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Let f be a meromorphic function defined in the punctured plane C\ {0}.
In this paper we study the problem of possible deficient values and magni-
tudes of appropriate defects of meromorphic functions in the punctured plane
C\ {0}. The definition of the deficiency for meromorphic function in the
punctured plane is given. The certain relationship that concerns deficiencies of
meromorphic function f is established. Nevanlinna problem for meromorphic
functions in the punctured plane is considered.
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1. Introduction. Extensions of Nevanlinna theory to annuli have been made by
many authors [3], [5], [7]-[13]. The main tools the authors used were a lemma on index of
meromorphic functions along a circle [3], [5], a decomposition lemma due to G. Valiron
[11], and the argument principle. In [5] an approach was given which allows to introduce a
one-parameter Nevanlinna characteristic and apply Fourier series methods to the functi-
ons meromorphic in the annulus 4, = {z: 1/r <|z| <r}, 1 < r < 4o00. The theory of
meromorphic functions on annuli is more complicated than those in the disks. It is natural
to consider the meromorphic functions in the annulus A%r = {z : % < |z| < r}, T2>1,
r > 1. In [3], a two-parameter characteristic T (7, r; f) was introduced for meromorphic
function f in such annulus, which gives a possibility to describe the behavior of such
function at approaching to the inner and outer boundary circles of the annulus A R In
this paper, the meromorphic function f in C\ {0} with T (,r; f) and couple of veritable
orders is considered. In [2] it was established that if for a meromorphic function f the
set

K(T):{(a,ﬂ): I(10,70) Y(7,7) T>T0, T>710:" T(T,T;f)<7a+7“ﬂ}
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is nonempty, then this set is a quadrant. A vertex of this quadrant is denoted by (p1, p2)
and is called a couple of veritable orders of f.

In the direction of the development of Nevanlinna theory for meromorphic in C\ {0}
function f, the question appears about a deficiency of such function. In this paper a defi-
ciency of f is introduced. It is studied the problem of possible deficient values and magni-
tudes of appropriate defects of f, and connections between a couple of veritable orders
of such function and possible deficient values. Also Nevanlinna problem for meromorphic
functions in the punctured plane is considered.

Let f be a non-constant meromorphic function in the complex plane, and

Iqﬂzgﬁpr“@Q;%mmjy

where the standard notations from Nevanlinna theory are used. The number K (f) was
introduced by R. Nevanlinna. He posed the problem of finding the greatest lower bound
of K (f) for functions of a given order p. The following Theorem A answers this question
for 0 <p < 1.

Theorem A [1]. Let f(z) be a meromorphic function of order p, 0 < p < 1. Then

K(f) =1, 0<p<1/2
K (f)>sinmp, 1/2<p<]1.

These inequalities are best possible.

A variant of Theorem A is showed in this paper for meromorphic function defined in
the punctured plane C\ {0} with couple of veritable orders (p1, p2) [2], where 0 < py < 1,
0<p2 <1.

2. Definitions and notations. Let f be a meromorphic function in
A%r:{z: %< |z|<r},721,r21. Denote

miwrif)=m(57) +meg) = 2m ().

where m (¢, f) = % 027r log™ |f (tew) } dé.
Definition 1. [3]. The function
T(rrif) =N (i f)+m(r,rf)+eplogy, 721, 7 =1,

where N (1,7, f) = 1T wdt + flr Mdt +n(T, f)log\/Tr, T is the unit circle,
n(1/7,7; f) is the number of poles of f in Ax,, n(T, f) is the number of poles of f on
T, ¢y = %IE; Im (fTIdz) + ﬁfE? Im (’%dz), Ef={zeT: |f(2)|>1},
EY={z€T: [f(z)| =1}, is called the Nevanlinna characteristic of f.

By Theorem 2 [2] the function T (7,7; f) has a couple of veritable orders.

Definition 2. Let f(z) be a meromorphic function in the punctured plane C\ {0}. A
couple of veritable orders of f is called the couple of veritable orders of T (7,7; f) [2].
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Definition 3. Let f(z) be a non-constant meromorphic function in the punctured plane

C\ {0}. Denote
_ N(rmr)
do(a, f)=1— lim ————=

e T f)

r—+00
The value dg(a, f) is called the defect or deficiency of the function f for the value a. The
value 0g(a, f) is also defined at a = co by taking f instead of f—ia

If there is no doubt as to which f(z) is referred to, we write N (,7,a), T (7,7)
instead of N(7,r; ﬁ), T (1,7; f) if a is finite, and N (7,7, 00) instead of N (7,r; f).

