УДК 517.98

ФУНКЦІОНАЛЬНЕ ЧИСЛЕННЯ ДЛЯ РЕГУЛЯРНИХ ЕЛІПТИЧНИХ ДИФЕРЕНЦІАЛЬНИХ ОПЕРАТОРІВ

Віра ЛОЗИНСЬКА¹, Ольга М'ЯУС²

¹ Інститут прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України, 79060, Львів, вул. Наукова, 36
 ² Національний університет "Львівська політехніка", 79013, Львів, вул. С. Бандери, 12

Функціональне числення побудовано для генераторів сильно неперервних груп обмежених лінійних операторів, що діють над довільним банаховим простором [1], застосовують до регулярних еліптичних диференціальних операторів, які діють над банаховим простором $L_p(\Omega)$ (1 – обмежена множина. Показано, що у цьому випадку функціональне числення існує над просторами кореневих векторів еліптичного оператора.

 ${\it Knnouosi\ c.nosa:}$ еліптичний оператор, кореневий вектор, функціональне числення.

Розглянемо простір $\{L_p(\Omega),\|\cdot\|\}$ $(1 — обмежена множина. Нехай в <math>L_p(\Omega)$ діє рівномірно обмежена однопараметрична C_0 —група $\mathbb{R} \ni t \to U_t := e^{-itA} \in \mathcal{L}(L_p(\Omega))$ з генератором A. Через $\mathcal{L}(L_p(\Omega))$ позначаємо банахову алгебру обмежених лінійних операторів над $L_p(\Omega)$ з одиничним оператором I. Оператор A — регулярний еліптичний оператор порядку 2m

$$A: \mathcal{D}(A) \ni u \longmapsto \sum_{|\alpha| \le 2m} a_{\alpha}(t) D^{\alpha} u(t) \in L_{p}(\Omega), \quad a_{\alpha}(t) \in C^{\infty}(\overline{\Omega})$$

з областю визначення $\mathcal{D}(A) := \left\{ u \in W_p^{2m}(\Omega) : B_j u(t)_{|\partial\Omega} = 0; \ j = 1, \dots, m \right\}$, де $W_p^{2m}(\Omega)$ — простір Соболєва і $B_j = \sum_{|\alpha| \le k_j} b_{j,\alpha}(t) D^{\alpha}, \ b_{j,\alpha}(t) \in C^{\infty}(\partial\Omega), \ 0 \le k_1 < k_2 < \dots < k_m$ — набір граничних операторів.

Спектр $\sigma(A)$ оператора A є послідовністю власних чисел $\{\lambda_j\}_{j=1}^\infty$ з єдиною точкою скупчення на безмежності. Кожному числу $\lambda_j \in \sigma(A)$ відповідає скінченновимірний кореневий підпростір

$$R(\lambda_i) := \{ x \in X : (\lambda_i I - A)^{r_i} x = 0 \},$$

де r_j — індекс власного числа λ_j , тобто, найменше невід'ємне ціле число r таке, що $(\lambda_j I - A)^r x = 0$ для довільного вектора x, для якого $(\lambda_j I - A)^{r+1} x = 0$ [2].

Розглянемо при фіксованих $m\in Z_+, a>0$ простір $L_1^{(m,a)}(\mathbb{R})$ вимірних функцій $\varphi(t)$ з нормою

$$\|\varphi\|_{L_1^{(m,a)}(\mathbb{R})} = \int_{-\infty}^{\infty} |t^m \omega(at) \varphi(t)| dt < \infty,$$

де $\omega(t)$ $(-\infty < t < \infty)$ — ціла трансцендентна функція нульового роду, корені якої лежать на уявній додатній півосі вигляду $\omega(t) := C \prod_{k=1}^{\infty} \left(1 - \frac{t}{it_k}\right), \ C \ge 1, \ 0 < t_1 \le 1$

$$\leq t_2 \leq t_3 \leq \dots, \sum_{k=1}^{\infty} \frac{1}{t_k} < \infty.$$

Для кожного $\nu>0$ розглянемо в $L_1^{(m,a)}(\mathbb{R})$ підпростір

$$E_{\nu}^{(m,a)} := \Big\{ \varphi \in L_{1}^{(m,a)}(\mathbb{R}) \Big| \ \|\varphi\|_{E_{\nu}^{(m,a)}} = \sup_{k \in \mathcal{Z}_{+}} \frac{\|D^{k}\varphi\|_{L_{1}^{(m,a)}(\mathbb{R})}}{\nu^{k}} < \infty \Big\}.$$

Простори $E_{\nu}^{(m,a)}$ є банаховими та складаються з цілих функцій експоненціального типу [3], [4].

