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1. Preliminaries. The paper is a continuation of the paper [11]. All the notations
and definition are taken from [11].

In the second section of the paper we prove that a free paratopological group on a
To-space is a Tp-space. The third section is devoted to functors preserving isomorphisms
of free (abelian) paratopological groups and free homogeneous spaces. The fourth sec-
tion contains a method of the reducing of the isomorphic classification of free (abelian)
paratopological groups to the isomorphic classification of free (abelian) paratopological
groups on 7j-spaces.

Some results of the paper were announced in [10].

2. Free paratopological groups on Ty-spaces. For every n > 1, by D,, we denote
the set {1,2,...,n} with the topology {0, Uy, Us,...Uy}, where Uy, = {1,2,...,k}.

It was proved in [13, Pr. 3.4] that a Markov free abelian paratopological group on
To-space is a Ty-space.

Theorem 1. A Markov free paratopological group over a Ty-space is a Ty-space.
To prove the theorem we need the following lemmas.

Lemma 1. Let X be a Ty-space, Y a finite non-empty subset of X and n =|Y|. Then
there exists a continuous mapping f: X — D, such that f|Y is injective.
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Proof. Let Y = {x1,22,...,2,}, G = (R,+) and 7 be the topology on G with the base
{[z;+00) : © € R}. Then (G, 7) is a paratopological group [14, Ex. 2.14]. We shall
denote this group by R*. Since X is a Tp-space, for each pair {i,;} such that i # j
there exists an open set U;; containing exactly one of the points x; and x;. Consider
the mapping fi;: X — R* defined by fi;(U;;) = 2™ and f;;(X \ U;;) = 0. The
mapping f;; is continuous [13, Lem. 2.3]. Since R* is a paratopological group, the mapping
g: X — R* such that g(z) = Y fi;(z) is continuous. Then f;;(z) = 2" ([g(x)/2"*7]
mod 2) for every x € X and ¢ # j. Since fi;(x;) # fij(z;) provided i # j, we see that
g|Y is an injection. Let ¢(Y) = {a1, a2, ...,a,} where a1 > a2 > --- > a,. Consider the
mapping h: R* — D,, such that h(z) = i, where i = n if © < a,, and 7 is the smallest
number such that x > a; otherwise. It is easy to check that h is continuous. Now we put
f=hg: X — D,. Since ¢|Y is an injection and h(a;) = i for each ¢, the map f|Y is an
injection too.

Lemma 2. (T.0. Banakh) A Markov free paratopological group F,(D,) is a Ty-space
for every positive integer n.

Proof. It was proved in [13, Pr. 3.4] that a Markov free abelian paratopological group on
a Ty-space is a Ty-space. Let ¢ : F,(Dy,) — A,(Dy,) be a continuous homomorphism such
that ¢(z) = z for each x € D,,, K be the commutant of F,(D,,). Since A,(D,,) is abelian,
K Ckero. Let 7 : F,(D,,) — F,(D,,)/K be the quotient homomorphism. Since the group
F,(D,)/K is abelian, there exists a continuous homomorphism ¢ : A,(D,,) — F,(D,,)/K
such that ¢(x) = w(x) for every x € D,,. Since the group F,(D,,) is generated by the set
D,,, we obtaine m = 9. Then K = kerm D ker ¢, thus K = ker ¢.

Therefore, in order to prove that F,(D,) is a Tp-space it suffices to construct a
topology 7 on F(D,,) which separates every point from K\{e} and the identity {e} of
F,(D,,) and D,, is a subspace of (F,(D,,), 7). Using results from [15] it is easy to prove that
the group F,(D,,) is algebraically free over the set D,,. For every word A € F,,(D,,) let
©i(A) be the sum of degrees of the letters “i” in the word A. Consider the subsemigroup S
of F,(D,,) generated by {e} and the set of all the words A € F,(D,,) over the alphabet D,,
such that the last nonzero element in the sequence (¢1(A4), p2(A),...,on(A)) is positive.
For every s € S and for every g € F,(D,,) we see that g~'zg € S, thus the semigroup S
defines a semigroup topology 7 on Fy,(Dy,) [14, 2] such that S C 7. Then D,, is a subspace
of (F,(Dy), ) and the topology 7 induces the discrete topology on K.

