
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T z (m)
(1)m<1(t), <S<@< ), )by (o ,t>>> _OW)> _

wp(0; o(, 1), 1)
707 w(t)> .

— (1™ <(S(Q(ac,t),t)b,«(g(x,t)))(m)
To compute the last integral in the expression for Iy(t) we need the following fact.

wh(0; o(x, 1), 1)

Lemma 2. The product of two distributions v = 6™ (z — x1) ® 1(t) and
w = 6™ (w(0; 2, t) — x}) exists in the sense of Hormander [3].

Proof. By [3], it suffices to recall that
WF(U) - {(xlatagla 0); 51 7é 0}7

WF(w) C {:Ea 7’(1‘, O)a w:c((); mat)|t=r(:c,0)£2a w;((); :Eat)|t=r(:c,0)§27 52 7é 0};
where w;(O; 2, 1) |i=r(z,0) # 0.
We have proved the following lemma.

Lemma 3. A distribution u defined by (5) satisfies Item 4 of Definition 2 with II replaced
by TN QY.

Turning back to computing the last integral in Iy(t), consider the map
H: (z,t) = (z — z1,w(0;2,t) — x7)
and the inverse map
H ' (x,t) = (x4 21, r(z + 21, 1)).

Then define H*A,, = 6 (z — 1) ® 1(t) and H*B,,, = 6 (w(0; z,t) — 27%).
We are now in a position to define the product of two distributions §(™) (x —x1) and
5 (w(0; 2, ) — a%). For all ¢ € D(R?) we compute the action

(80,00 (2 = 21)60™ (w(0; 2, 1) — 1), (1)) = (H* Ay H" By, S(, )l 1)) =

= (H*(AnBn), Sz, t)p(, 1)) = <Aan’ ffg(i i iir((i 1 o ;; >
)
t))

= (@@ ), GEE TR

— n+m (S@)($+$1,T(x+x1,t)) (n4m)
= (-1)"* (w;_(O;IEJr:El,r(gngxht)))

x,t x=0,t=0
n ntm n n+m
- Fi(e, el @+ anr@ )| =303 Ful0.0)0 (@) =
j=0 i=0 x=0,t=0 j=0 i=0

n n+m
=3 Fi0.0) (89 — 1) @ 80t~ 1), (1))
=0

i=0
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Here Fj;(x,t) are known smooth functions of A, S, and of all their derivatives up to the
order n + m. Furthermore, for ¢(t) € D(0,T)

L
</5(") (z — 21)S (2, )0 (w(0; x,t) — 27) dwi(t)> =

0
n n+m L
=> ) Fi(0,0) </5(j)(x — 1) @69 (¢ — t’{)dm,¢(t)> -
7=0 =0 0
n nt+tm
=33 Fi0,0) (80t = 1) © 69z —21), 1) @ (1)) =
j=0 i=0

n+m

= > Fui(0,0)(60 (£ — £7), 9(t)).
=0

As a consequence,

L
Io(t) = / b (2)(S (@, ) (w(0: 2, ) + S1 (2, 1)) drt
w(t;0,0)
1) (S D ((05 2, 1)) + S (2, ) o + (13)
m Stz t), )b, (o(x, 1)\ ™ e o
ren %me)) LY B0 )

Observe that, by Assumption A2 and Assumption A3, the first three summands in (13)
are smooth for ¢t > 0.
Further construction is based on the splitting of Qf into subdomains

Qi) = {(2.t) € QT | w(t:0,6) <@ < w(t:0,£1_,)}

and constructing the solution separately in each (i) and in a neighborhood of each
border between €2(¢) and Q(i 4+ 1). Here t§ =0, 1 < i < k(T'), where k(T) is defined by

inequalities ¢} 7 < T and ¢} 7y, > T The finiteness of k(T) is ensured by Al and A4
for A

Lemma 4. There ezists a smooth solution to the problem (1)-(3) on Q(1).

Proof. Under the assumption that =} < z1, we have w(¢;;0,0) < L. Hence (x1,t}) € Qo.
Therefore any solution which is given by (5) on Q" and is smooth on Q(1), by Item 9 of
Definition 2 satisfies the integral equation

w(0(x,t);0,0)
u(i,t) = Sa(z.t) + Sa(a, 1) /’ by (€)u(€. 6(z, 1)) de, (14)

(=)

where
Sa(x,t) = S(z,t)er(0(x,t))
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and
Sg(I, t) = Sg(x, t)1 (9($, t)) + 51 (I, t)

are known by (13). The smoothness of Iy(6(z,t)) if (x,t) € Q(1) follows from the facts
that 6(x,t) < ¢t} and that I(t) restricted to the interval (0,¢}) is smooth. Therefore Sa
and Ss are smooth. Observe that

w(0(x,t);0,0) < O(xz,t) max A<t max A\

(z,t)€Q(1) (z,t)€Q(1)

Hence (14) is the Volterra integral equation of the second kind.
The existence follows from the proof of Theorem 3 in [6].