Розглянемо простір

$$E := \bigcap_{m,a} \bigcup_{\nu} E_{\nu}^{(m,a)} = \lim_{m,a} \operatorname{pr} \left(\lim_{\nu \to +\infty} E_{\nu}^{(m,a)} \right),$$

де вкладення просторів $E_{\nu}^{(m,a)}\subset E_{\mu}^{(m,a)}$ ($\nu\leq\mu$), $\bigcup_{\nu}E_{\nu}^{(m+1,a+1)}\subset\bigcup_{\nu}E_{\nu}^{(m,a)}$ неперервні. Простір E — секвенціально повний та інваріантний стосовно дії групи зсувів $T_s: \varphi(t) \to \varphi(t-s)$, де $s\in\mathbb{R}$ [3].

Через E' позначимо спряжений простір до E і наділимо слабкою топологією спряженого простору. Канонічну білінійну форму, яка задає двоїстість між просторами E' і E, позначимо через $\langle f \mid \varphi \rangle$. Елементи спряженого простору називаємо узагальненими функціями експонеціального типу. Для довільної узагальненої функції експонеціального типу $f \in E'$ та функції $\varphi \in E$ операцію згортки визначимо співвідношенням

$$(f \star \varphi)(t) := \langle f(s) \mid \varphi(t+s) \rangle = \langle f(s) \mid T_{-s}\varphi(t) \rangle = \langle f(s) \mid T_{-t}\varphi(s) \rangle,$$

де f(s) позначає дію функціонала f на функцію $T_{-s}\,\varphi(t)$ за змінною s. Перетворення Фур'є виконує лінійний ізоморфізм $\mathcal{F}:E\ni\varphi(t)\longrightarrow\widehat{\varphi}(\xi)\in\widehat{E}$. Простір \widehat{E} наділяємо топологією стосовно відображення \mathcal{F} . Обернене перетворення можна визначити формулою $\mathcal{F}^{-1}:\widehat{E}\ni\widehat{\varphi}(\xi)\longrightarrow\varphi(t)\in E$, оскільки Фур'є-образи функцій експоненціального типу є фінітними [5]. Двоїстість $\langle E'\mid E\rangle$ допомагає визначити спряжене відображення до оберненого $(\mathcal{F}^{-1})':E'\ni f\longrightarrow\widehat{f}\in\widehat{E}'$. Його образ \widehat{E}' , який породжує двоїстість вигляду $\langle\widehat{E}'\mid\widehat{E}\rangle$, наділяємо слабкою топологією.

Простір \widehat{E}' є комутативною алгеброю [3] щодо множення, визначеного співвідношенням $\langle \widehat{g} \cdot \widehat{f} \mid \widehat{\varphi} \rangle := \langle \widehat{g} \mid \widehat{f} \cdot \widehat{\varphi} \rangle$, де для будь-яких $f, g \in E'$, $\varphi, \psi \in E$ $\widehat{f \star \varphi} := \widehat{f} \cdot \widehat{\varphi}$, $\langle \widehat{f} \cdot \widehat{\varphi} \mid \widehat{\psi} \rangle := \langle \widehat{f} \mid \widehat{\varphi} \cdot \widehat{\psi} \rangle$.