3. Main results. Let f(z) be a meromorphic function in C\ {0} with a couple of
veritable orders (p1, p2). We start with formulation of the following Theorem 1, which
answers the following questions for 0 < p; < 1,0 < pa < 1:

1. Let 09(0) and do(c0) be two real numbers: 0 < 6o(0) < 1, 0 < Jp (00) < 1. When
can one find a meromorphic in C\ {0} function f with a couple of veritable orders

(pl,pg) such that (50(0) = 50(0, f), 50(00) = 50(007 f)?
2. Let f(z) be a meromorphic function with couple of veritable orders (p1, p2), where

0<p1 <1,0 < p2 <1, and such that do(a) = do(a, f), do (b) = do (b, f). What
can one say about the possible values of the pair of numbers dg(a), do (b)?

Theorem 1. Let f(z) be a meromorphic function in the punctured plane C\ {0} with a
couple of veritable orders (p1,p2), where 0 < p1 < 1,0 < pa < 1. Let

u=1—=100(0,f), wv=1=5dp(o0,f).
I. Then, in addition to trivial inequalities
0<u<l, 0<v<1, (1)

u and v satisfy
(2)

If u < min{cosmpy; cosmpa}, then v =1; if v < min{cosmpy; cosmpa}, thenu = 1.

(3)

u? 4+ v? — 2uv cosp, > sin® Tp;
u? 4+ v? — 2uv cos Tpy > sin® mpy

II. All values u, v compatible with these restrictions are actually possible.

Note that the equations
u? +v? — 2uvcosmp = sin® wpy, u?+v? — 2uvcosmpy = sin® wps

in the wv-plane represent ellipses with symmetry axes {u = v} and {u = —v} that are
inscribed in the square S defined by (1). These ellipses touch the lines {u =1} and
{v =1} at the points (1, cosmp;) and (cosmp1, 1), (1, cosmps) and (cosmps, 1) respecti-
vely. If 0 < p; < 1 the first equation of (2) shows that the point (u,v) lies either on one
of the sides {u = 1}, {v = 1} of the square S or at the corner of this square cut off by the
arc joining (cosmp1, 1) to (1, cosmpy). This set of (u,v) is denoted by S} . If i<m<1
then the first equation of (2) divides S into two parts. The point (u,v) lies in the part
of S which contains the sides {u. = 1}, {v = 1} of S. This set of (u,v) is denoted by S? .
The same considerations for ps and the second equation of (2), and consequently we have
S;2 and SﬁQ. Thus, Theorem 1 shows that the point (u,v) belongs to one of intersections
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2 Sgl N ng that is admissible depending on values p; and

As p1 — 0, the first ellipse of (2) tends to a limit position which is the linear segment
joining (1,1) and (=1, —1). Similarly, as p; — 1 the limit position is the segment joining
(=1,1) and (1, —1). The same for ps.

These facts suggest that Theorem 1 can be supplemented by the following proposi-
tions:

If py =0and 0 < py <1orpy =0and 0< p; <1 then the point (u,v) lies on one
of sides {u =1} or {v = 1}. Every point of these sides is admissible.

If p1 =1 and py = 1, the point (u,v) may be any point of the square S.

If p =1 and 0 < pa < 1, the point (u,v) either belong to S;z or 5,32 depending on
value po. If po = 1 and 0 < p; < 1, the point (u,v) either belong to S;z or ng depending
on value p;.

To prove Theorem 1 we need the following Lemmas.

Lemma 1. Let f be a meromorphic function in C\ {0} with a couple of finite veritable
orders (p1,p2), let {a;} and {br} be the sequences of their zeros, |a;| > 1, |by| < 1, and
{c;}, {di} be the sequences of its poles, |c;| > 1, |di| < 1. Let p1, p2, q1 and g2 be genera
of the sequences {a;}, {br}, {c;} and {di} respectively. Then

11 E(bj’“,pl) II E(fj,pz)

J(2) = 2 exp (7 P(2) L e , @
1 E(%,q) Il E (fjﬂ]z)
|dr|<1 lej|>1

where m € Z, v1 € Z, P(2) is a polynomial, deg P(z) = v1+va2, va € Zy, and 11 < [p1],
va < [p2], E(z,p) is the Weierstrass elementary factor.

The genus of the sequence {a;} and respectively of {c;} is defined as usual. The
genus of the sequence {b;} and respectively of {dj} is defined as the lowest non-negative
integer p such that

D Ibk["T < o0 (5)
k

An important property of meromorphic in the punctured plane C\ {0} function with a
couple of veritable orders (p1, p2), where both p; and py are less than one is the following

Lemma 2. Let

and
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The function h(z) is called the function associated with f. Then
T(T,’I“;f)ST(T,T;h)—F(Cf—Ch)log%. (8)

To prove Lemma 2 one can use the same idea as in the classical version [[4], p.
294-296, Lemma 4.4] but with two additional products, and Definition 1.