From the formulas (5) and (14), Lemma 4, and Assumption A2 it follows that u is
smooth in a neighborhood of the characteristic curve x = w(¢;0,0). This ensures that u
we construct satisfies Item 9 of Definition 2.

Under the assumption that (2) is nonempty, below we give the formula of the
solution on

Q°(1) = Q1) U{(z,t) € Q2) | > w(t;0,t] +¢)}
for a fixed € > 0 such that ¢t —e > 0 and

br(z) =0, z€[0,w(t]+¢;0,t —e)l. (15)
Such ¢ exists by A3.
Write now
L
v(t) = /(br(x) + 6(”)(30 —x1))udr = v, (t) + vs(t), (16)
0

where v,(t) and v4(t) are, respectively, regular (smooth) and singular parts of v(¢). On
the account of (11), (13), (15), and the fact that =7 < x1, we have on [0, ¢} + ¢]:

w(t;0,0) L
vp(t) = / by (z)u(z,t) de + / by (z)[S(x, t)ar (w(0;z,t)) + S1(z, t)] dz+

w(t;0,t5 —¢€) w(t;0,0)
H(=1)"(S(z, t)ar (w(0;2,t)) + S1(, 1)) |oms, +

o { Slo(@, ), Db, (o(z, 1))\ ™
=0 ( W (0; o, 1), 1) ) .
(17)
and
n+m
vs(t) = Y Foi(0,008)(t —#7). (18)
1=0

Note that the first summand in (17) is a known smooth function. This follows from the
inclusion [w(t;0,t — &), w(t;0,0)] x {t} € Q1) U {(z,t) |z = w(¢;0,0)}, Lemma 4 and
Assumption A2. Hence u(z,t) is smooth on (1) U {(z,t) |z = w(¢;0,0)}.

We consider two cases.
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Case 1. 1] = t1. As easily seen from (16), (17), and (18), v(t) = v,(t) on [0, ] + €].
As a consequence, Item 6 of Definition 2 for u we construct is fulfilled. Furthermore

u(0,8) = (89 (t = 1) + e ())vp(t) = D Ci6W (t = 17) + er (t)vp(t) (19)
=0

for t € (0,5 4+ ¢). Here C; are constants depending on o (t1) for 0 < k < j. These
constants are known due to (17).

Case 2. t7 # t1. Then @&(x1;27,0) = t]. Using (16) and (17), we derive a similar
formula for «(0,t) on (0,7 + ¢€):

n+m n+m
u(0,8) = ¢(t) Y Foi(0,0)6W (t —17) +er(tor(t) = D EidD(t —1]) +en(t)or(t), (20)
=0 =0

where E; are constants depending on Fp 1 (0,0) and P (t3) for 0 < k <n+m.
Set

7
Q)= _Cid"(t—t7) if tj=t
=0

and
n+m

Q)= > EsW(t—t7) if t} #t.
=0

Lemma 5. u(x,t) given by the formula

u(z,t) = S(x, t)er (0(z,1))vr (6(, 1)) + S1(x, 1) + S(z, )Q(0(x, 1)), (21)
where v, (t) is determined by (17), is a D'(Q)-solution to the problem (1)-(3) restricted
to Q°(1).
Proof. On the account of (19), (20), and the construction of the solution on Q(1), it is
enough to prove that the restriction of S(z,t)Q(0(xz,t)) to Y = {0} x (0,¢7 + ¢) is well
defined and that S(x,t)Q(6(x,t)) satisfies (1) with g(z,t) = 0 on 2°(1) in a distributional
sense.

Consider the smooth bijective map
P (l‘,t) - (l‘,(:)(O;ﬂC,t) - tT)

with O (2, 1) — (2, 7(x, 1),
where t = w(0;z, w(x,t)) — t;. Observe that ® restricted to 2°(1) is a diffeomorphism.
Since
WF(@*B;) C {(0,7(0,1),@,(0;0,7(0,2))n, & (0;0,7(0,%))n),n # 0}
and
N(Y) ={(0,t,£,0)},
we have
WF(®*B;)NN(Y)=0 forall 0<i<n+m.