Використаємо поняття з [6] спектрального підпростору оператора. Введемо простір функцій

$$\mathcal{E}_m := \left\{ \rho \in E \mid \widehat{\rho} \mid_{[-m,m]} = 1 \right\}, \quad m \in \mathbb{N}.$$

Спектральним підпростором оператора A називаємо підпростір вигляду

$$S_m := \left\{ x \in L_p(\Omega) \mid \widehat{\rho}(A)x = x \right\},$$

де оператор $\widehat{\rho}(A)$ визначений так:

$$\widehat{\rho}(A) := \int_{-\infty}^{\infty} e^{-itA} \rho(t) dt = \int_{-\infty}^{\infty} U_t \rho(t) dt.$$

В [6] визначено, що підпростори S_m є замкненими та задовольняють умову $S_m \subset S_{m+1}$, а звуження оператора A на них має властивість $Ax = A\widehat{\rho}(A)x = \widehat{-i\rho'}(A)x$, тому $S_m \subset \mathcal{D}(A)$. Оператор A на S_m обмежений і є генератором рівномірно обмеженої сильно неперервної групи, тому об'єднання $\bigcup_m S_m$ є щільним в $L_p(\Omega)$. У [7] показано, що спектральні підпростори регулярного еліптичного оператора A збігаються з прямою сумою його кореневих підпросторів, тобто

$$S_m = \bigoplus_{|\lambda_j| \le m} R(\lambda_j).$$

Нехай $E(\mathbb{R};X):=X\widetilde{\otimes}E$ — поповнення проективного тензорного добутку просторів X та E. Лінійний оператор $\widehat{f}(A)$ визначимо як і в [1] співвідношенням

$$\widehat{f}(A): \widehat{E}(X) \ni \widehat{x} \to \widehat{f}(A)\widehat{x} := \int_{-\infty}^{\infty} (U_t \otimes K_f) x(t) \, dt \in \widehat{E}(X), \tag{1}$$

де $\widehat{E}(X):=\left\{\widehat{x}=\int_{-\infty}^{\infty}(U_t\otimes I)x(t)\,dt\;\middle|\;x\in E(\mathbb{R};X)\right\},\;K_f\varphi=f\star\varphi,\;f\in E',\;\varphi\in E.$ Нехай $\mathcal{L}(\bigoplus_{|\lambda_j|\leq m}R(\lambda_j))$ — банахова алгебра обмежених лінійних операторів над $\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)$ з одиничним оператором I.

Теорема 1. Для довільної узагальненої функції $f \in E'$ та чисел $m \in \mathbb{N}$ співвідношення

$$\widehat{f}(A): \bigoplus_{|\lambda_j| \leq m} R(\lambda_j) \ni x \longrightarrow \widehat{(f \star \rho)}(A) x \in \bigoplus_{|\lambda_j| \leq m} R(\lambda_j)$$

виконується для кожної функції $\rho \in \mathcal{E}_m$.

Kpim moro,
$$\widehat{f}(A) \mid_{\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)} \in \mathcal{L}(\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)).$$

Доведення. З формули (1) отримуємо $\widehat{f}(A)x=\widehat{f}(A)\widehat{\rho}(A)x=\widehat{(f\star\rho)}(A)x,$ $\forall x\in\bigoplus_{|\lambda_j|\leq m}R(\lambda_j).$ Підставляючи $x(t)=x\otimes\rho(t)$ в (1) при $x\in\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)$ також, маємо

$$\|\widehat{f}(A)x\| = \|\widehat{f \star \rho}(A)x\| \le \int_{-\infty}^{\infty} \|U_t x\| |\rho(t)| dt \le \|U_t\| \|x\| \|\rho\|_{L_1}$$

для функції $\rho \in \mathcal{E}_m$. Звідси $\widehat{f}(A)_{|\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)} \in \mathcal{L}(\bigoplus_{|\lambda_j| \leq m} R(\lambda_j))$. Теорему доведено.

Нехай топологія в підпросторі $R(A) = \bigcup_m \bigoplus_{|\lambda_j| \leq m} R(\lambda_j)$ індукується з простору $L_p(\Omega)$ і в алгебрі $\mathcal{L}(R(A))$ задана сильна операторна топологія.