Lemma 3. Let g(z) be a holomorphic function in C\ {0} without zeros and

T(7,1;
lim Tnlig) =0 for some pu; >0, 9)

T—+00 TH

T(1,r;
lim M =0 for some pus > 0. (10)

r—+00 ri2

Then

g(z) =2z exp (z_l’lP(z)) , (11)

where m € Z, v1 € Zy, P(z) is a polynomial, deg P(z) = v1+va, v € Z4, and 11 < 1],
vy < [pe].

Proof. Let m = 7 [ ggl((zz)) dz. Consider the function G(z) = 27™g(z). By virtue of
|z|=1
([5], Lemma 3.2) a branch of log G(z) is determined in C\ {0}. Considering the Laurent

expansion of log G(z) with the coefficients {c;} we obtain

1 .
log |G(2)| = 3 Z (ckrk + E,kr*k) e* 2l =r>1,
keZ

N =

2
(ckrk + E,kr_k) = % /log |G (rew)‘e_ikedﬂ, (12)
0

1 .
log |G(%)| = 3 Z (conm® +opr ™ ) e ™ z|=1/7, T>1,

ke
1 1 2m
5 (copm + ) = 7 /1og |G (eie/T) |eik9d9. (13)
0

Since |log |G(2)|| < |log|g(2)|| + |m||log|z||, we get from (10), (12) as r — oo that
¢ =0 for k > po, and from (9), (13) as 7 — 400 that c_; = 0 for k > p;. Therefore

125 1251 1)
logG(z) = chzk + Zc_kz_k =z Z 2T = 27 P(2),
k=0 k=1

k=—1q

vy < [p1], vo < [pe], and g(z) = 2™ exp (27"* P(z)). This completes the proof.

Theorem 2. A couple of veritable orders of the function
bk z
F(z) = — —
(Z) H E<z7p1) H E<aj7p2)
[br|<1 laj|>1

is equal to the couple of veritable orders of function N (t,7,0) termwise.
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Proof. Let (p}, pb) be the couple of veritable orders of N (7,7,0) [[2], Lemma 2]|. From the
first fundamental theorem [[3], FFT] N (7,7,0) < T (7,7, F) +4log2+ C-log =, where C
is a constant depending on the function F', we have pj < p; and p} < pa, where (p1, p2)
is the couple of veritable orders of F'(z). As p; is the lowest integer number such that
S b/ < 400 and p, is the lowest integer number such that 3 Jax| """ < 400,
k k

then p1 < p} <p1+1 and p2 < ph < pa + 1. Using [[4], p. 78] one can get

b
log M (r, F) <log M [ r, [ E(;’“,pl) +logM | r, [] E(ai,p2> <
k

|br|<1 lag|>1
Tn(r/s,1,0;F) d Tn(,rs,0;F) d
nr/s, L,u; S n ,Ts, U] S
<C(p1)/ pes) 1+S+C(p2)/ TS A B (14)
r 1/r

1 1 b 1
logM<—,F) <logM [ =, [] E(—’“,pl) +logM | -, ] E(i,m) <
T T z T ak

[bx]<1 lax|>1
T n(l/rs,1,0;F) d Tn(ls/r,0,F) d
n TS, 1,U; S n ,8/T, U5 S
<oy [HUELED Dy oy [RLERED B )
1/7 T

Note that log M (r, F) = o (rP2T1), r — 0o and log M (1, F) = o (7P**1), 7 — oc. Since
the inequalities py < p1 +1, pa < pa+ 1 are valid, so if pj = p1 +1 and ps = p2 + 1 then
Py = p1and ph > pa. Let now p; < p1+1, p2 < pa+1. Then for any pf, p} < pf < p1+1
and for any p4, ph < p < pa+1the n(1,£,0; F) < Corf? and n(1/t,1,0;F) < Cy7°7
hold for all r and 7 > 1, where C1, Cs are some constants. From here and from (14), (15)
we obtain log M (r, F') < Csr?? and log M (1,F) < Cy7P' . Hence p; < p!!, pa < p4, and
therefore py < pf, p2 < pb.

Proof of Lemma 1. Denote the function in the numenator of (4) by Fi(z) and in
the denominator by Fy(z). Since N (7,7; f) < T (7,7; f) —cglog T and N (7,7;1/f) <
< T(r,r;f) — c1yplog T the couples of veritable orders of N (7,7 f) and N (7,7,1/f)
do not exceed termwise the couple of veritable orders (p1,p2). The same is true for
the couple of veritable orders of F;(z), i = 1,2, by the Theorem 2. Consider the zero-
free holomorphic function g(z) = %{j)@) The function g(z) satisfies the conditions of
Lemma 3. By Lemma 3, the proof is completed.

