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As a generalization of conjugate lattice-valued capacities on a compactum,
a relation of conjugacy for Scott continuous maps from continuous semilattices
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Introduction. A proper domain for a real-valued additive measure is a ring or
an algebra of sets. If a measure is o-additive, then the closedness of the domain under
countable unions and intersections is usually also required. For a capacity, i.e. a regular
non-additive measure, on a compactum, it is sufficient to know only values for closed non-
empty subsets [4]. These subsets, ordered by reverse inclusion, form a complete continuous
meet semilattice, hence it makes sense to consider capacities with domains which are
continuous semilattices, and with values in complete continuous lattices. We suggest
a definition for such capacities and discuss a generalization of a notion of conjugate
capacities, which proved to be fruitful for set functions. It is shown that conjugacy is
related to self-dualities of categories of continuous semigroups and of complete lattices,
and is naturally described in terms of Galois connections.

1. Preliminaries. We adopt the following definitions and notation, which are consi-
stent with [1]. All statements in this section are also numbered accordingly to the latter
citation. From now on, semilattice means meet semilattice, if otherwise is not specified.
If a poset contains a bottom (a top) element, then it is denoted by 0 (resp. by 1). A top
element in a semilattice is also called a wunit.

For a partial order < on a set X, the relation <, defined as z <y <= y < z, for
z,y € X, is a partial order called opposite to <, and (X, <)°” denotes the poset (X, <).
If the orlglnal order < is obvious, we write simply X°P for the reversed poset. We also
apply () to all notation to denote passing to the opposite order, i.e. write X = Xop,
sip = inf, 0 = 1 etc. For a morphism f : (X <) — (V,<) in a category [3] Poset
of posets and isotone (order preserving) mappings, let f°P be the same mapping, but
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regarded as (X,<) — (Y, <). It is obvious that f°P is isotone as well, thus a functor
(=) : Poset — Poset is obtained.
For a subset A of a poset (X, <), we denote

At ={ze X |a< zforsomeac A}, Al ={zr € X |z <aforsomeac A}.

If A= At (A= A]), then a set A is called upper (resp. lower).
The subgraph (or hypograph) of a mapping f from a set T to a poset L is the set

subf={(t,a) eTxL|a< f(t)}

Its epigraph is the set
epif ={(t,a) e T x L| f(t) < a}.

For a poset L, we denote by LT a poset L U {T}, where T ¢ L becomes a new top
element. Observe that LT is a complete lattice if and only if L is a complete semilattice.

A topological meet (or join) semilattice is a semilattice L carrying a topology such
that the mapping A : L x L — L (resp. V : L x L — L) is continuous. A lattice L with
a topology such that both A : L x L — L and V : L x L — L are continuous is called
a topological lattice.

A set A in a poset (X, <) is directed (filtered) if, for all z,y € A, there is z € A
such that z < z, y < z (resp. z < z, 2 < y). A poset is called directed complete (dcpo for
short) if it has lowest upper bounds for all its directed subsets.

For a topology 7 on X define a preorder <, on X by

<,y & v €U impliesy € U for all z € 7.

A poset (X, <) is called bounded complete if each bounded from above non-empty
subset A C X has a least upper bound.

The preorder <., is called the specialization order on X with respect to 7. It is a
partial order if and only if 7 is Ty—topology.

Fix a partial order < on a set X. Among the topologies 7 on X with specialization
order < those with the property that every <-directed set with a least upper bound in
U € 7 is eventually in U are called order-consistent. The finest such topology is the Scott
topology o(X). It consists of all those U C X that satisfy x € U < UND # & for every
< —directed D C X with a least upper bound z. Note that “<” above implies U = U 1.

A mapping f between dcpo’s X and Y is Scott continuous, i.e. continuous w.r.t.
o(X) and o(Y), if and only if it preserves suprema of directed sets (cf. Proposition
I1.2-1).