Proof of the theorem. Using results from [15] it is easy to prove that the group F,(X) is
algebraically free over the set X. Since the space of paratopological group is homogeneous,
it is sufficient to prove that for each word A € F,(X) over the alphabet X there exists
an open set U separating A and the identity of Fj,(X). Let A = z{'x5*...x5 be a word
in the irreducible form and a1, as, ..., ag, k < n, be its letters. Then by Lemmma 1 there
exists a continuous mapping f: X — Dy, such that f(a;) # f(a;) provided i # j. We
may extend the mapping f to a continuous homomorphism f*: F,(X) — F,(Dy). Then
[*(A) # er,(p,)- Since F,(Dy) is a Tp-space, there exists an open set U C F,(Dy)
containing exactly one of the points f*(A) and ep,(p,). The set (f*)~'(U) is open and
contains exactly one of the points A and e, (x).
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3. The reflections of spaces and the isomorphisms of free paratopologi-
cal groups. A topological space is totally disconnected if each its quasicomponent is a
singleton.

Let T be a class of spaces satisfying the following property:

Let X be a space such that for every z,y € X there exists f: X — Y, whereY € T
with f(x) # f(y), then X € T. (%)

Examples of the classes spaces satisfying property (%) are: Tp-spaces, Ti-spaces,
Ts-spaces, functionally Hausdorff spaces, totally disconnected spaces.

A class T of spaces is hereditary provided that if X € T then Y € T for each
subspace Y of X. The following observation was made by T. O. Banakh.

Proposition 1. A class T of spaces satisfies condition (x) if and only if T is a hereditary
class closed under Tychonoff products and strengthening of topology.

Let T be a class of spaces satisfying condition (*) and let X be a space. Consi-
der the following equivalence relation on X. Let z,y € X. Put z ~¢ y if and only if
f(z) = f(y) for each continuous mapping f: X — Y, where Y € T. The quotient space
X/ ~r is called the T-reflection of X and is denoted by TX. If X € T then the identity
homeomorphism i: X — X separates all pairs of different points of X, thus X =TX.

For some classes T' of spaces the equivalence relation ~7 has an other descriptions.
If Ty is the class of Tp-spaces and z,y € X then z ~g, y if and only if either z = y
or there is no open subset of the space X containing exactly one of the points z,y. If
fT5 is the class of functionally Hausdorff spaces and z,y € X then x ~p, v if and only
f(x) = f(y) for each continuous mapping f: X — [0; 1], where the segment [0; 1] has the
standard topology. If T'D is the class of totally disconnected spaces and z,y € X then
x ~pp y if and only if the points  and y have the same quasicomponent (see also [5,
§46, V.]).

Proposition 2. Any class T satisfying condition (%) determines a covariant functor T-
from the category of spaces and continuous mappings to the category of spaces from the
class T and their continuous mappings.

Proof. Let us check that T X € T for each space X . Note that for each continuous mapping
f: X — Y €T there exists a continuous mapping g: TX — Y such that f = gotx,
where tx: X — TX is the quotient mapping. Let x,y € TX, x # y. Choose points
T € t}l(ft), Y1 € t;(l (y). Then there exists a continuous mapping f: X — Y € T such
that f(x1) # f(y1). Then for the above defined g we have that g(z) # g(y), therefore
TX eT.

Let f: X — Y be a continuous mapping, tx: X — TX, ty: Y — TY be
the quotient mappings. Let us prove that there exists a unique continuous mapping
g: TX — TY such that goty = ty o f. Let u € TX and = € ty' (u). Put
g(u) = ty(f(z)). Let us check that the mapping g is well-defined. If z € t3'(u)
then h(xz) = h(z) for all continuous mappings h: X — Z, where Z € T. Since TY € T,
we obtaine ty (f(z)) = ty (f(2)), and we are done. Since tx is the quotient mapping and
the composition ty o f is continuous, the mapping tx is continuous too. Put T'f = g.

It is easy to check that the rule which corresponds a space T'X to each space X
and a mapping Tf : TX — TY to each continuous mapping f : X — Y is a covariant
functor.
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The functor from Proposition 2 is called the T -reflection.

Theorem 2. Let T be a class of spaces satisfying condition (x) such that Fp(X') € T
for each space X' € T. Let X and Y be spaces such that the Markov free paratopologi-
cal groups F,(X) and F,(Y) are topologically isomorphic. Then the quotient map-
pings tx: X — TX and ty: Y — TY are M,-equivalent and hence the Markov free
paratopological groups F,(TX) and F,(TY') are topologically isomorphic.

Proof. Let i: F,(X) — F,(Y) be a topological isomorphism, tx: X - TX ty: Y - TY
be the quotient mappings, t%: Fp(X) — F,(TX) and t}: F,(Y) — F,(TY) be their
homomorphic extensions.