Теорема 2. Відображення $\widehat{E}' \ni \widehat{f} \longrightarrow \widehat{f}(A) \in \mathcal{L}(R(A))$ виконує неперервний гомоморфізм алгебри \widehat{E}' в алгебру $\mathcal{L}(R(A))$, при цьому

$$\widehat{(D^k f)}(A) = i^k A^k \widehat{f}(A), \quad \widehat{(it)^k f}(A) = D^k \widehat{f}(A).$$

Оператори $\widehat{f}(A)$ над простором $L_p(\Omega)$ допускають замикання з областю визначення

$$\left\{ x = \sum_{m=1}^{\infty} x_m \in L_p(\Omega) \mid x_m \in \bigoplus_{|\lambda_j| < m} R(\lambda_j), \sum_{m=1}^{\infty} ||\widehat{f}(A)x_m|| < \infty \right\}.$$

Доведення. Оскільки $\mathcal{E}_m \subset E$, то звідси випливає, що оператор $\widehat{f}(A)$ є звуженням такого самого оператора з теореми 4 [1]. Відображення $\widehat{E}'\ni\widehat{f}\longrightarrow\widehat{f}(A)\in\mathcal{L}(R(A))$ є гомоморфізмом алгебри \widehat{E}' в алгебру $\mathcal{L}(R(A))$. Перевіримо неперервність відображення $E'\ni f\longrightarrow \widehat{f}(A)x\in L_p(\Omega)$. Для кожного $x\in R(A)$, маємо $\|\widehat{f}(A)x-\widehat{g}(A)x\|\leq \leq \int_{-\infty}^{\infty}\|U_tx\|\,\|(f-g)\star\rho(t)|dt\leq\|U_t\|\|x\|\int_{-\infty}^{\infty}|(f-g)\star\rho(t)|dt\to 0$ при $f\to g$ в просторі E'.

Доведемо існування замикання оператора $\widehat{f}(A)$ над простором $L_p(\Omega)$, використовуючи міркування [7]. Визначимо простір абсолютно збіжних рядів

$$l_1\Big[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\ L_p(\Omega)\Big]:=\bigg\{\,x=\sum_{m=1}^\infty x_m\ \in L_p(\Omega)\quad \Big|\quad x_m\in\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);$$

$$\sum_{m=1}^{\infty} \|x_m\| < \infty$$

з нормою $\|x\|_{l_1}:=\inf\sum_{m=1}^\infty\|x_m\|$, де inf беремо за всіма зображеннями вектора x у вигляді такого ряду $x=\sum_{m=1}^\infty x_m$.

Доведемо, що простір $l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\,L_p(\Omega)\right]$ ізометричний простору $L_p(\Omega)$. Оскільки $\|x\|=\left\|\sum_{m=1}^\infty x_m\right\|\leqslant \sum_{m=1}^\infty \|x_m\|$, для довільного $x\in l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\,L_p(\Omega)\right]$, то $l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\,L_p(\Omega)\right]\subset \overline{R(A)}$, де замикання за нормою $L_p(\Omega)$. З іншого боку, $R(A)\subset l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\,L_p(\Omega)\right]$ і $\|x\|_{l_1}=\|x\|$ для всіх $x\in\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)$ і всіх $m\in\mathbb{N}$. Тому $\|x\|_{l_1}=\|x\|$ для всіх $x\in R(A)$, отже, $\overline{R(A)}\subset l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\,L_p(\Omega)\right]$. Згідно з попереднім зауваженням $\overline{R(A)}=L_p(\Omega)$.

Введемо ще один допоміжний простір

$$l_1 \Big[\bigoplus_{|\lambda_j| \le m} R(\lambda_j) \Big] := \Big\{ x = (x_m)_{m=1}^{\infty} \quad \Big| \quad x_m \in \bigoplus_{|\lambda_j| \le m} R(\lambda_j),$$

$$||x||_l = \sum_{m=1}^{\infty} ||x_m|| < \infty$$
.

Сильно спряжений простір до $l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)\right]$ має вигляд

$$l_{\infty}\Big[\bigoplus_{|\lambda_{j}|\leq m}R(\lambda_{j})^{'}\Big]:=\Big\{\,y=(y_{m})_{m=1}^{\infty}\quad\Big|\quad y_{m}\in\bigoplus_{|\lambda_{j}|\leq m}R(\lambda_{j})^{'},\quad \|y\|_{\infty}<\infty\,\Big\},$$

де $\|y\|_{\infty} := \sup_{m \geq 1} \|y_m\|$ — його норма, простір $\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)'$ — спряжений простір до $\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)$ з нормою $\|y_m\| = \sup_{\|x_m\| < 1} |\langle x_m, y_m \rangle|$, де $x_m \in \bigoplus_{|\lambda_j| \leq m} R(\lambda_j)$.