The lower topology w(X) on a poset (X, <) is the least topology such that all sets
of the form {z}| are closed. The join of (i.e. the least topology that contains) o(X) and
w(X) is called the Lawson topology on X and denoted by A(X). The space (X, A(X)) is
denoted by AX.

In a depo X, a lower set is Lawson closed iff it is Scott closed iff it is closed under
suprema, of directed subsets.

Let L be a poset. We say that x is way below y and write x < y iff, for all directed
subsets D C L such that sup D exists, the relation y < sup D implies the existence of
d € D such that x < d. “Way-below” relation is transitive and antisymmetric. An element
satisfying & < z is said to be compact or isolated from below, and in this case the set
{z}?1 is Scott open (hence Lawson open).
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Observe that T is isolated from below in LT if and only if each directed set D C L
has an upper bound in L.

A poset L is called continuous if each element y € L is a least upper bound a direct
set of all z € L such that z < y. A domain is a continuous dcpo. If domain is a semilattice
(a lattice), it is called a continuous semilattice (resp. a continuous lattice). Obviously
a continuous lattice with a bottom element is a complete lattice, and a semilattice S is
continuous if and only if ST is a continuous semilattice with T isolated from below.

By Theorem III1.1-9 the Lawson topology on a complete semilattice L is a compact
Ty-topology. Theorem III.1-10 asserts that, for a domain, the Lawson topology is
Hausdorff. Hence the Lawson topology on a complete continuous semilattice is compact
Hausdorff, and by Theorems II.1-14, II[-2.28 the mapping A : AL x AL — AL is
continuous, i.e. (L, A(L)) is a topological semilattice.

Theorem I1.1-14 and Proposition I11.2-6 imply that, for a dcpo S and a domain L,
the topologies A(S x L) and A(S) x A(L) on S x L are equal.

A topological semilattice is called a Lawson semilattice or said to have small semi-
lattices if, in each point, it possesses a local base consisting of subsemilattices. A distri-
butive topological lattice L is called a Lawson lattice if, in each point, it has a local base
consisting of sublattices, or, equivalently, if L and L°P are Lawson semilattices.

By the Fundamental Theorem on Compact Semilattices (Theorem VI.3-4), each
complete continuous semilattice with the Lawson topology is a compact Hausdorff Lawson
semilattice, and each compact Hausdorff Lawson semilattice is a complete continuous
semilattice such that the given topology agrees with the Lawson topology.

Similarly, by Proposition VIIL.2-10, a complete distributive lattice L admits a
compact Hausdorff topology making it a Lawson lattice if and only if both L and L°P
are continuous semilattices and the Lawson topologies on L and L°P agree (and provide
a unique such topology). In this case the Lawson topology on L coincides with the lower
topology on L°P, and vice versa, hence the topology in question on L is the interval
topology, i.e. the join of the lower topologies on L and L°P.

We regard each subset P C X x Y as a binary relation and write Py for (z,y) € P.
We also denote P = {y € Y | zPy}, Py = {x € X | Py} forallz € X,y € Y.
The characteristic mapping of a relation will be denoted by the same letter:

P(z,y) = L (@) € P, reX,yey.
07(x7y) ¢P’

Let also P be the complement, (X x Y)\ P.

2. Notion of capacity on semilattice. Lawson duals and conjugacy. From
now L is a compact Hausdorff Lawson lattice. For a continuous semilattice .S, Lemma IT.2-
5 and Theorem I1.2-12 [1] imply that the set [S — L] all Scott-continuous (hence isotone)
mappings from S to L is a complete continuous lattice w.r.t. a natural order: f < g if
f(s) < g(s) in L for all s € S. Pairwise meets and joins in [S — L] are calculated
argumentwise: f A g(s) = f(s) Ag(s), fVg(s) = f(s) Vg(s). Thus [S — T] with
the Lawson topology is a compact Hausdorff Lawson lattice.

