УДК 515.12

EILENBERG-MACLANE SPACES OF COMPACT CONVEX BODIES OF CONSTANT WIDTH

Lidiya BAZYLEVYCH

L'viv Polytechnic National University, 79013 L'viv, St. Bandera Str., 12 e-mail: izar@litech.lviv.ua

The Lie group S^1 acts on the hyperspace $\mathrm{cw}(I^2)$ of convex bodies of constant width inscribed into the unit square I^2 by rotation. It is proved that the orbit space $\mathrm{cw}(I^2)/S^1$ of this action contains a Q-manifold which is a $K(\mathbb{Z},2)$ -space.

Key words: max-min convex set, hyperspace, Hilbert cube.

1. Introduction. Let X be a compact convex body in the euclidean space \mathbb{R}^n (to avoid trivialities, we always assume that $n \geq 2$). By S^{n-1} we denote the unit sphere in \mathbb{R}^n . For any $u \in S^{n-1}$, let $h_X(u) = \max\{\langle x, u \rangle \mid x \in X\}$. We call the function $h_X \colon S^{n-1} \to \mathbb{R}$ the support function of X. A compact convex body X is said to be of constant width d > 0 if $h_X(u) - h_X(-u) = d$, for every $u \in S^{n-1}$.

Let I = [0, 1]. By $cw(I^2)$ of convex bodies of constant width inscribed into the unit square I^2 . We endow $cw(I^2)$ with the Hausdorff metric d_H :

$$d_H(A, B) = \inf\{r > 0 \mid A \subset O_r(B), B \subset O_r(A)\},\$$

where $O_t(C)$ stands for the t-neighborhood of C in \mathbb{R}^2 (actually, this formula also works for the hyperspace $\exp \mathbb{R}^2$ of nonempty compact subsets in \mathbb{R}^2).

The Minkowski combination in $cw(I^2)$ is defined as follows:

$$tA + (1-t)B = \{ta + (1-t)b \mid a \in A, b \in B\}, A, B \in cw(I^2), t \in I.$$

With respect to this combination, the space $\operatorname{cw}(I^2)$ is a convex subset of the space $\operatorname{cw}(\mathbb{R}^n)$. Since the space $\operatorname{cw}(I^2)$ is infinite-dimensional, it follows from Keller's theorem [5] that $\operatorname{cw}(I^2)$ is homeomorphic to the Hilbert cube.

The Lie group S^1 acts on the hyperspace $\operatorname{cw}(I^2)$ by rotations. The simplest way to describe this action is to identify \mathbb{R}^2 with the complex plane \mathbb{C} . Then for every $A \in \operatorname{cw}(I^2)$ and every $\alpha \in S^1$ there exists $x_A(\alpha) \in \mathbb{C}$ such that the set $\alpha A + x_A(\alpha)$ is inscribed in I^2 , i.e. belongs to the space $\operatorname{cw}(I^2)$. We define $\alpha \cdot A = A + x_A(\alpha)$. The circle B of radius 1/2 centered at (1/2, 1/2) is the unique fixed point of this action.

[©] Базилевич Л., 2010

The natural action of the Lie group S^1 on the hyperspace $\exp S^1$ is investigated in [7]. It is proved therein that the orbit space of this action contains Q-manifolds which are Eilenberg-MacLane spaces K(G,2), for some groups G. Recall that X is a space $K(\mathbb{Z},2)$, if $\pi_2(X) = G$ and $\pi_i(X) = 0$ for $i \neq 2$.

The aim of this note is to prove that the orbit space $cw(I^2)/S^1$ contains a Qmanifold which is an Eilenberg-MacLane space $K(\mathbb{Z},2)$. Moreover, this Q-manifold is homeomorphic to its product by [0,1). We therefore can conclude that this Q-manifold is homeomorphic to $T(\mathbb{C}P^{\infty}) \times Q \times [0,1)$, where T stands for the infinite telescope construction.

2. Notation and auxiliary results. If a group G acts on a set X, for any $x \in X$, we denote by x_G the stabilizer of x, i.e. $x_G = \{g \in G \mid gx = x\}$.

We denote by $q: \operatorname{cw}(I^2) \to \operatorname{cw}(I^2)/S^1$ the quotient map.

