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We consider the space of the equivalence classes of continuous open maps
defined on a unit segment induced by the Hausdorff metric. The main result
provides a description of topology of the components of this space.
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Recall that a map of topological spaces is said to be open if the image of every open
set is open. It turns out that, in the case of compact Hausdorff spaces, the set of all open
maps can be endowed with the natural topology generated by the Vietoris topology on
the corresponding hyperspace.

The aim of this note is to investigate the space of open maps of the unit segment. Our
main result states that every non-degenerated component of this space is homeomorphic
to the separable Hilbert space I2.

All maps are assumed to be continuous.

1. Space ®(X). Let X be a compact Hausdorff space. Following [1] we say that
two continuous onto maps f;: X — Y;, ¢ = 1,2, are equivalent if there exists a homeo-
morphism h: Y7 — Y5; here Y7,Y5 are compact Hausdorff spaces such that fo = hfy.
Let ®(X) denote the set of equivalence classes and ¥(X) denote the subset of ®(X)
consisting of classes of open maps.

Recall that, given a compact Hausdorff space X, we denote by exp X the set of all
nonempty closed subsets of X. The Vietoris topology is the topology whose base consists
of the sets of the form

WVN,...,V,)={AeexpX |AC UViandAﬂVi;éQ, forallie {1,2,...,n}},
i=1

where Vi, ..., V,, are open subsets in X, n € N.
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In the case of a compact metric space (X, d), the Vietoris topology can be generated
by the Hausdorff metric dg,

dy(E,F)=1inf{e > 0| E C O,(F) and F C O,(E)}.

Suppose now that all spaces under consideration are compact Hausdorff. We identify
every equivalence class [f] of a map f: X — Y with the family (f) = {f~'(y) |y € Y}.
The latter is a closed subset of exp X, i.e. an element of exp? X = exp(exp X ). We endow
U(X) with the topology induced from exp? X by this identification [3].

2. The set W(I). By I we denote the unit segment. Recall that a map f: I — X is
called a piecewise homeomorphism if there exists a partition 0 = ap < a1 <--- < a, =1
of I such that the embedding f|(4, , a.;: [@i-1,a;] — X is a homeomorphism, for all
i=1,2,...,n.

We will use the following result (see [2] for its proof).

Theorem 1. Every continuous open map from I onto a non-degenerated Hausdorff space
X 1s necessarily a piecewise homeomorphism onto X.

We denote by K,,, n € N, the set of all (f) € U(I) such that the following condition
holds: there exists a partition 0 =ty < t; <ty < --- < t, = 1 for which every restriction
fliti1 e [tio1,t:] — X is a homeomorphism, i = 1,2,...,n. Evidently, K,, N K, = 0,
if m #n.

One can conclude that ¥(I) = | K; U{{c)}, where c: I — {x} is the constant map
i=1

onto a singleton.
Proposition 1. Every K,,, n € N, is an open and closed subset of the space ®(I).

Proof. Let (g) € U(I) \ K,, then there exists m # n such that (g) € K,,.

There exists z € X such that |g7(z)] = m > n. Let g~ () = {y1,¥2, - . . Ym}, where
Y1 <ys < - <ymandy; €1 foralli=1,2,...m. Let us choose open disjoint subsets
U; C I'such,asy; € U; foralli =1,2,...m. Then (Uy,...,U,,) is an open subset in exp I
and (g) N (U1,...,Un) # 0. From this it follows that (g) € (expI,(U1,...,Upn)) = W.
The set W is an open subset of the space exp? I, i.e., is a neighborhood of an element
(g) € exp? I.

Let (g) € W. Then (g) N (U1,...,Up) # 0, and there exists y € Y such that
g Yy) € (Uy,...,Up). From this it follows that g1 (y)NU; # 0, for every i = 1,2,...,m.
Inasmuch, as the sets Uy, Us . . ., Uy, are disjoint, we can draw a conclusion that [§~*(y)| >
m > n. Therefore (§) does not belong to the set K.

We are going to show that the set M = |J K; U{(c)} is closed in ¥(I). Assume the

i=1

contrary and let ((f;))$2; be a sequence from M converging to (f) € Ky,.

Without loss of generality, one may assume that (f;) € M\{(c)}. Consider f: I — X.
By Theorem 1, X is homeomorphic to I and let o € X be an interior point of X. Let
FYxo) = {y1,92,---,Ym}, where 0 < y3 < y2 < --- < ¥y, < 1. There exists a > 0
such that a-neighborhoods of y; and y; are disjoint if ¢ # j. Consider the sequence of
neighborhoods U; = Oy ;(f ™" (w0)) of the set f~*(x0).

By the pigeon-hole principle, for every i there exist fy;) and zy) € fi@)(I) such
that |f];(%)(xk(i)) N Oqyi(y;)| = 2, for some j € {1,2,...,m}.
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Passing, if necessary, to a subsequence, one can assume, without loss of generality,
that |fk_(%) (7r(i)) N Oqyi(y1)] = 2 for all i € N. Denote by w; and 2; the endpoints of f;(I).
Theorem 1 it follows that f~*({ws, z:}) N Oqy;(yi) # 0. Passing to the limit, we obtain

F{w, ) Ny #0

where w, z are the endpoints of Xy = f(I). Note that the limits of the preimages of
the endpoints are also endpoints. This follows from the fact that the preimages of the
endpoints are precisely the sets that contain 0 or 1. We obtain that f(y;) is an endpoint
of X and this is a contradiction.

3. We say that f preserves segments, if, for every a,b € I, f([a,b]) = [f(a), f(b)]. It
is easy to observe that in this case the image of every convex subset of I is convex and
f~t: f(I) — I also preserves segments.