Let us construct a continuous mapping h: TX — F,(TY) such that hotx =
=t} o (i|X). Let 2’ € TX. Choose an arbitrary point z € X such that with tx(z) = 2’
and put h(z') = t3i(z). Let y € X. There is a point = € X such that tx(z) = tx(y) and
htx(x) = t3i(x). Thus htx(y) = htx(z) = t}i(x) = t3-i(y) since TY € T and therefore
F,(TY) € T. Thus hotx =t} o (i|X). The continuity of the mapping A is implied from
the continuity of ¢ and ¢, and the fact that the mapping tx is quotient.

Similarly, we can construct a continuous mapping g: 7Y — F,(T'X) such that
goty =t%o(i7!Y). Let us extend the mappings h, g to the continuous homomorphisms
h*: Fy(TX) — F,(TY) and g*: F,(TY) — F,(TX). Let € X. Then

h*t% (x) = h'tx (z) = htx(x) = t3i(z).

Since the group Fj,(X) is generated by the set X, we have h* o t% =t} o 4. Similarly we
can show that g* ot} = t% oi~'. Since

groh*oty =gtothoi=1tyoi toi=ty,
we obtain g* o h* = 1p (rx). Similarly, we can prove that h* o g* = 1 (7y). Thus

h*: Fp(TX) — F,(TY) is a topological isomorphism. Since h* ot = ¢} o4, the mappings
tx and ty are My,-equivalent.

Corollary 1. Let T be one of the following clasess:
o Ty-spaces,
o functionally Hausdorff spaces,
o totally disconnected spaces.

Let X andY be spaces such that the Markov free paratopological groups F,(X) and F,(Y")
are topologically isomorphic. Then the Markov free paratopological groups F,(TX) and
F,(TY) are topologically isomorphic too.

Proof. If X’ is a Ty-space then F,(X') is a Tp-space too [12]. If X’ is a functionally
Hausdorff space then F,(X') is a functionally Hausdorff space too |13, Pr. 3.8]. If X’
is a totally disconnected space then by [13, Pr. 2.15] the quasicomponent of the unit in
F,(X') is a singleton, thus F,(X’) is a totally disconnected space too.

Corollary 2. Let T be a class of spaces satisfying condition (x) such that F,(X') € T
for each space X' € T. Let X1, X2,Y1,Ys be spaces, f1: X1 — Y1 and fo: X9 — Y5 be
M, -equivalent mappings. Then the mappings T f1 and T fo are Mpy-equivalent.
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Proof. Let i: F(X1) — Fp(X2), j: Fp(Y1) — F,(Y2) be topological isomorphisms such
that f3 o = j o fi. Similarly to the proof of Theorem 2 we can build topological
isomorphisms ir: F,(T'X1) — F,(TX2) and jr: F(TY1) — Fp(TYz2) such that ipoty =
= 1%, ot and jr oty = tj, o j. Proposition 2 implies that T'f1 otx, = ty;, o f1 and
Tf2 o tXQ = tyz o fg. If x € X5 then

ty, f2 (@) =13, f2(2) = ty, fo(@) = (T fo)tx, (x) = (T f2)"tx, () = (T'f2)"tx, (2).
Since the group F,(X2) is generated by the set Xo, we have tj, o f3 = (T'f2)* ot%,. Let
z € X;. Then

Jr(Tf1)"ty, (x) = jr(Tf1) tx, (z) = jr(Tfi)tx, (v) = jrty, f1(z) = jrty, fr(z) =

= ty,jf1(x) = ty,i [T () = ty, fyi(z) = (Tf2)"tx,i(x) = (Tf2) irtX, (z).
Since the group F,(7TX1) is generated by the set t% (X1), we obtain (7'f2)* oir =
= jr o (T f1)*. Thus, the mappings T f1 and T fo are M,-equivalent.

If we replace the words “free paratopological group” by the words “free abelian
paratopological group” in the Definitions 1.8 and 1.9 from the paper [11] then we obtain
the definitions of Ap-equivalent spaces and Ap-equivalent mappings (remark that in the
paper [11] the author did misprints in these definitions; there must we written “in Defi-
nitions 1.8 and 1.9” instead of “in Definitions 1.10 and 1.117).