Proof of part I of Theorem 1. Consider the associated function h(z) = hy(z)ha(z), where

IbI\I<1 (1 ’ @) \alll (1 i ﬁ>
hi(z) = ——————— and hy(z) = ———,
T (e e T (e
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and start from the well-known representations

T dt T dt
T dt T dt
log ha(2) = zl/N(l,t,O)m —l—zl/N(l,t, 00) m (17)

valid for 0 < argz < m. It is sufficient to focus our attention on the values of r and 7 for
which, simultaneously
m(r,h) >0, m(r,1/h) >0 (18)
m(1/7,h) >0, m(1/7,1/h) > 0. (19)
Assume that 0(0, f) > 0, dp(c0, f) > 0. Using Lemma 2 we obtain the inequalities
lim (T r f) im (T(T,T;h)-f—(Cf—Ch)lOg%)

oo N (11, f) f) oo N (1,7, h)
r—+400 —+oo

T(r,r;h) (cy —cn)log 7

< lim —22~+ lim
T S50 N h + N h
::;i‘gg (T7 T, ) ;::+gg (T7 T, )
In view of the fact that lim % = 0, because the function h is the function
gy
; ; ; T N(mrf) T N(rmh)
with couple of genera which equal zero, we obtain ngr_loo Tl ) > Tgr_irrloo Tlraih)
r—+00 r—+00

Thus 09(0,h) > 0 and the same is true for do(oo, k). Hence, inequalities (18),(19) are
valid for all sufficiently large values of r and 7. The function log |h (rew)} is an even
function of # decreasing when 6 varies from 0 to 7. Hence, in view of (18) log |h (r)| > 0,
log|h (—=r)| < 0, and there exists a number 8; = $1(r), uniquely determined and such

that 0 < Bi(r) < , log|h (re’”r)| = 0. The above considerations are also valid for

log ‘h (4)‘ with uniquely determined Sy = f2(7). For sufficiently large values r > 1
and 7 > 1 using (16), (17) we have

B1 B1
1 X 1 )
m(r,h) < = /1og‘h2 (rew)‘de—l- Ch = 1lim — /log |h2 (Tew)|d9—|— Ci <
™ 6—0 T
0 5
§/N(1,t,0) (t,r, 51) dt+/N (1,t,00) P (t,r,m — B1)dt— (20)
1 1

—lim [ N(1,¢,0) P (t,r,é)dt—(}irr(l)/N(l,t,oo)P(t,r,w—5)dt+C’1,
—

6—0
1
B2 B2 )
67,9
hi (—) ‘de +Cs <
T

6
/log hy (e )‘d9+(]2 = lim — /log
T o

0 )

3=

m(1/7,h) <
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/Nt,l,o trﬁgdt—l—/Nt,l,oo (t,7,m— B2)dt— (21)
1 1

—lim [ N (¢,1,00) P (t,7,m — §)dt — lim /N (t,1,0) P (t,7,0)dt + Cq,
6—0 6—0
1

where P (t,s,7v) = %% and Cy, Co are constants that only depends on the
function h(z). The limits %irr(l)fN(l,t,O)P(t,r, d)dt, gir%fN(t,l,O)P(t,T, d)dt are
—U1 —01
equal to zero. Using well-known properties of the Poisson integral for the half-plane
[ee]

[4], p- 298] we have gir% J N (1,t,00) P (t,r,m — &)dt = N (1,7,00),
—Y1

oo
%irr(l) J N (t,1,00) P (t,7,m—d)dt = N (7,1,00). By Lemma 2,
—U1

T(r,1) < | N(t,1,0) P (t,7,52)dt+ [ N (t,1,00) P (t, 7, m — Ba)dt+cylogT+C1, (22)

H\g
H\g

T(1,7r) <

7 1
N (1,t,0) P (t,r,51) dt+/N (1,t,00) P (t,r,m — p1)dt+cylog —+C5. (23)
r
1
Let U, V denote two positive quantities such that U > uw =1 — §0(0, f),
V >wv=1-0g(c0, f). The definition of deficiency (Definition 3) implies
N (t,71,0) <UT (t,71), N (t,71,00) < VT (t,r1) for some fixed r4 >rg, (24)
N (11,5,0) <UT (11,s), N (m,s,00)<VT(r,s) forsome fixed 7 >75. (25)