It is widely known (cf. Exercise VI.3-18 [1]) that the Vietoris topology on the set
exp X of all non-empty closed subsets of a compact Hausdorff space X is the Lawson
topology on (exp X )P, i.e. on exp X ordered by reverse inclusion, which we denote by
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exp, X, and exp. X with this topology is compact Hausdorff Lawson semilattice, hence
is a complete continuous (meet) semilattice. Therefore an element f € [exp_ X — L] is
an isotone mapping f : exp X — L°P which preserves infima of filtered collections of sets,
ie. f(NA) =inf{f(4) | A € A} for any filtered collection A of closed non-empty subsets
of X. It is nothing but a 7-smooth (i.e. upper semicontinuous) L°P-valued capacity on
X [4].

Thus we suggest the following definition which generalizes the notion of capacity on
a compactum in the same manner as o-additive measure on a complete Boolean algebra
is a generalization of o-additive measure defined on a o-algebra of sets.

Recall that L is a complete continuous semilattice if and only if L is a compact
Hausdorff Lawson meet semilattice with the topology A(L).

Definition 1. Let S be a join semilattice such that S°P is a continuous semilattice, L a
compact Hausdorff Lawson lattice. An L-valued capacity (or L-capacity for brevity) on
S is a mapping ¢ : S — L which preserves infima of filtered sets (and hence is isotone).

Observe that this is equivalent to being an element of [S°? — L°P]. We denote
the set of all L-capacities on S by M [ L]S and consider it with the natural order, thus
M) S = [S°P, LoF]°P.

Definition 2. A capacity ¢ : S — L is normalized if S has a unit and c takes it to
the unit of L.

The least normalized capacity c¢o : S — L is the following one:

1,s=1
=< ’ € S.
co(s) {0787&17 s

A capacity c € M (£)S 1s normalized iff ¢y < ¢, therefore the set M7} S of all normalized
L-capacities on S is equal to {co}1 in M,;S.
Then the following statement is immediate:

Proposition 1. The posets M[L]S and M)S are compact Hausdorff Lawson lattices
with the respective Lawson topologies.

A filter in a poset is a filtered upper set. For a poset X, by X we denote by X%
denote the Lawson dual of X which consists of the non-empty Scott open filters in X
ordered by inclusion.

A category which consists of all continuous semilattices with units (top elements)
and semilattice morphisms that preserve units and directed suprema (i.e. are Scott conti-
nuous) is denoted by CSem. Duality Theorem on Continuous Semilattices [1, Theorem IV-
2.16] asserts that, for a continuous semilattice S with a unit, the poset S2 is a continuous
semilattice with a unit as well, and, for a morphism f : S — S’ in CSem, the formula
fA(F) = f~Y(F), F € §’», defines a morphism f* : §’4 — S§% in CSem. Thus a functor
(=)? : CSem — CSem®” is obtained, and (—)* o (—)% is isomorphic to the identity
functor 1csem- An isomorphism U : lesem — (—)2 o (=) consists of all mappings
Us : S — S2% that send each s € S to the set {F € S* | s € F}. Hence by the latter
theorem the category CSem is self-dual under the contravariant functor (—)%. It is obvi-
ous that max S© = S.



CONJUGATE MEASURES ON SEMILATTICES 225

Let CSemy be the category that consists of all continuous semilattices with bottom
elements, and all Scott continuous semilattice morphisms which preserve the bottom
elements. For each object S of CSemg, the poset S' is an object of CSem such that
its top element is isolated from below. For a morphism f : S — S’ in CSemy, let
fT:8T = 8T take each s € S to f(s) € S/, and T to T. Note that f' is a morphism
in CSem, and (—) " : CSemy — CSem is a functor which is an embedding of categories.