Similarly to Theorem 2 we can prove the following

Theorem 3. Let T be a class of spaces satisfying condition (%) such that A,(X') € T
for each space X' € T. Let X and Y be spaces such that the Markov free abelian
paratopological groups A,(X) and A,(Y') are topologically isomorphic. Then the quotient
mappings tx: X — TX and ty:Y — TY are Ap-equivalent and hence the Markov free
abelian paratopological groups A,(TX) and A,(TY') are topologically isomorphic.

Corollary 3. Let T be one of the following clasess:
e Ty-spaces,

T1-spaces,

functionally Hausdorff spaces,

totally disconnected spaces.

Let X and Y be spaces such that the Markov free abelian paratopological groups A,(X)
and A,(Y) are topologically isomorphic. Then Markov free abelian paratopological groups
Ay(TX) and A,(TY) are topologically isomorphic too.

Proof. If X' is a Ty-space then A,(X’) is a Tp-space too [13, Pr. 3.4]. If X’ is a T;-space
then A,(X') is a Ti-space too [12, Pr. 3.5]. If X’ is a functionally Hausdorff space then
F,(X") is a functionally Hausdorff space too [13, Pr. 3.8].

Now let X’ be a totally disconnected space. We are going to show that the quasi-
component of the zero in A,(X’) is a singleton. Let z € A,(X")\{0}. Then there exists
a finite nonempty subset F' € X’ and a set {n, : y € F'} of non-zero integers such that
x =Y {nyy:y € F}. Since the space X' is totally disconnected, for every point y € F
there exists a clopen neighborhood U, C X’ of y such that U, N F = {y}. For every point
y € Fput Vy, = U\ U{Uy : v € F\{y}}. Then {V, : y € F} is a family of pairwise
disjoint clopen subsets of X'. Let f : X — Z be a mapping such that f(z) =n, if z € V,
for some y € F and F(X'\U{V, : y € F}) = {0}. Then f is a continuous mapping.
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Let f*: A,(X') — Z be a continuous homomorphic extension of the mapping f. Then
f*(0) =0 but f*(x) = > {n? :y € F} > 0. Therefore f*~'(0) is a clopen neighborhood
of the zero of the group A,(X’) not containing x. Thus A,(X’) is a totally disconnected
space.

Corollary 4. Let T be a class of spaces satisfying condition (%) such that A,(X') € T
for each space X' € T. Let X1, X2,Y1,Ys be spaces, f1: X1 — Y1 and fo: X9 — Y5 be
Ap-equivalent mappings. Then the mappings T f1 and T fo are Ap-equivalent.

Proof. The proof is similar to the proof of Corollary 2.

Let X1, Xo,Y1,Y5 be spaces. A mapping f1 : X1 — Yi is called B-equivalent to a
mapping fs : X9 — Y3 if there exist isomorphisms i : H(X;) — H(X2) and j: H(Y1) —
H(Y2) such that jo f; = fooi. Recall that here by H(X) = (Hg(X),G(X),h) we denote
the free homogeneous space on a space X described in the beginning of [11, Part 2].

We shall need the following

Lemma 3. Let X,Y be spaces and (i,9) : H(X) — H(Y) be a morphism. Let n > 0
and 21,29, ..., 20n+1 € Hp(X). Then z = 2122_1 . '~22_71122n+1 € Hg(X) and

Z(Z) = 7:(21)1’(22)71 . 'Z.(Zgn)ili(ZanLl).

Proof. Let z,y € Hp(z). Then zy~! € G(X) and since (i,¢) is a morphism,
play™) =ilzy ™ y)ily) ™ =i(x)ily) "

It is clear that 2 € H(X). Put g = 2125 '+~ 25, if n > 0 and g = e if n = 0. Then

g € G(X) and i(z) = i(gzan+1) = ©(9)i(z2n+1)- Since ¢ is a homomorphism,

o(g) = (2125 ") -+ plzan—125, ) = i(21)i(22) " -+ i(22n—1)i(22n) "

Corollary 5. Let X,Y be spaces and (i,¢),(j,v) : H(X) — H(Y) be morphisms. If
i|X = j|X then (i, ) = (4,¢).

Theorem 4. Let T be a class of spaces satisfying condition () such that Hg(X') € T for
each space X' € T. Let X and Y be spaces such that the free homogeneous spaces H(X)
and H(Y) are isomorphic. Then the quotient mappings tx: X — TX and ty:Y —
TY are B-equivalent and hence the free homogeneous spaces H(TX) and H(TY) are
isomorphic.

Proof. Let (i,¢): H(X) — H(Y) be an isomorphism of the homogeneous spaces,
tx: X — TX, ty: Y — TY be the quotient mappings and tx = (t%,¢¥x): H(X) —
H(TX), ty = (t},¢y): HY) — H(TY) be the morphisms constructed from the
mappings tx and ty (see [11, Part 2]).