For every finite subgroup G of S^1 , we let $Z(G) = \{A \in \text{cw}(I^2) \mid S^1_A \subset G\}$. We will need the following construction due to Sallee [11]. Let K be a convex body of constant width h in \mathbb{R}^2 and let $p \in \mathbb{R}^2 \setminus K$ be a point sufficiently close to K. Let $q, r \in \partial K$ be points of the intersection of ∂K with the circumference of radius h centered at p. Let $q', r' \in \partial K$ be the points opposite to q and r respectively. Following [11] we call the Λ -modification of K the convex set bounded by the union of the following pieces: 1) the smaller arc of the circumference connecting q and r of radius h centered at p; 2) the part of ∂K that connects q and r'; 3) the part of ∂K that connects r and q'; 4) the arc of the circumference centered at q of radius h that connects q' and p; 5) the arc of the circumference centered at r of radius h that connects r' and p.

Note that this construction works only in the case when p is close enough to ∂K ; in the sequel we speak about the Λ -modification only in the situation where it is welldefined, i.e. leads to a body of constant width. We denote this modification by $\Lambda(K,p)$. In [11], it is remarked that $\Lambda(K,p)$ is also a convex set of constant width h. Note that the boundary of $\Lambda(K, p)$ is not a smooth curve.

In the sequel, we apply the Λ -modification to the sets from $cw(I^2)$; the result, $\Lambda(K,p)$, is a convex set of constant width 1 but does not belong to $\mathrm{cw}(I^2)$. We denote by $\Lambda'(K,p)$ the (unique) shifted copy of $\Lambda(K,p)$ that belongs to cw(I^2). We will call it the Λ' -modification.

Proposition 1. The Λ' -modification map $(K,p) \mapsto \Lambda'(K,p)$ is continuous as a map of two variables.

By an AR-space (ANR-space) we mean an absolute (neighborhood) retract for the class of metric spaces.

Recall that a Q-manifold is a separable metrizable space which is locally homeomorphic to the Hilbert cube.

A metric space (X,d) is said to satisfy the Disjoint Approximate Property if, for every $\alpha \colon X \to (0, \infty)$ there exist maps $f, g \colon X \to X$ such that $d(f(x), g(x)) < \alpha(f(x))$, for every $x \in X$, and $f(X) \cap g(X) = \emptyset$.

The following characterization theorem for Q-manifolds is proved by H. Toruńczyk [6].

Theorem 1 (Characterization theorem for Q-manifolds). A separable locally compact metrizable ANR-space is a Q-manifold if it satisfies the Disjoint Approximation Property.

Recall that a map is called *proper* if the preimage of every compact subset is compact. An important consequence of the Slice theorem is that if X is a G-space with the orbits all of the same type, then the orbit map $X \to X/G$ is a locally trivial fibration [12, Chapter II, Theorem 5.8].

3. Main result.

Lemma 1. There exists an equivariant deformation retraction (f_t) of the hyperspace $\operatorname{cw}(I^2)$ to the set $\{B\}$ such that $f_t(Z(S^1)) \subset Z(S^1)$.

Proof. Let $h : [0,1] \to [1,\infty]$ be any nondecreasing homeomorphism (we endow $[1,\infty]$ with the order topology). For any $\tau \in [1,\infty]$ and any $A \in \mathrm{cw}(I^2)$, the closed τ -neighborhood $\bar{O}_{\tau}(A)$ is a convex body of constant width and there is a unique homothetic copy of it (we denote it by $\varphi(\bar{O}_{\tau}(A))$) which belongs to $\mathrm{cw}(I^2)$. We finally let $f_t(A) = \varphi(\bar{O}_{h(t)}(A))$. It is easy to to deduce from known geometric properties of bodies of constant width that (f_t) is a required retraction.

Theorem 2. The space $M(S^1) = Z(S^1)/\alpha$ is a Q-manifold which is $K(\mathbb{Z},2)$.

Proof. First, note that M is an open subset in $\mathrm{cw}(I^2)$; this follows immediately from the Slice Lemma. We are going to prove that the space M satisfies the Disjoint Approximate Property. By a consequence of the Slice Theorem, the quotient map $q\colon Z(S^1)\to M$ is a fibration. Given $x\in M$, find a neighborhood U of x such that q is trivial over U. Let $\alpha\colon U\to (0,\infty)$ be a continuous function. We will assume that $B_{\alpha(y)}(y)\subset U$, for every $y\in U$.