Choose ¢ so that 0 < & < min{p1;p2}, € + max{p1;p2} < 1. By Polya’s Lemma
[1, p. 237] there exists sequences {ry} <lim Ty = —|—oo) (depending on ¢€) and {7}
n—oo

( lim 7, = +oo) (depending on ¢€) such that

m—r o0
Ttry) < Tmom) (10 <t < Tpm)
TEf()tl,rl) B T7(—£,L1,“r1) o (26)
trP1+te é ‘rf,,,l+5 9 (Tm S t)v
Tt < Tl (ro <t <ra),
; 27
o T (<), )
Using (24), (26) in (22), and (25), (27) in (23), we obtain
T £ \PE x p o\ Pte
T(Tm,m)SUT(Tm,m){/ (?) P(t,rm,ﬁg)dt—i—/(T—) P(t,rm,ﬁg)dt}—i—
0 Tm
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T 1—€ X 1te
+VT(Tm,r1){/(i>p P(thmvw—ﬂg)dt+/<i)p p(t,Tm,w—ﬁg)dt}Jr (28)
0

Tm Tm
Tm

+771 (Tm) + T(larl) + Cf 1Ong + Cl;

m (Tm) < {N (10,1,0) + N (10,1, 00)} Tm (10— 1)

(Tm - 7—0)2

Tn s—e o0 2+e
T(Tl,’l"n) SUT(Tlarn) {/ <i>p P(t7rnaﬁl)dt+/<i)p P(tarfuﬁl)dt}_i_
0

Tn Tn
Tn

Tn Tn

VT (r1,7) {7<i>p2_; (b7, — Br) dt + 7<i)p2+; (b1, — Br) dt}+ (29)
0

Tn
Ty (ro — 1)
(rn — TO)Q

The following considerations are carried out only for (28), for (29) the considerations are
much the same. Via the substitution ¢ = s7,,, we obtain for 0 < p;1 —e < p1+e<1

T " p1—¢ x° " p1te

/(-) P(t,rm,ﬁg)dt—i—/(—) P (t, 7, ) dt =
Tm Tm

0

Tm

1
+n2 (1) + T (11,1) + ¢ logr— + Ca,m2 (rn) < {N (1,70,0) + N (1,70,00)}

00 1
:/sp1+€P(s,1,ﬂ2)ds+/(spl_s—s’“+€)P(s,1,Bg)d8. (30)
0 0

oo .
It is well-known that [ s” %P (s,1,532)ds = %- For given n > 0 and for
0

0 < e < eog(n) we have 0 < fol (sPr7¢ — /11 )P (5,1, 82) ds < n. Hence and from (28)
after division by T (7,,,71) for € < €¢ (1) we obtain

1< sup {US'IH’Y(Pl +¢€) Vsm('w —v) (p1 +5)}
o<y<x | sinm(p1 +¢) sinm (p1 +¢)
cylog T
. 1
+(U+V)”+O<TmT(Tm,n)> T (7 1) (51
Similarly we obtain from (29)
1< sup {Us?na (p2 +¢) Lo (7r —0)(p2+ 5)}
o<o<r | sinm(p2 +¢) sinm (p2 + ¢€)
1 crlog -
N 2
+(U+V)n+0<rnT(ﬁ,rn)> T (11,7n) (32)

Let n — 00, m — oo in (31), (32), and then make the proceeding to the limit ¢ — 0,
n—0,U — u, V — v we can see that the deficiencies u and v satisfy the system of
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inequalities
sinpy < sup {usinyp; +vsin(r — ) p1},
0<v<n
sinmpa < sup {usinopy +vsin(r — o) pa}.
0<o<m

Since usinyp; + vsin (7 — ) p1 is a continuous function of v, we can find a value of v
for which the sup is attained. For this ~,

sinmp; < wusinypy +vsin (7 — ) p1 = (u — veosmpr) sinypy + vsinwpy cosyp1.
Hence, by Schwarz’s inequality we get (2).
The immediate consequence of Theorem 1 is the following

Theorem 3. I. Let f be a meromorphic function in the punctured plane C\ {0} with a
couple of veritable orders (p1,p2), where 0 < p; < 1/2 and 0 < pgs < 1/2. If §o(a, f) >
> 1—min {cos mpy, cosmpa} under the condition that either 0 < p; < 1/2 and 0 < ps < 1/2,
or 0 < pa < 1/2 and 0 < p1 < 1/2, then a is a unique deficiency of meromorphic function

f(z).

II. Let f be a meromorphic function in the punctured plane C\ {0} with a couple of
veritable orders (p1, p2), where 0 < p1 < 1/2 and 0 < p2 < 1/2. If §o(a, f) > 0 under the
condition that either py =0, 0 < p2 < 1/2 or po =0, 0 < p1 < 1/2, then a is a unique
deficient value of meromorphic function f(z). In particular, meromorphic function with
couple of veritable orders (p1, p2), where at least either py or ps is equal to zero, cannot
have more than one deficient value.