Then (cf. Exercise IV.2-21 [1]) the Lawson dual (ST)# is a continuous semilattice
with the top element S isolated from below, and with the bottom element {T}. Hence
a poset

M= (ST \{sT}.

is an object of CSemy as well. This assignment extends to a contravariant functor
(—)" : CSemy — CSemq as follows: Each F € (S'T)®, F # S'T, does not contain
a bottom element 0’ € S’, therefore the mapping (f7)® : (8'T)2 — (ST)® takes
such F to the open filter (fT)~!(F) which does not contain a bottom element 0 € S,
hence (fT)2(F) # ST. On the other hand, (f7)*(S’") = ST. Thus we define the
mapping " : S" — S as a restriction of (f7)”. By the above the assignment
s— {F € S"| s € F}isanisomorphism ug : S — S which is a component of a natural
transformation v : lesem, — (—)™. Thus CSemy is self-dual under the contravariant
functor (—)". By the above we consider this self-duality as a restriction of the self-duality
for CSem via (—)* to the subcategory CSemy — CSem.

Definition 3. A binary relation P C S x S’ is called a separating polarity if:

(1) for all x1,22 € S, x1 € x2 iff there isy € S’ such that —xz1 Py, x2Py;

(1°) for all y1,y2 € S’, y1 L yo iff there is x € S such that ~x Py, vPys;

(2) for all x1,22 € S and y € S’, (x1 N x2) Py iff x1 Py or xoPy;

(2°) for all x € S and y1,y2 € S", xP(y1 A y2) iff xPy1 or xPys;

(8) for all x € S and y € S’, the sets xP C S’ and Py C S are non-empty and
closed under directed suprema.

It is easy to see that an equivalent definition can be given using characteristic
functions.

Definition 4. A binary relation P C S x S’ is called a separating polarity if
the characteristic mapping P : S x S’ — {0,1} of its complement satisfies the following:
(1) P is distributive w.r.t. A in the both variables, and P(0,y) = P(z,0") =0

forallz € S, yeS’;

(2) P separates elements of S and of S', i
(2a) for each x1,72 € S, if P(x1,y) =
(2b) for each y1,y2 € S', if P(z,y1) =

(3) P is Scott continuous.

P
P

e.:
_(x27y) fOT' all RS S/, then r, = To;
(x,y2) for all x € S, then y1 = ya;

Proposition 2. Let S5’ be continuous meet semilattices with bottom elements 0,0
resp. If P C S x S’ is a separating polarity, then the mapping i that takes each x € S
to P U{T} is an isomorphism S — S"°. Conversely, each isomorphism i : S — S'" is
determined by the above formula for a unique separating polarity P C S x S’.

Proof. (=) Recall that by Lemma IL.2-8 [1] the joint Scott continuity of P is equivalent
to its Scott continuity in each variable separately. Due to (1),(3) P and Py are Scott open
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filters (although not necessarily non-empty), which are distinct from S” and S resp. Then
i(x) =xPU{T} € S for all z € S. We similarly define i’ as follows: y — Py U {T} for
all y € S'. Then i and ¢/ are meet-preserving injective mappings S — S’ and ' — S,
respectively. From (1),(3) we also infer that i preserves directed suprema and a bottom
element, hence is Scott continuous, and therefore is a morphism in the category CSemy.
We can apply to i the contravariant functor (—)". The mapping " : S"* — S” takes
each non-empty Scott open filter F C (S"7)* to i~ }(F) U{T}. Then i" ougs : S’ — S
sends all y to

{xEST|m=T0ri(m)9y}={J;EST|m:ToryExP}:PyU{T}:i'(y).

Since ug is an isomorphism and ¢’ is injective by (2), the mapping " is injective as
well, hence i is surjective. Taking into account that ¢ is meet-preserving, we arrive at
conclusion that ¢ is an order isomorphism.

Observe that similarly ' ous : S — S’ coincides with 7, hence ¢’ is an isomorphism
as well.

(<) Let 7 : S — S’ be an isomorphism. It is straightforward to verify that the
relation P = {(z,y) € S x S’ | y ¢ i(x)} satisfies the properties (1)—(3) and determines ¢
in the above manner.

By the above in the sequel, if such S’ and P exist, we may assume that S’ is equal
to S, and P = {(s,F) € S x " | s ¢ F}. It is important that, for S = exp_ X, we may
put S” = S. A required P C exp, X x exp. X is the following: (F,G) € Piff FNG # @.