Доведемо, що сильно спряжений простір до $l_1\Big[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\ L_p(\Omega)\Big]$ ізометричний до простору

$$l_{\infty}^{0} \left[\bigoplus_{|\lambda_{j}| \leq m} R(\lambda_{j})' \right] = \left\{ y = (y_{m})_{m=1}^{\infty} \in l_{\infty} \left[\bigoplus_{|\lambda_{j}| \leq m} R(\lambda_{j})' \right] \middle| \sum_{m=1}^{\infty} \langle x_{m}, y_{m} \rangle = 0, \right.$$

$$\forall \sum_{m=1}^{\infty} x_{m} = 0 \right\}.$$

Визначимо відображення $\Phi: l_1\left[\bigoplus_{|\lambda_j|\leq m} R(\lambda_j)\right]\ni x\mapsto \sum_{m=1}^\infty x_m\in L_p(\Omega).$ Згідно з означенням простір $l_1\left[\bigoplus_{|\lambda_j|\leq m} R(\lambda_j); L_p(\Omega)\right]$ ізометричний фактор-простору по ядру відображення Φ , тобто

$$l_1 \Big[\bigoplus_{|\lambda_j| \le m} R(\lambda_j); L_p(\Omega) \Big] \simeq l_1 \Big[\bigoplus_{|\lambda_j| \le m} R(\lambda_j) \Big] / \operatorname{Ker} \Phi.$$

Сильно спряжений простір до $l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)\right]$ збігається з простором $l_\infty\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\right]$. Тому сильно спряжений до $l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)\right]/$ Кег Φ є полярою в просторі $l_\infty\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\right]$ ядра Кег Φ [8, гл. V, п.1] стосовно двоїстості $\left\langle l_1\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)\right], l_\infty\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\right]\right\rangle$.

 $\left\langle l_1 \left[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j) \right], l_\infty \left[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)' \right] \right\rangle.$ З попередніх тверджень випливає, що для будь-якого функціонала $y \in L_p'(\Omega)$ послідовність його звужень $y_m = y \mid_{\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)}$ визначає елемент простору $l_\infty^0 \left[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)' \right] \text{ і відображення}$

$$L'_p(\Omega) \ni y \to (y_m)_{m=1}^{\infty} \in l^0_{\infty} \Big[\bigoplus_{|\lambda_j| \le m} R(\lambda_j)' \Big]$$

виконує ізометричний ізоморфізм просторів, тобто виконується рівність $||y|| = \sup_{m \ge 1} ||y_m||$.

Перейдемо до питання існування замикання функцій від оператора. Підпростір $l_{fin} \Big[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)' \Big]$ — фінітних послідовностей слабо щільний у просторі $l_{\infty} \Big[\bigoplus_{|\lambda_j| < m} R(\lambda_j)' \Big]$. Тому підпростір вигляду

$$l_{fin}^{0} \Big[\bigoplus_{|\lambda_{j}| \leq m} R(\lambda_{j})^{'} \Big] := l_{fin} \Big[\bigoplus_{|\lambda_{j}| \leq m} R(\lambda_{j})^{'} \Big] \bigcap l_{\infty}^{0} \Big[\bigoplus_{|\lambda_{j}| \leq m} R(\lambda_{j})^{'} \Big]$$

слабо щільний у $l_{\infty}^{\,0} \Big[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)^{'} \Big]$. Двоїстість

$$\left\langle l_1 \Big[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j); \, L_p(\Omega) \Big], \, l_{\infty}^{\,0} \Big[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)^{\,'} \Big] \right\rangle$$

реалізується білінійною формою $\langle x, y \rangle = \sum_{m=1}^{\infty} \langle x_m, y_m \rangle$, де

$$x = \sum_{m=1}^{\infty} x_m \in l_1 \Big[\bigoplus_{|\lambda_j| \le m} R(\lambda_j); L_p(\Omega) \Big], y = (y_m)_{m=1}^{\infty} \in l_{\infty}^0 \Big[\bigoplus_{|\lambda_j| \le m} R(\lambda_j)' \Big]$$