Let us construct a continuous mapping h: TX — Hp(TY) such that hotx =
=t} o (i|X). Let 2’ € TX. Choose an arbitrary point € X such that with tx(z) = 2’
and put h(z’) = t3-i(x). Let y € X. There is a point € X such that tx(z) = tx(y)
and htx(z) = t3i(z). Thus htx(y) = htx(z) = t3i(z) = t3i(y) because TY € T and
therefore Hg(TY) € T. So hotx = t}- o ({|X). The continuity of the mapping h follows
from the continuity of ¢ and ¢j, and the fact that the mapping tx is quotient.
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Similarly, we can construct a continuous mapping ¢g: TY — Hp(TX) such that
goty =t% o (i'|Y). Let (h*,px): H(TX)— H(TY), (¢*,¢v): HTY) — H(TX) be
the morphisms constructed from the mappings h and g. Let € X. Then

ht% (z) = h'tx (z) = htx () = tyi(x).

Corollary 5 implies that h* o t% = tj- o 7. Similarly we can show that g* otj =% oi ™.
Since g* o h* oty = g*oth oi =t oi loi=1%, gtoh* = 1Hy(rx)- Similarly, we
can prove that h* o g* = 1, (ry). Corollary 5 implies that (h*,¢x)o (g%, 0y ) = Ly (ry)
and (g%, py) o (h*,0x) = 1g(rx). Hence (h*,px) is an isomorphism. Since h*t = tii,
ty o (i,0) = h* otx by Corollary 5 and the mappings tx and ty are B-equivalent.

Corollary 6. Let T be one of the following clasess:
To-spaces,

T} -spaces,

Ts-spaces,

functionally Hausdorff spaces,

totally disconnected spaces.

Let X and Y be spaces such that the free homogeneous spaces H(X) and H(Y) are
isomorphic. Then the free homogeneous spaces H(TX) and H(TY') are isomorphic too.

Proof. If T is either the class of Ty-spaces or the class of totally disconnected spaces or
the class of functionally Hausdorff spaces and X’ € T then F,(X’) € T (see the proof
of Corollary 1) and therefore H,(X') € T thus Hg(X’) € T by Lemma 1 from [11]. If
X' is a Th-space then Hg(X') is a Tj-space too [6]. If X' is a Ty-space then Hp(X’) is
a Ts-space too [7].

Corollary 7. Let T be a class of spaces satisfying condition (x) such that Hg(X') € T
for each space X' € T. Let X1, X2,Y1,Ys be spaces, f1: X1 — Y1 and fo: X9 — Y5 be
B-equivalent mappings. Then the mappings T f1 and T fo are B-equivalent.
Proof. Let (i,¢): H(X1) — H(X2), (j,¥): H(Y1) — H(Y2) be topological isomorphisms
such that f3 0 (i,0) = (j, %) o f1. Similarly to the proof of Theorem 4 we can construct
isomorphisms (ir, or): H(TX,) — H(TX3) and (jr,¥r): H(TY1) — H(TY3) such that
(iT,o1) otx, = tx, o (i,) and (jr,¥r) o ty; = ty, o (J, ). Proposition 2 implies that
Tfio tx, =ty, 0 fiand Tfy0 tx, =tly, © fo. If z € X5 then
ty, f3 (x) = ty, f2(2) = ty, fo(x) = (T fo)tx, () = (Tf2)"tx,(2) = (T'f2)"tx, (2).
Corollary 5 implies that ty, o f5 = (T'f2)* o t,. Let v € X;. Then
Jr(Tf) tx, (@) = jr(Tf) tx, () = jo(ThH)ix, (x) = jriv, f1(2) = jrty, f1(z) =
= ty,if1(x) = b3, f1 () = t3, fyi(x) = (Tf2)"tx,i(x) = (Tf2) irtX, (z).
Since the set Hp(TX1) is generated by the set %, (X1), we see that T'f5 o (i1, 1) =
= (jr,¥r) o T f1 by Corollary 5. Thus the the mappings T'f; and T f, are B-equivalent.