We are interested in cases when both S and S” are compact Hausdorff w.r.t.
the Lawson topologies. A continuous semilattice S is called stably continuous if + < y, z
implies < y A z for any x,y,z € S. By Exercise IV-2.23 [1] a continuous semilattice L
is a continuous lattice if and only if L? is stably continuous with a top element isolated
from below. Therefore:

Lemma 1. For a continuous semilattice S with a bottom element, the poset (ST)* is
a continuous lattice (i.e. S™ is a complete semilattice) iff S is stably continuous.

Corollary 1. For a continuous semilattice S with a bottom element, the Lawson topologi-
es on S and S” are compact and Hausdorff if and only if S is complete and stably
continuous.

Hence the full subcategory CSCSemy of CSemy with complete stably continuous
semilattices with 0 as objects is self-dual under a restriction of the functor (—)".

Note that, for a compactum X, the semilattice exp, X is complete, stably conti-
nuous, and contains a bottom element.

Lemma I1.2-9 [1] implies that, for a morphism f : S; — S in CSemg, a mapping
[f = L]:[S2— L] = [S1 — L], [f = L](c) =co f for ¢ € [S2, L], is a Scott continuous
lattice morphism. Thus a contravariant functor [ — L] from CSemy to the category Sup
of complete lattices and mappings that preserve all suprema is obtained. For each object
S of CSemy, the subset [S — L]p = {c € [S — L] | ¢(0) = 0} is closed under arbitrary
meets and joins, hence is an object of Sup as well. The inclusion [S — L]y < [S — L]
is a morphism in Sup, and [f — L|([S2 = L]o) C [S1 — L] for f : S — S above.
Therefore we define a mapping [f — Lo : [S2 — L]o — [S1 — Lo as a restriction
of [f — L] and obtain a contravariant functor [- — L]o : CSemy — Sup. Recall that
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[S — L] is identified with the opposite to the poset Mo, S° of L°P-capacities on
S°P. Tt is easy to see that [S — L]o is opposite to the poset Mr0,1 S of normalized
L°P-capacities on S°P.

Let continuous semilattices with bottom elements S, S’ and a separating polarity
P C S xS be fixed. For a Scott continuous function ¢ : S — L (i.e. for an L°P-capacity
c: 8% — [°P), we define a function ¢ : S’ — L by the equality

é(s") = inf{c(s) | s € S,(s,s') ¢ P}in L, s € 5.

For a particular “canonical” case S = S, P = {(s,F) € Sx58" | s € F}, the function

¢ €[S — L) is of the form
éF) =inf{c(s) |s€ F,s# T}in L, F € S".
Proposition 3. The function ¢ is Scott continuous, takes a bottom element to a bottom
element, and its epigraph is equal to
epic ={(s,a') € 8’ x L | (s,5') ¢ P or o/ < a for all (s,) € epic}.

If for S’ the same S, P are fized in the above sense, then

(s) = {ff?j 0 ses

Remark 1. This statement can be equivalently formulated in terms of capacities: under
the conditions of the latter proposition, if ¢ : S°” — L is an L-capacity, then the function
¢: S — [ defined as

é(s") =sup{c(s) | s € S,(s,s') e P}in L, s € 5,
is a normalized E—capacity with a subgraph determined by the formula
subé = {(s',o/) € S’ x L | (s,5') ¢ P or a < o for all (s,a) € subc},

and ¢ = ¢V ¢g, where ¢y is the least normalized capacity taking 0 € S (i.e. a top element
of S°) to 1 € L and all other elements of S to 0.

To prove the latter statement and to clarify the nature of the relationship between
¢ and ¢, we need a notion of Galois connection.

Definition 5. [1] If S, S’ are posets and p: S — S" and q: S" — S are functions such
that for all s € S and s’ € S’

s <s a(s') iff p(s) <sr &',

then p s called o lower adjoint to q, q is an upper adjoint to p, and the quadruple
(S,p,q,5") is called a Galois connection (or a Galois correspondence).