і білінійні форми $\langle x_m, y_m \rangle$ відповідають дуальним парам

$$\Big\langle \bigoplus_{|\lambda_j| \le m} R(\lambda_j), \bigoplus_{|\lambda_j| \le m} R(\lambda_j) \Big\rangle.$$

Підпростір $l_{fin}^0 \Big[\bigoplus_{|\lambda_j| \leq m} R(\lambda_j)^{'} \Big]$ лежить в області визначення спряженого оператора $\widehat{f}(A)'$ до оператора $\widehat{f}(A)$ щодо двоїстості

$$\left\langle l_1 \left[\bigoplus_{|\lambda_j| \le m} R(\lambda_j); L_p(\Omega) \right], l_{\infty}^0 \left[\bigoplus_{|\lambda_j| \le m} R(\lambda_j)' \right] \right\rangle.$$

Справді, кожна послідовність $y=(y_m)_{m=1}^\infty\in l_{fin}^0\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)^{'}\right]$ із j ненульовими членами визначає функціонал вигляду

$$\bigoplus_{|\lambda_j| \le m} R(\lambda_j) \ni x_m \to \langle \widehat{f}(A) x_m, y_m \rangle = \langle x_m, \widehat{f}(A)' y_m \rangle$$

стосовно двоїстості $\Big\langle \bigoplus_{|\lambda_j| \leq m} R(\lambda_j), \bigoplus_{|\lambda_j| \leq m} R(\lambda_j)' \Big\rangle$. Тому достатньо показати, що цей функціонал має неперервне розширення на простір абсолютно збіжних рядів $l_1 \Big[\bigoplus_{|\lambda_j| < m} R(\lambda_j); \ L_p(\Omega) \Big]$.

Для довільного елемента $x=\sum\limits_{m=1}^{\infty}x_m\in l_1\Big[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j);\ L_p(\Omega)\Big]$ правильна нерівність

$$\Big|\sum_{m=1}^{j} \langle x_m, \widehat{f}(A)' y_m \rangle \Big| \le \Big(\sum_{m=1}^{\infty} \|x_m\|\Big) \sup_{1 \le m \le j} \|\widehat{f}(A)' y_m\| = \Big(\sum_{m=1}^{\infty} \|x_m\|\Big) \|\widehat{f}(A)' y\|,$$

тому функціонал $\langle x, \widehat{f}(A)'y \rangle = \sum_{m=1}^{j} \langle x_m, \widehat{f}(A)'y_m \rangle$ задовольняє нерівність

$$|\langle x, \widehat{f}(A)'y \rangle| \le \left(\inf \sum_{m=1}^{\infty} ||x_m|| \right) ||\widehat{f}(A)'y|| = ||x||_{l_1} ||\widehat{f}(A)'y||.$$

Функціонал $\langle x, \hat{f}(A)'y \rangle$ слугує шуканим розширенням, яке визначає спряжений оператор $\hat{f}(A)'$.

Відомо [9, гл. IV, п. 7], що замикання $\widehat{f(A)}$ оператора $\widehat{f}(A)$ існує і збігається з його другим спряженим, якщо область визначення спряженого оператора слабо щільна у спряженому просторі. Отже, існування замикання оператора $\widehat{f}(A)$ доведено.

Область визначення замикання $\widehat{f}(A)$, як другого спряженого до $\widehat{f}(A)$, має вигляд

$$\left\{ x = \sum_{m=1}^{\infty} x_m \in l_1 \left[\bigoplus_{|\lambda_j| \le m} R(\lambda_j); L_p(\Omega) \right] \mid \left| \sum_{m=1}^{\infty} \langle \widehat{f}(A) x_m, y_m \rangle \right| \le C ||y|| \right\}$$