4. On Ty-reflection.

Proposition 3. For each topological space X the quotient mapping tx has a continuous
right inverse.
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Proof. Let X7 be a subset of X such that X; N C is a singleton for each class C' of
the relation ~g, on X. Define the mapping f: TopX — X by putting f(z) = y, where
y =t 1(x) N X;. It is clear that tx o f is the identity mapping on the space TX. Let
us check that the mapping f is continuous. Let U be an open subset in X;. Let us put
V = {x € X : there exists a point y € U such that « ~7, y}. Since U is open in X7,
there exists an open set W in X such that U = W N X;. Let us prove that V = W.
Suppose that there exists z € V' \ W. Then there exists z; € U such that z ~7, z1. Since
the points z and z; are not separated by open subsets in X, we see that z; ¢ W. We get
a contradiction with the fact that U = W N X;. Let z € W. Then there exists z; € X3
such that z ~7, 2z1. Since the points z and z; are not separated by open subsets in X,
we have z1 € W, therefore z; € U and z € V. Thus V = W and the set V is open in X.
By the construction, V = t)_(l(f’l(U)). Since the mapping tx is quotient and V is open
subset in X, we see that f~(U) is an open subset in TpX.

Remark 1. Let X be a topological space. Let X7 be a subset of X such that X3 NC is
a singleton for each class C' of the relation ~7, on X. The above lemma imply that the
mapping tx|X; is a homeomorphism. Since every neighborhood of the set X; coincides
with X, the quotient space X/X; is antidiscrete. It easy to check that the size of the set
X /X, does not depend on the choice of X;. The cardinal of this size with antidiscrete
topology is denoted as the space X/TpX.

Let (X, z0) and (Y, yo) be pointed spaces such that X NY = &. The quotient space
(X ®Y)/{z,y} is called a bouquet of pointed spaces (X, z¢) and (Y, yo) and is denoted
by (X, z0) V (Y, 50).

Lemma 4. Let X,Y be disjoint spaces, x1,22 € X, y1,y2 € Y. Then spaces (X, 1) V
(Y,y1) and (X, 22) V (Y,y2) are B-equivalent.

Proof. For i = 1,2 put K; = {z;,y;} and define maps r; : X @Y — K, such that
ri(X) = {x;} and 7;(Y") = {y;}. Then the maps r and ry are parallel retractions. So by
[11, Pr. 3] the spaces (X, z1) V (Y,y1) and (X, z2) V (Y, y2) are B-equivalent.

We shall write sometimes “X V Y” instead of “(X, zo) V (Y, y0)”- We also recall that
the B-equivalence of spaces implies their Mp-equivalence.

Lemma 5. Let X,Y be spaces and f : X — Y be a continuous map. Let f*: F(X) —
F,(Y) be the homomorphic extension of the map f. Then ker f* is the subgroup N of
F,(X) generated by the set {g 'y~ lg: 2,y € X,g € Fp(X), f(z) = f(y)}.

Proof. 1t is clear that N C ker f*. Now we prove the opposite inclusion. Using results
from [15] it is easy to prove that the group F,(X) is algebraically free over the set X
and the group F,(Y) is algebraically free over the set Y. If w is an arbitrary element of
F,(X) then w = 27" --- 27" where {z1,...,2,} C X and {e1,...,e,} C {—1,1}. Then
by easy induction on n we can prove that if f*(w) = e then w € N.

Proposition 4. Let X be a nonempty topological space. Then X M (ToX x {1} Vv

(X/ToX) x {2}).
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Proof. Let X7 be a subset of X such that X3 N C is a singleton for each class C' of the
relation ~7, on X. Put Z = X; x {1} ® X x {2}. Choose an arbitrary point zg € X and
put Z' = Z/{(xo, 1), (z0,2)} and 7 : Z — Z’ be the quotient mapping.

Define a mapping r : X — X; as follows. Let x € X. There is a unique point
x1 € X3 such that 21 ~7, z. Put r(z) = 21. The proof of Proposition 3 implies that
r~1(U) is open for each open subset U of X; so r is continuous.

Let t € {1,2}. Define a mapping r; : Z — Z putting r;(x,s) = (r(x),t) for each
x € X,s € {1,2} such that (z,s) € Z. Since

N U x {t}) = ("N UNX)NXy) x {1}ur YU NX;) x {2}

for each open set U C X7, the mapping r; is a continuous retraction. Since r((xg,1)) =
= r¢((x0,2)), there exists a mapping 7} : Z' — Z’ such that rim = 7r;. Since 7 is the
quotient mapping and the mapping r47 is continuous then the mapping 7 is continuous
too.

It is easy to check that r; and 7o are parallel retractions. Let ¢,¢' € {1,2}. Then
TITL T = ryTry = Tryry = ry = 1y, Since the mapping 7 is surjective then rir}, =} so
the mappings r] and 74 are parallel retractions too.