Proof. If ép(a, f) > 1 —min {cosmp1,cosmpz} then the result of the theorem immediately
follows from (3). If 0 < p; < 1/2, 0 < ps < 1/2 or 0 < pp < 1/2, 0<p < 1/2 and
do(a, f) = 1 — min{cosmpy, cosmpa}, this means that v = min{cosmpy,cosmpa} in
Theorem 1. Without loss of generality let © = cos wp1, then from (2) it follows that v = 1
or v < cos2mp1. In the last case from (3) we obtain that u = 1 because cos 2mp; < cosmpy
when 0 < p; < 1/2, this leads to the contradiction. Thus we should have v = 1.

Now we are interested in finding a lower-bound estimate of quantity

m N(T7T7O;f)+N(T7T7OO;f)
T30 T (r,r; f) ’

r—-+4oo

that is to say to prove a variant of Theorem A for meromorphic functions in the punctured
plane C\ {0}. Thus, a slight modification the proof of Theorem 1 leads to

Theorem 4. Let f be a meromorphic function in the punctured plane C\ {0} with a
couple of veritable orders (p1, p2), where 0 < p1 <1, 0 < py < 1. Then

m N(T7T7O;f)+N(T7T7OO;f)
Tfoo T (r,r f)

r—-+4oo

>
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]-7 Zf plzoa 0§P2<1;
or p2=0, 0<p <1,
> ) (33)
, if 0<pr <1, 0<pa <.
min ( sup a2z sup saze )
0<~y<m 0<o<m

The inequality above is best possible.

Proof. For the couple of veritable orders (p1, p2) such that p; = 0,0 < py < 1 or ps =0,
0 < p1 < 1, Theorem 4 follows from the fact that a function with a couple of veritable
orders (p1, p2), where at least either p; or ps is equal to zero has at most one deficient
value, so that

T N(T,T,O;f)-f—N(T,?“,OO;f)

lim >
oo T (r,r f)
N : — N :
Zmax{ » w — M}:L
ot T f) o 1zt T(nnf)

In the sequel, 0 < p;1 < 1 and 0 < pa < 1. The (22) and (23) imply the following
inequality

oo [ee]
T(r,r )< /N t,1,0) P (t,T,52) dt+/N t,1,00) P (t,7,m — B2)dt+
1 1

+/N1t0 tr,ﬂldt—f—/Nltoo tr,w—ﬂl)dt—l—cflogz—i—Cl—i—Cg, (34)
r
1 1

which is valid for all sufficiently large values r > 1, 7 > 1. If Ay = M\ (1) =
=max {f2 (17),7 — B2} and Ay = Ay (1) = max {f: (r) ,m — f1}, then obviously Ay > ),
X2 > To, and max {P (¢t,7,01), P (t,r,m — p1)} = P (t,r, A2),

max {P (t,,02),P (t, 7,m — B2)} = P (t, 7, \1). Hence, by (34)

T (r,r, f) < /{N (t,1,0) + N (t,1,00)}P (t, 7, A1) dt+

+/{N(1,t,o) N (L,t,00)} P (1, o) + g log ~ + Oy + G,
1

Apply Polya’s Lemma to the functions in square brackets in both integrals above, as in
the proof of Theorem 1. We obtain the inequality

T(varnvf) <N (Tm)A(pl) + N2 (Tn)A (/)2) +m (Tm) + 12 (Tn) +
+2n+cy logi—m +C1 + Co,

where Ny (7y,) = N (7, 1,0) + N (7, 1,00) and N (1) = N (1,7,,0) + N (1,7, 00),

A(pr) = %, Alp2) = %. After division the last inequality by
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N (T, 7, 0) + N (Ty, T, 00), where N (7y,, 70, 0) + N (Tyn, Tn, 00) = N1 (Tin) + Na (r2)
we get

T (Tm,Tn; f) < A(pl)Nl (Tm,) =+ A(pQ)NQ (Tn) Cy log Im N
N (T, 70,0) + N (Ton, 7n, 00) N1 (7o) + N2 (r4) Ny (Tm)+N2 (7n)

1 1 2n
o (m (N1 (7o) + Vo (7)) 7 (N1 (7m) + N (m))> TN ) + Na ()
Ci1 + Co
Nl (Tm) + N2 (7"”) .