для всіх $y\in l_{\infty}^0\Big[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\Big]$, де постійна C визначається x і не залежить від y. Позначимо $y_m=y\mid_{\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)}$. Якщо ряд $\sum\limits_{m=1}^{\infty}\langle\widehat{f}(A)x_m,y_m\rangle$ збіжний для будь-якого $y\in l_{\infty}^0\Big[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\Big]$, то він збіжний абсолютно, тобто збігаються ряди $\sum\limits_{m=1}^{\infty}|\langle\widehat{f}(A)x_m,y_m\rangle|$ для всіх таких y. Справді, для цього достатньо прийняти $y_m'=e^{-i\theta(m)}y_m$, де $\theta(m)$ — аргумент комплексного числа $\langle\widehat{f}(A)x_m,y_m\rangle$. Тоді $\|y_m'\|=\|y_m\|$ і $y'=(y_m')\in l_{\infty}^0\Big[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\Big]$. З іншого боку, $\Big|\sum\limits_{m=1}^{\infty}\langle\widehat{f}(A)x_m,y_m\rangle\Big|\leq \sum\limits_{m=1}^{\infty}|\langle\widehat{f}(A)x_m,y_m\rangle|<\infty$.

Використаємо довільність $y'=(y'_m)\in l^0_\infty\left[\bigoplus_{|\lambda_j|\leq m}R(\lambda_j)'\right]$. Для кожного m знайдеться вектор y'_m такий, що $\|y'_m\|=1$ і $\|\widehat{f}(A)x_m\|=\left|\langle\widehat{f}(A)x_m,\,y'_m\rangle\right|$. Тому для всіх x з області визначення оператора $\widehat{\widehat{f}(A)}$ збігаються ряди

$$\sum_{m=1}^{\infty} \|\widehat{f}(A)x_m\|.$$

Навпаки очевидно. Теорему доведено.

- 1. *Лозинська В.Я.* Функціональне числення в згорткових алгебрах узагальнених функцій експоненціального типу / *Лозинська В.Я.*, *М'яус О.М.* // Науковий вісник Чернівецького університету. Математика. Вип. 349. 2007. С. 79-82.
- 2. *Хилле Э., Филлипс Р.* Функциональный анализ и полугруппы / *Хилле Э., Филлипс Р.* М.: ИЛ, 1962.
- 3. *Лозинська В.Я.* Про узагальнені функції експоненціального типу / *Лозинська В.Я.*, *М'яус О.М.* // Прикладні проблеми механіки і математики. 2006. Вип. 4. С. 48-53.
- 4. $Pa∂ыно\ \mathcal{A}.B$. Векторы экспоненциального типа в операторном исчислении и дифференциальных уравнениях / $Pa∂ыно\ \mathcal{A}.B$. // Дифференц. уравнения. 1985. Т. 21, №9. С. 1559-1569.
- 5. Hикольский C.M. Приближение функций многих переменных и теоремы вложения / Hикольский C.M. M.: Наука, 1977.
- 6. Любич Ю.И. Об операторах с отделимым спектром / Любич Ю.И., Мацаев В.И. // Матем. сборник. 1962. Т. 56 (98), №4. С. 433-468.
- 7. Dmytryshyn M.I. Operator calculus on the exponential type vectors of the operator with point spectrum / Dmytryshyn M.I., Lopushansky O.V. // In "General topology in Banach spaces" (ed. T.Banakh). Huntington; New York: NOVA Science Publishers, Inc. 2001. P. 137-145.
- Робертсон А. Топологические векторные пространства / Робертсон А., Робертсон В.

 М.: Мир, 1967.
- 9. Шефер Γ . Топологические векторные пространства / Шефер Γ . М.: Мир, 1971.

FUNCTIONAL CALCULUS FOR THE REGULAR ELLIPTIC DIFFERENTIAL OPERATORS

Vira LOZYNSKA¹, Olga MYAUS²

¹ Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
National Academy of Sciences of Ukraine,
79060, Lviv, Naukova Str., 3b

² Lviv Polytechnic National University,
79013, Lviv, S. Bandery Str., 12

The some properties of the functional calculus for the regular elliptic differential operators on the Banach space $L_p(\Omega)$ $(1 , <math>\Omega$ – bounded set are constructed are described.

Key words: elliptic operator, root vector, functional calculus.

Стаття надійшла до редколегії 14.05.2007 Прийнята до друку 22.10.2008