Let i: Z' — F,(Z') be the mapping such that i(z') = 7} (2')z’~1r4(2’) for each
2" € Z'. Let us check that the mapping ¢ is continuous. It is sufficient to prove that its
restrictions onto m(X; x {1}) and 7(X x {2}) are continuous. If z € X; x {1} then

-1

in(z) = rim(z) x w(2) 7 x rhw(z) = wri(2) x w(2) 7t x wra(z) =

=7(2) x m(2) 7! x wre(2) = 7ra(2) = rhm(2).

Therefore i|m(X; x {1}) is a continuous map. Now let z € X x {2}. Define a mapping
J o m(X x {2}) — F,(Z') putting j(2') = z/71r}(2’) for each 2’ € m(X x {2}). Let us
check that the mapping j is continuous. For this purpose we prove that jm(X x {2}) is
an antidiscrete subspace of F},(Z’). It is easy to check that for each point 2’ € 7(X x {2})
such that 2’ # r4(2’) there is no open subset U of Z’ such that U contains exactly one of
the points 2z’ and r4(2’). Let 2’ be an arbitrary point of (X x {2}). Let R,/ be a subset of
F,(Z') such that R, = 2'~'{z/,74(2")} = {e,j(z")}. Thus, by the homogeneity, for each
open subset U of F},(Z’) we have the following dichotomy: R, C U or R, C F,(Z")\U.
Let V be an open subset of F,(Z’) such that V N jm(X x {2}) # @. Choose a point
z' € (X x {2}) such that j(z') € V. Then R, C V so e € V. The dichotomy implies
that R, C V for each point v’ € n(X x {2}) so jn(X x {2}) C V. Since F,(Z’) is a
paratopological group and the mappings j and 7} are continuous and i(z") = j(2') xr§(2’)
for each 2z’ € m(X x {2}), the mapping i is continuous too.

Denote by i*: F,(Z') — F,(Z') the continuous homomorphic extension of the
mapping i. It was proved in [9] that i* 0 i* = 1p (z/).

Let t € {1,2}. Let Y; be the quotient space Z'/7(X; x {t}), pt : Z' — Y; be the
quotient mapping and p;: F,(Z’') — F,(Y;) be the continuous homomorphic extension
of p;. Lemma 5 implies that kerp} is a smallest normal subgroup of F,(Z’) containing
the set {zy~t:z,ye Z', f(z) = f(y)} = {oy ™ 12,y € (X1 x {t})}.

Let x € X;. Then in((x,1)) = rhn((z, 1)) = 7r2((z, 1)) = 7((r(x),2)) = 7((z,2)).
So i(m(X1 x {1}) = (X1 x {2}) and thus i*(ker p}) = ker p3. Then Proposition 6 from
[11] implies that the spaces Y7 and Y3 are Mpy-equivalent.



200 Nazar PYRCH

Let f1 : Z — X be a mapping such that fi(z,1) = zo for each x € X; and
f1(z,2) = x for each z € X. Using this mapping we can construct a homeomorphism
from Y7 to X. B

Let ¢1 : X — X/X; be the quotient mapping, f2 : Z — X3 x {1} & (X/X1) x {2}
be a mapping such that fl(xl, 1) = (21,1) for each x € X7 and ]72(:10,2) = (q1(x),2) for
each x € X. Let

Yy = Xy x {1} & (X/X1) x {2}/{(z0, 1), (q1(20), 2)}

and ¢ : X1 x {1} @ (X/X1) x {2} — YJ be the quotient mapping. Let fo = qfs. Using
this mapping we can construct a homeomorphism from Y3 to Yj.

Since the space X7 is homeomorphic to the space ToX and the space X/X; is
homeomorphic to the space X/TpX, we obtain that the space Yy is Mp-equivalent to the
space ToX x {1} V (X/ToX) x {2}. Thus

x v Wy Ny N X o« {1} v (X/TeX) x {2).

Let X be a pseudometrizable space, and d be a pseudometric generating the topology
of X. Then one can easily check that 7o X is a metrizable space.

Corollary 8. Each pseudometrizable space is Mp-equivalent to the bouquet of metrizable
and antidiscrete spaces.

Proposition 5. Let X1 and X, be spaces with topologically isomorphic Graev free
paratopological groups, Y1 and Yo be spaces with topologically isomorphic Markov free
paratopological groups. If X; NY; = @ for i € {1,2} then Graev free paratopological
groups on spaces X1 @B Y1 and Xo @ Ys are topologically isomorphic.