Clearly such p, ¢ are isotone mappings, and each mapping of the adjoint pair (p, q)
is uniquely determined by the other one.

If pp : S — S and pp : S’ — S are such that (S, p1,p2,S°P) is a Galois
connection, then the quadruple (S, p1,p2, S’) is called a contravariant Galois connection.
An equivalent definition is the following;:



228 Oleh NYKYFORCHYN, Oksana MYKYTSEY

Definition 6. If S, S’ are posets and p: S — 5" and q: S' — S are functions such that
foralls€ S and s’ € S’

s <g q(s') iff s <s q(s),

then the quadruple (S,p,q,S’) is called a contravariant Galois connection.

Such p,q are antitone, and the latter definition is symmetric, i.e. (S’,¢,p,S) is
a contravariant Galois connection as well.

For a fixed separating polarity P C S x S’ and a mapping f € [S — L], we define
a mapping p(f) : S' — L by the formula

p(f)(s") =sup{f(s) A P(s,s') | s € S},s' € §'.
For f' €[S’ — L], a mapping q(f') : S — L is defined similarly:
q(f)(s) =sup{f'(s') A P(s,s") | s€ S},s € S.

For all s € S, the function S’ — L that takes each s’ to f(s) A P(s,s') is Scott
continuous, therefore the pointwise supremum of all such functions is Scott continuous
as well. It is obvious that p(f)(0) = 1 = 0, hence p(f) € [S" — Lo, and similarly ¢(f’) is
in [S — L]o. Observe that, for all f € [S — L] and f’ € [S" — L], the both inequalities
p(f) < f" and q(f') < f are equivalent to

f(s) = f'(s') for all s € S,s" € " such that sPs’.

Thus ([S — L]°?,p,q,[S" — i]oI’) is a contravariant Galois connection. Separation of
points of S and S” by P implies that the restriction pg : [S — L]o — [S" — L]o of p is
injective, as well as the restriction qg : [S" — f/]o — [S — Lo of g, therefore py and g
are mutually inverse order antiisomorphisms.

Now by observing that p(f) = f, ¢(f’) = f’, the Proposition 3 is at hand. If
S" = 8" and P = {(s,F) € S x S | s ¢ F}, then the constructed antiisomorphism
po: [S — L]o — [S" — L]o is denoted by 1) S.

IfS=9 =exp, X,P={(F,G) € (exp, X)? | FNG = &}, c€ M5, then

¢(F) =sup{c(G) | FNG = @}, F € exp, X,

which is precisely a definition of a conjugate L-capacity to an L-capacity ¢ on

a compactum X, cf. [4]. Hence we also call the just defined ¢ : S” — L a conjugate

mapping to ¢ : S — L, and ¢: $"P — L is called a conjugate capacity to ¢ : S°? — L.
From the above we obtain also:

Proposition 4. For a compact Hausdorff Lawson lattice L and a continuous semilattice
S with a bottom element, the posets [S — Lo and [S™ — L]y are order antiisomorphic.
The posets M1 S°? and M[L] (S™°P) are also order antiisomorphic.

Let P C S1 x 8], P, C Sy x S% be “standard” separating polarities, i.e.
P, ={(s,F) € S1 x S| s¢F},i=1,2, and contravariant Galois connections
([Si = LIF, pis i, [S — LIF), i = 1,2, are as described above.
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Consider the following diagram:

P1 A ~
[Sl — L]O <q_1 [‘Sl — L]Q

[f—>L]oT l[fA—ui]o

p2 ~
[SQ — L]O T [Sé\ — L]Q

Lemma 2. The quadruple ([S1 — L7, [f — Llo o p1,[f — Llo o qa,[S5 — L]3P) is
a contravariant Galois connection.