There exists a section $s: U \to q^{-1}(U)$ of the fibration $q|q^{-1}(U)$. There exists a continuous function $\beta: U \to (0, \infty)$ such that $d_H(f_{\beta(q(A))}(A), A) < \alpha(q(A))/2$, for every $A \in q^{-1}(U)$.

There exists a small enough continuous function $\gamma \colon U \to (0,\infty)$ such that, for every $y \in U$, we have $d_H(\Lambda'(f_{\beta(q(s(y)))}(s(y)),p(y)),s(y)) < \alpha(y)$, where p(y) is the point defined as follows. Let $r(y) = (r_1(y),r_2(y))$ denote the (unique) point of intersection of s(y) and the upper side of the square I^2 ; then $p(y) = (r_1(y),r_2(y)+\gamma(y))$. Note that $\Lambda'(f_{\beta(q(s(y)))}(s(y)),p(y)) \in Z(S^1)$, because the boundary of $\Lambda'(f_{\beta(q(s(y)))}(s(y)),p(y))$ has exactly three non-differentiability points. If γ is small enough, then also two of these points are close enough so that three of them cannot form the vertices of an equilateral triangle.

Now, define the maps $F,G:U\to U$ by the following formulas:

$$F(x) = f_{\beta(y)}(s(y)), \ G(y) = \Lambda'(f_{\beta(q(s(y)))}(s(y)), p(y)).$$

Since $d(F(y), y) < \alpha(y)$, $d(G(y), y) < \alpha(y)$ and $F(U) \cap G(U) = \emptyset$, we see that U satisfies the Discrete Approximation Property.

We are going to show that the orbit space is an ANR. This follows from the fact that the action of S^1 on $cw(I^2)$ is linear and results of [].

We conclude that U is a Q-manifold. Thus, M is also a Q-manifold.

In order to prove that M is homeomorphic to $M \times [0,1)$ it is sufficient to prove that there exists a proper homotopy $H \colon M \times [0,1) \to M$ such that H(x,0) = x, for every $x \in M$ (see [14]). This homotopy is defined by the formula $H(x,t) = q(f_t s(x)), x \in M$.

It follows from the homotopy exact sequence of the bundle $Z \to M$ (with fiber S^1) and from contractibility of Z that M is a $K(\mathbb{Z},2)$ -space. Consider the space

$$T(\mathbb{C}P^{\infty})=\bigcup_{i=1}^{\infty}\mathbb{C}P^{i}\times[i,\infty)\subset\mathbb{C}P^{\infty}\times[1,\infty).$$

This is a locally compact $K(\mathbb{Z},2)$ -space and therefore $T(\mathbb{C}P^{\infty}) \times Q \times [0,1)$ is a [0,1)-stable Q-manifold. Since the [0,1)-stable Q-manifolds are classified by their homotopy types, we conclude that $Z(S^1) \simeq T(\mathbb{C}P^{\infty}) \times Q \times [0,1)$.

4. Remarks. One can ask whether there are counterparts of the main result of this note for the hyperspace of rotors. Recall that a rotor in a regular polygon P is a convex set X which admits a complete rotation in P such that X touches every side of P in the process of rotation. It is proved in [4] that the hyperspace $\mathcal{R}(P_n)$ of the rotors inscribed in the regular n-gon is homeomorphic to the Hilbert cube.

Let (X, Y) be a pair of compact convex subsets in \mathbb{R}^n , $n \geq 2$. Following [13] we say that (X, Y) is of constant relative width r > 0 if

$$w_{(X,Y)}(u) = h_X(u) + h_Y(-u) = r$$
 for every $u \in S^{n-1}$.

Let Oxy be the standard rectangular coordinate system in \mathbb{R}^2 . Denote by $\operatorname{crw}_r(\mathbb{R}^2)$ the set of all pairs (X,Y) of compact convex subsets in \mathbb{R}^2 of constant relative width r such that X lies in the first quadrant of the system and touches both the x-axis and y-axis. The topology on the set $\operatorname{crw}_r(\mathbb{R}^2)$ is inherited from the product $\exp \mathbb{R}^2 \times \exp \mathbb{R}^2$, where the Hausdorff metric is considered on each factor. The Lie group S^1 acts on $\operatorname{crw}_r(\mathbb{R}^2)$ by rotations. Are there counterparts of the main result of this note for the hyperspace $\operatorname{crw}_r(\mathbb{R}^2)$?