This means that the restriction of S(z,t)Q(6(x,t)) to Y is well defined.

Similarly to the proof of Lemma 1, one can show that S(x,t)Q(6(x,t)) satisfies (1)
with g(z,¢) =0 in a distributional sense. This finishes the proof.
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To shorten notation, without loss of generality we assume that
max QF N {(z,t)|x =0} > t5.

Lemma 6. There ezists a smooth solution to the problem (1)-(3) on Q(2).

Proof. We start from the general formula of a smooth solution on Q(2):
u(z,t) = S(x, t)u(0,6(z,t)) + Si(z,t). (22)

Since S and S; are smooth, our task is to prove that there exists a smooth function
identically equal to u(0,60(x,t)) on ©(2). Since (z,t) is smooth, t] < O(x,t) < t5 if
(z,t) € Q(2), and c(t) = ¢, (t) if t € (t7,t3), it suffices to show the existence of a smooth
function v,(t) identically equal to v(t) on (¢},t;). From the formula (18) for v,(t) on
(0,t5 + ¢) it follows that v(t) = v, (t) if t € (¢],t] + €), where € is as above and v, (¢) is
known and determined by (17). To prove the lemma, it is sufficient to show that there
exists a smooth extension of v,.(t) from (0,t] + ¢) to [t + ¢,t3) such that v, (t) = v(t) if
t € [t7 4+ €,t5). If a such extension exists, then by (21) it satisfies the following integral
equation on [t} +&,13):

w(t;0,t74¢€)
on(t) = / by (2)S (@, ey (0(z, 1))on 0z, £)) dv + R(1), (23)
0
where
P(t) P(t)
R(t) = / br(2)S (z,t)cr (0(z, 1)) v (0(x, 1)) de + / br(2)S1(z,t) de
w(t;0,t5+¢) 0 (24)

HIo(t) + / b (@)S (2, )Q(O(x, 1)) da,

[ w(t;0,0) if @©(L;0,0) <t,
P(t){ L if &(L;0,0)>t,
b-(z) is defined to be 0 outside [0, L], and v, in the formula (24) is known and defined
by (17). One can easily see that the first three summands in (24) are smooth functions
on [t7 + ¢,t5). We now show that the last summand is a C®[t] + ¢, t5)-function as well.
Let us consider the smooth map

h:(z,t) = (0(x,t) — t],1)
that is bijective and therefore has the inverse map
B (1) = (G 1), 8),
for which it holds 6({(z,t),t) — ¢t7 = x. The function {(z,t) is smooth with respect to =

and ¢, what is clear from (9
Since 0(z,t) = @(0; x,t

).
), for ¢(t) € D(t; +¢/2,t}) we have

L
< [ 5 @5 0600(z1) - 1) dm,w<t>> = (6D 0w, 1) ~ 1), br(2)S (2, DU(1)) =

0
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- <h*5<j> (@), be () a, 13(0) =< 60 () @ 1(p), LD W“)> -

(9)
oy /[ €= 1)S(C (1), )
- << @e(0;¢(x, 1), 1) )x I_O,w(t>>.

From this equality we conclude that, irrespective of whether ¢; = 7 or t; # ¢}, the last
summand in (24) is a known smooth function. As follows from (15), the functions v..(t)
defined by (17) and (23) coincide at ¢ = t§ + €. The same is true with respect to all the
derivatives of v,..

Therefore our task is reduced to show that there exists a C*°[t] + ¢, ¢3)-function
vy (t) satisfying the equation (23). This follows from the fact that (23) is the integral
Volterra equation of the second kind with respect to v, (t) (for details see the proof of
Lemma 4). The proof is complete.

Continuing our construction in this fashion, we extend u over a neighborhood of
each subsequent border between Q(i — 1) and (¢) and over Q(i) for all 3 < i < k(T).
Eventually we construct u on Q7 for any T > 0 in the sense of Definition 2 with O
replaced by Q7 and II replaced by 117 = {(x,t) € IT|t < T}. As easily seen from our
construction, the condition (4) is fulfilled with €, and ©/_ replaced by Q7 N Q4 and
or N€Y,, respectively. Since T is arbitrary, the proof of Item 1 of Theorem 1 is complete.
On the account of Definition 3 and the definition of the restriction v € D’(€2) to a subset
of Q (see [3, Section 5]), Item 2 of Theorem 1 is a straightforward consequence of Item 1.
Theorem 1 is proved.
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