Proof. Observe that, for all ¢ € [S; — L]o, ¥ € [S5 — Lo, the inequality ¢ o f* < ¥ is
equivalent to

P(y) < ¢(x) for all x € S,y € S5 such that (z, f"(y)) ¢ Pi,
and the inequality z/? o f < ¢ is equivalent to
P(y) < ¢(x) for all x € S,y € S5 such that (f(z),y) ¢ P».

Since (z, f(y)) ¢ Py if and only if (f(z),y) ¢ P, we arrive at the required conclusion.

Corollary 2. The mapping qz o [f" — E]O opy : [S1 = L]o — [S2 — L]o is an upper
adjoint to the mapping [f — L]o : [S2 — L]o — [S1 — Llo.

For a mapping of complete lattices ¢ : L — L', we denote by ¢* its lower inverse,
i.e. the mapping L’ — L that is defined by the equality

©*(y) =sup{z € L|p(x) <y}, ye L

Recall that by the adjoint theorem for order structures [2] any mapping of complete
lattices ¢ : L — L’ which preserves arbitrary suprema is a lower adjoint of a unique
Galois connection between these lattices, and the upper adjoint is equal to ¢*.
Theorem IV.1-3 [1] implies that the category Sup of complete lattices and mappings
that preserve all suprema is self-dual under the contravariant functor D that sends each
lattice L to L°P and each morphism f: Ly — Lo to (f*)°P : L¥ — Li7.
The diagram

Sup #Sup

[*}L]OT T[——)E]O

CSGHIO ﬁ C'Semo

generally is not commutative, but the two pairwise compositions are isomorphic [3]
(observe that all functors are contravariant).
Putting the previous propositions together, we obtain the main result of this work.
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Theorem 1. The collection 51 of all isomorphisms sr)S : [S — L]? — [S" — L]o,
for all objects of CSemy, is an isomorphism of functors Do [-—=Llo—=[-— E]Oo(—)A.

Thus the constructions of lattices of normalized L-capacities and of normalized
L-capacities on continuous semigroups with zero are functorial and linked via two classic
dualities and a functor isomorphism. The components of the latter send each capacity to
its conjugate.
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CIPSAYKEHI MIPT HA HAIIIBIPATKAX

Oster HUKN®OPYUNH, Oxcana MUKUIIEN

Ipuxapnamcevrut nayionarvrul yuisepcumem imeni Bacuas Cmeganura,
76025 Isano- Ppanxiecor, eys. Illesuenxa, 57
e-mail: oleh.nyk@gmail.com

4k y3arajbHEHHSI CIPSKEHUX I'PATKO3HATHUX €MHOCTEH Ha KOMIIAKTi, 3a-
[IPOBA/ZKEHO BIIHONIEHHS CIIPsizKeHOCT] HerepepBHuX 3a CKOTTOM BimobpakeHb
3 HellepepBHUX HAINBI'DATOK 3 HyJIEM Yy IIOBHI HellepepBHi I'DATKH.

Kamowo6i caosa: crpsizkeHa €MHICTH, HellepepBHA, HAIIBI'PAaTKa, ABOICTICTD
KaTeropii.
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Ipuxapnamcerut nayuonasorvl yrusepcumem umeny Bacuausa Cmepanura,
76025 Hsaro-Ppankosck, ya. ILlesuenko, 57
e-mail: oleh.nyk@gmail.com

Kaxk 06001menme COMpsiKeHHBIX PENIETKO3HATHBIX EMKOCTEN Ha KOMITAKTe,
OTIPE/IEJICHO OTHOIIEHHE COMPSIKEHHOCTH HepephIBHBIX 33 CKOTTOM oTOOparke-
HUI C HEIIPEPBIBHBIX II0JIyPEIIETOK C HYJIEM B IIOJIHbIE HEIIPEPBbIBHBbIE PEIIETKU.
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Karovesvie crosa: coupsizkeHHasT €MKOCTh, HeIIPeDPbIBHbIE IIOJIyPeméTKu,
JOBOWMYIHOCTH KaTETOPUA.
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