- Nadler S.B. Hyperspace of compact convex sets / Nadler S.B., Jr., Quinn J., Stavrokas N.M. // Pacif. J. Math. - 1979. - Vol. 83. - P. 441-462.
- 2. Montejano L. The hyperspace of compact convex subsets of an open subset of \mathbb{R}^n / Montejano L. // Bull. Pol. Acad. Sci. Math. 1987. Vol. 35. \mathbb{N} 11/12. P. 793-799.
- 3. Bazylevych L.E. On the hyperspace of strictly convex bodies / Bazylevych L.E. // Mat. studii. 1993. Vol. 2. P. 83-86.
- Bazylevych L.E. On the hyperspace of rotors in convex polygons / Bazylevych L.E. // Mat. Stud. - 2006. - Vol. 26. - № 1. - P. 49-54.
- Bessaga C. Selected topics in infinite-dimensional topology / Bessaga C., Pełczyński A. Warsaw: PWN, 1975.
- Toruńczyk H. On CE-images of the Hilbert cube and characterization of Q -manifolds / Toruńczyk H. // Fund. Math. - 1980. - Vol. 106. - № 1. - P. 31-40.
- Toruńczyk H. The fine structure of S¹/S¹; a Q-manifold hyperspace localization of the integers / Toruńczyk H., West J. - Proc. Int. Conference on Geometric Topology (Warsaw, 1978), PWN, Warszawa, 1980. - S. 439-449.
- 8. Antonyan S.A. The Banach-Mazur compactum BM(2) is homeomorphic to the orbit space $(\exp S^1)/O(2)$ / Antonyan S.A. // Topology and its Applications. 2007. Vol. 154. P. 1236-1244.
- Antonyan S.A. Retraction properties of the orbit space / Antonyan S.A. // Matem. Sbornik.
 1988. Vol. 137. P. 300-318. (Eng. transl. Math. USSR Sb. 1990. Vol. 65. P. 305-321).
- 10. Antonyan S.A. Extending equivariant maps into spaces with convex structure / Antonyan S.A. // Topol. Appl. 2005. Vol. 153. № 2/3. P. 261-275.

- 11. Sallee G. T. The maximal set of constant width in a lattice / Sallee G. T. // Pacif. J. Math. 1969. Vol. 28. N² 3. P. 669-674.
- 12. Bredon G.E. Introduction to Compact Transformation Groups / Bredon G.E. // Pure and Applied Mathematics. Vol. 46. New York: Academic Press, 1972.
- 13. Maehara H. Convex bodies forming pairs of constant width / Maehara H. // J. Geom. 1984. Vol. 22. № 2. P. 101-107.
- 14. Wong R.Y.-T. Non-compact Hilbert cube manifolds / Wong R.Y.-T. preprint.

ПРОСТОРИ ЕЙЛЕНБЕРГА-МАКЛЕЙНА КОМПАКТНИХ ОПУКЛИХ ТІЛ СТАЛОЇ ШИРИНИ

Лідія БАЗИЛЕВИЧ

Національний університет "Львівська політехніка", 79013 Львів, вул. Степана Бандери, 12 e-mail: izar@litech.lviv.ua

Група Лі S^1 діє поворотами на гіперпросторі $\mathrm{cw}(I^2)$ опуклих тіл сталої ширини, вписаних в одиничний квадрат I^2 . Доведено, що простір орбіт цієї дії містить Q-многовид, який є $K(\mathbb{Z},2)$ -простором.

Ключові слова: min-max опукла множина, гіперпростір, гільбертів куб.

ПРОСТРАНСТВА ЭЙЛЕНБЕРГА-МАКЛЕЙНА КОМПАКТНЫХ ВЫПУКЛЫХ ТЕЛ ПОСТОЯННОЙ ШИРИНЫ

Лидия БАЗИЛЕВИЧ

Национальный университет "Львовская политехника", 79013 Львов, ул. Степана Бандеры, 12 e-mail: izar@litech.lviv.ua

Группа Ли S^1 действует поворотами на гиперпросторанстве $\mathrm{cw}(I^2)$ выпуклых тел постоянной ширины, вписанных в единичный квадрат I^2 . Доказано, що просторанство орбит этого действия содержит Q-многообразие, являющееся $K(\mathbb{Z},2)$ -пространством.

Ключевые слова: max-min выпуклое множество, гипперпространство, гильбертов куб.

Стаття надійшла до редколегії 21.05.2010

Прийнята до друку 22.12.2010