Proof. Let i: FG,(X1) — FGp(X2) be an isomorphism of the Graev free paratopolo-
gical groups with distinguished points a; € X, i = 1,2, j: Fp(Y1) — Fp(Y2) be an
isomorphism of the Markov free paratopological groups.

Let t € {1,2}. Let ix¢ : Xy — X; @Y; and iy, : ¥y — X; ®Y; be the identity
embeddings, and i%, : FG,(X;) = FG,(X:®Y:,a¢) and i}, : Fp(Y;) — FGp( X ®Y:, a)
be their extensions to the continuous homomorphisms of paratopological groups.

Consider the mapping k: X1 ®Y; — FG,(X2@Ys) defined as k(z) =i%,i(z) if z€ X,
and k(z) = i347(2), if z € Y7. Similarly to |4, Pr. 8.8] one can check that the extension
of the mapping & to the continuous homomorphism k*: FG,(X1 Y1) — FG,(X2@Y3)
is a topological isomorphism of the Graev free paratopological groups FG(X; @ Y1) and
FG(X2 @ Y>) with the distinguished points a; € X; @ Y;.

Proposition 6. Let X7 and X5 be spaces with topologically isomorphic Graev free abelian
paratopological groups, Y1 and Ys spaces with topologically isomorphic Markov free abelian
paratopological groups. If X;NY; = & fori € {1,2} then Graev free abelian paratopological
groups on spaces X1 @Y1 and Xo @ Ys are topologically isomorphic.

Proof. The proof is similar to the proof of the previous proposition.

Corollary 9. Let X1 and X2 be nonempty topological spaces with topologically isomor-
phic Markov free paratopological groups, Y be a nonempty topological space such that
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Y N (X1 UXsy) = @. Then Markov free paratopological groups on spaces X1 V'Y and
Xo VY are topologically isomorphic.

Proof. By Proposition 5 we have that Graev free paratopological groups on the spaces
X1 @Y and X2 @Y are topologically isomorphic. Similarly to [3, §5] one can check that
Graev free paratopological groups on the spaces X; @ Y and (X; V Y)T are topologi-
cally isomorphic. Since Graev free paratopological group on the space X is naturally
isomorphic to the Markov free paratopological group on the space X,

Fy(X1VY) ~ FGo((X; VY)) = FGy (X, ®Y) ~
~ FGp( Xy ®Y) ~ FG,(Xo VY) ) ~ Fy (X3 VY).

Corollary 10. Let X; and X3 be monempty topological spaces with topologically
isomorphic Markov free abelian paratopological groups, Y be a monempty topological
space such that Y N (X1 U X)) = &. Then Markov free abelian paratopological groups on
spaces X1 VY and Xo VY are topologically isomorphic.

Proof. The proof is similar to the proof of the previous corollary.

Theorem 5. Topological spaces X and Y are Ap-equivalent if and only if To X % Y
and X/ToX =Y/ToY.

Proof. Without loss of the generality it suffices to consider only the case X # & and
Y £ 2.

Sufficiency. Since A,(ToX) ~ A,(ToY) and X/ToX = Y/TyY, Corollary 10 implies
that A, (ToX x {1} V (X/ToX) x {2}) ~ A,(ToY x {1} v (Y/ToY) x {2}). Since the
M,,-equivalence of two spaces implies the A,-equivalence,

Ap(X) ~ Ay (ToX x {1}V (X/ToX) x {2})
and A,(Y) ~ A,(ToY x {1} Vv (Y/ToY) x {2}) by proposition 4. Thus

X 2 ToX x {1}V (X/ToX) x {2} ¥ TyY x {1}V (Y/TyY) x {2} X .

Necessity. Let X and Y be Aj,-equivalent. Then Corollary 3 implies that To X X
TyY . Theorem 3 implies that the quotient mappings tx: X — Ty X and ty: Y — TyY be
Ap-equivalent. Since ker t% is an algebraically free abelian group on the set of generators
with cardinality X/ToX, X/ToX = 1 + rankkert’ = 1 4 rankkert} = Y/T,Y.

M,
Theorem 6. Topological spaces X and Y are M, -equivalent if and only if ToX ~ ToY
Proof. The proof of the necessity is similar to the abelian case. Let us prove the sufficiency.

Let X and Y be My-equivalent. Then Corollary 1 implies that TpX X ToY . Since the
spaces X and Y are Aj-equivalent, Theorem 5 implies that X/ToX =Y/T,Y.
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