Passing to the lower limit in the previous inequality when n — +o00, m — +0o we obtain

. T (7,75 f)

lim <
5400 N (7,7,0) + N (7,7,00)
r—-+00

< min {A(p), A} < min{ sup SO gy ZROP2E
0<y<n SINT(p1 +€)"  o<o<r SinT(p2 +€)

since  lim A(pl)%ié::;:‘\‘élzilf)\f2(m) = min{A(p1), A(p2)}. Then passing to the limit
n—-+oo
m——+00

when £ — 0 completes the proof of (33).
The following function with couple of veritable orders (A2, A1), where 0 < A1 < 1,
0 < A2 < 1, will be used to show that the result of Theorem 4 is best possible,

Hey, o (2) = ﬁ (1 + 0‘}/27?%1» ﬁ (1 + by ™ (% + CQ», (35)

v=1 n=2

where a, = v'/*, (v =1,2,3,...) b, = nl/;*? n=23,..),0<a; and 0 < ag, 1 >0,
¢ > 0. Now we will look at the asymptotic behavior of Hy, o, (2) when z — oo and
z — 0. The asymptotic behavior of f (z;A\) = H (1 + ) (Lindel6f functions), where

v=1

c, =vY* (v=1,2,3,..),0 < X < 1is well-known [1], [6] and it implies

108 Hay 0 (2) = — 2 (14 2, (2)), (36)

sin mAq

where €1 (2) — 0, uniformly, as z — oo in the angle |argz| <7 —6 (0 < § < 7), and

log He, , (2) = —02_ 1 (1+52 (i)) (37)

Sin T 222

where €5 (1) — 0, uniformly, as z — 0 in the angle |argz| <7 —6 (0 < 6 < 7). It is easy
to infer from (36) and (37) that, as  — co and 7 — oo,

ayr™
m (7’, Hahaz (Z)) ~ A1 slmn—)\l (% < >\1 < ]‘) ’ (38)
m(r, Hou,oéz (Z)) ~ 0(17" = (0 < Al S %) )
(1/7" 1,02 z)) ~ )\20;21;7?)\2 (% <Az < 1) ’ (39)

(/7'7 a1az(z)NazT (0</\2§%).
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Let n(1/%,1;0), n(1,t;0) denote the counting-functions associated with Hy, o, (2). Evi-
dently, n(1/-,1;0) ~ aa™? (7 — 00) and n(1,7;0) ~ a7 (r — 00). And hence

0417“)‘1 0427')\2

A1 A2

Under different values of 0 < Ay < 1 and 0 < A2 < 1 asymptotic relations (38), (39) and
(40) imply the equality in (33).

N (7,7,0) ~ (T =00, T—00). (40)

Proof of part II of Theorem 1. In proving this Theorem the constructed examples are
modification of examples given by Albert Edrei and Wolfgang H. J. Fuchs [1] in the
classical case. According to the geometrical discussion following the statement of Theorem
1, we must show that for every point (u,v) in the corner of the square 0 < u < 1,
0 < v <1, cut off by the arc of one of ellipse (2), which lies above, there exists a
meromorphic function f (z) with a couple of veritable orders (A2, A1), such that

u=1-0(0,f), wv=1-0dg(o0,f[)

If0 < A < 3 (i=1,2), the lines u = 1 and v = 1 have to be added to this corner. Let
Py (B8) : (cos(m— B) A1, cosmAy), Pa(B) : (cos(m — ) Az, cosmAg) (0 < 5 < ). Either
the point P; () or P (f) describes the arc which lies above depending on values A; and
A2. Then let Lg be the closed line segment joining the point P; (8) or Py (8) to (1,1).
Let Cg be the part of Lg contained in the square 0 < u <1, 0 < v < 1. First it will be
proved that every point of Cp is a possible position of (1 — do(0, f), 1 — do(c0, f)). As 3
varies from 0 to 7, one of the points P; (3), P> (8) describes the arc which lies above and
C's sweeps over the whole corner described above. Therefore, every point in the corner is
a possible position of (1 — dy(0, f), 1 — dp(o0, f)). Consider the function

HO‘17042 (Z) H0t3,044 (_Z)
HO(570(6 (Z) Hamﬂ(s (_Z)

where H,, o, () is function (35). For every specific choice of the quantities o; (i = 1,8),
we may choose the constants ¢, ¢z so as to prevent cancellation of zeros between the
various functions Ha, o, (2) in (41). We take, for instance, ¢; = 0, c2 = 0 in Ha, a, (2)
and Hoy o, (—2) and ¢1 =1 > 0, c2 = 2 > 0in Hyy o4 (2) and He, o (—2). The oy
(i =1, 8) are chosen so that

f(z) =

(41)

(a3 — a7)sinTA; = — cos By,

(a1 —as) + (a3 — ar) cosTA; = sin S\

(g — ag) sin A = — cos S, (42)
(a2 — ag) + (g — ag) cosTAg = sin BAq,

(as + as)sinTA; = X,

(g + ag)sinmhe = X,

where X > max {A, B},
A =max {0, —cos (m — §) A1, —cos fA1}, B =max{0, —cos(m — B) Az, —cos fAz}. (43)

Using considerations as in [1] one can easily show that the system (42) may be satisfied
by non-negative «. All the v are non-negative and one, at least, is positive. By (36), (37)
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and (41) we have for every 7, 0 < n < m,

. 7'(7“)‘1 . .
log f (7“6“9) = . [(oq —az)e™M? 4 (a3 — ar) e“\l(a_”)} + & (2) 1, (44)

0 A2 . . 1
g (%) = 2 [t =2 e+ (s —as) 0] e () 7,

E sin g
0<n<O<m—mn € (2)—0, uniformlyas |z]=7r— o0
and

1 1
5”<_) — 0 uniformly as |z|=—-, 7 — oo.
o T

Using (44), (45) and the four first equations of (42), we obtain

A1
log ‘f (rew)| = s;rTl:r)\ sin A\ (B —0) +¢' (r,0) 1™, (46)
1
log | f N T G (B—6)+¢" (r,—0) 7 (47)
& T )|  sinmhe 2 e T

where the quantities &’ (r,0), €’ (1,—0) tend to zero uniformly as r — oo, 7 — oo and
n < 0 < w—n. Although (46) and (47) are not valid with 6 replaced by —6, the asymptotic

behavior of f (re’w) and f (eﬂe) are known since, by (41), the function f (z) is real

=
for real values of z and hence

e =1l | (S)] =] (5

T

Using the result from ([1], P. 244) we obtain

w+n w+n 1
/ |log [Ha, .o, (re) || dO < Ar™ | + / 1og<m) do |, (48)
w+n w+n 1
[ ol (/)| a8 < 5 e [rox (g @), o)

O<w<w+n<m7), A, B depend only on Hg, o, (2). Now from (46), (47) and (48),
(49) it easily follows that

A1

m(r, f) = 1 fsinAl(ﬂ—Q)dQ—ko(V‘l)— r (1 —cosBA)+o(r) (r — o),

sin w1 A1 sin A1

B 2

m (Y f) = 22 foinda (8= 08 +0(P) = e (1 cosha) + 0(r2)
0

(1 — 00).

By (40) and (41),

)\1 )\2 )\1 )‘2

(i +asz)r n (ataq)T

(as+ar)r n (s +asg) T
M Ao

N(Tv T, O)N ) N(Tv T,OO)N A\ Ao (50)
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Hence, using (42)

M A2
Tmn )~ [)\1 sin T * A2 sin7r)\2] (L+X). (51)
Using (50), (51), and (42) we get
uw= Iim M: {(041"‘043)511170\1.(Oé2+a4)sin7r)\2}_
Tt Tnr f) 1+x 1+ X

r—+00

_maX{COS(ﬂ'—ﬂ)A1+X.COS(W—ﬂ)Azﬂ-X}_

1+X ’ 1+ X
_ max{cos (m — 3) Ai;cos (m — ) Ao} + X (52)
B 1+ X '
Similarly
— N (r,7r,00) max{cosSAi;cos B} + X
= 1 = .
° ;jlifgg T(r,rf) 1+ X 53

As X varies according to (43), the point (u,v) whose coordinates are given by (52) and
(53) describes the segment Cg except for the end-point (1,1). But the values v = 1,
v = 1 are attained for any function f with do(0, f) = dp(oco, f) = 0. To complete the
proof we need to consider the cases A\ < %, Ay < %, u=1,v < min{cosmA1; cosmA2};
u < min {cosmA1; cosmAz}, v = 1. Consider the function

f( ) _ Hl[—;—'(yl,l-i-(yl (Z),
a1, (2)
which yields

rM A2
m(rvf)'\’)\_lv m<1/7'af)'\’ /\2’
(14+a)r™  (14ay)7? ™M a2
(Ta T, ) )\1 )\2 ) (Ta T, OO) )\1 )\2 (Oél > ) )
(I+a)r  (I+ar)m™
T ~
(Ta T, ) )\1 + )\2 )
u=1 wv= a1 .
1+ (65)

When «; varies from 0 to oo, v attains every value in (0,1). The case u = 1, v = 0 is
trivial since we may take for f (z) any holomorphic in C\ {0} function with a couple of
veritable orders (Az, A1), where A; < 3 and A; < 1. Passing from f (z) to ﬁ, it is clear
that the values of v and v are exchanged.
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