As usual, C(I) denotes the set of all continuous real functions on I endowed with
the uniform convergence topology. We denote by Cy(I) the set of all f € C(I) such that
f preserves segments.

Let (f) € ¥(I), then f: I — X is a piecewise homeomorphism. Suppose now that
[0,%1] C I is a subsegment in I such that f|jo,1: [0,%1] — X is a homeomorphism. Then

there exists a partition 0 = tg < t; < t2 < -+- < t,—1 = 1 for which every restriction
flitii e [tiz1,t:] — X is a homeomorphism, i = 1,2,...,n.
Denote by

L=f"1f0)Uf 1 (f(t1) = {to.tr,t2,.. . ta_1},

the partition on I, thus to = 0 and ¢,—1 = 1, n € N. Consider a map ¢;: [0,t1] — [ti—1, L],
defined by the formula

¢i(t) = FHS(®) N [tim1, t].
Let f(0) = 0 and consider a map ¢;: I — I , defined by the formula

@@t =tio1 when i is an odd number i = 2k + 1,
pi(z) = !

when ¢ is an even number ¢ = 2k,

where k = {0,1,2,...,[n/2]}.
So, every (f) € ¥(I) can be identified with the element

(t07t17t27"'tn—la(p1($)7902(x)u"'79071(55)) eI x Cgil(‘[)

where n € N.

And, vice versa, let (to,t1,t2,...th—1;%1, 92, ... Pn) be some element of the space
Im x CO(I)"_l such that 0 < t; < --- < t,—2 < 1 and ¢;: I — R is continuous maps
which preserves segments, such that ¢1(I) = ¢2(I) = ...pn—1(I) =Y C R. Consider
maps & : [ti—1,t;] — Y defined by the formula:

T—ti_1 Y
@i | 7= ) if i is an odd number,

i(x) = N
i | 772 lft_ if 7 is an even number.
i1t
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Consider a map f: I — Y defined by the formula

fl ({E) ifxe [O,tl],
f(:E) _ §Q(I) ifz e [tl,tg],

fn_l(l') ifz e [tn—lu 1]
Then f is a continuous open map from I onto Y C R and (f) = {f~*(f((x)) |
xel}eW).
In this way, we obtain a one-to-one map between the elements of subset K, in the
space ¥(I) and the elements of some subset KC,, in the space I" x g~ (I), for each n € N.

The set K, is a closed subset in W(7), therefore K,, is a closed subset in "1 x (Cy(1))"
as well.

Proposition 2. For every n € N, the set K,, is conver in R"T x (Co(I))".

Proof. Let (t1,t2,...,tn-1;01,92,--,¢n) and (r1,7r2,...,"n_1;%1, U2, ...,1,) be ele-
ments of the set KC,, C I"*1 x (Co(I))". Let s be some element in I. Let us consider the
following transformation:

S(tlatQa .. 'at’n.fl;(plv(/)Qa cee a@n) + (1 - S)(T17T27 .. 'a’rnfl;wlvdbv cee 71/)71) =
=(st1 + (1 —s)ri,sta+ (1 —8)ra,...,stp—1 + (1 — 8)rp_1;
so1 + (1 —8)1,802 + (1 — 8)th2, ..., spn + (1 — 8)tby)

For all i« = {1,2,...n — 1}, we have 0 < t; < 1, 0 < r; < 1. Take s € I, then
0<st;<sand 0 < (1—s)r; <(1-—s), whence st; + (1 —s)r; < 1. As ¢;, ¥; € Co(I),
we see that a < ;(t) < b and a < ¥;(t) < b, where a,b € R. Then

sa+ (1 —s)a<spi(t)+ (1 —s)i(t) <sb+(1—s)b
or a < spi(t) + (1 — s)1;(t) < b. Whence sp;(t) + (1 — s)¢i(t) € Co(I).

Therefore,

S(t17t27"'atn71;</)15@25' a@n) + (1 - S)(T1;T27" '7Tn71;¢171/)25' 71/)71) S ICn

Then, for all n € N, the set K,, is a closed convex subset in the space I x (Co(I))".
Let us state the Anderson-Kadec Theorem. Recall that a Fréchet space, by definition,
is a locally convex linear complete metric space.

Theorem 2. (|5]) Every infinite-dimensional Fréchet space is homeomorphic to [°.

The following statements are well known (see [5]):

(1) The countable infinite product of non-degenerated separable Banach spaces is
homeomorphic to
(2) I™ X lg 215, where n € N;
(3) Each convex bounded subset in [? is homeomorphic to 2.
Then, C(I) 2 (? according to Theorem 2. The set Co(I) is dense in C(I), therefore
Co(I) = [2. From Statements 1 and 2 it follows that 1"+ x C#*(I) = (2. From Statement
3 we obtain K,, = [2, for every n € N.
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Corollary 1. The set U(I)\ {{c)} is homeomorphic to the disjoint sum of the singleton
and a countable number of copies of a separable Hilbert space 2.

Thus, (1) \ {{c)} = é(l2)i ® {{c)}.

4. By a compactification of a completely regular topological space X we mean any
pair (Y,r) such that Y is a compact space and r: X — Y is an embedding such that
r(X) is dense subset in Y. The one-point compactification of X is defined to be a space
Y = X U{oo}, where oo is an arbitrary point which does not belong to X.

We will prove that space ¥(I) is not a one-point compactification of ¥(I) \ {{c)}.

Example 1. Let us consider a sequence {(f,) | n € N} of elements of space ¥(I) such
that:

1) {fn) € K,, for all n € N;
2) the limit of the sequence is a constant map, lim (f,) = (c¢).

Let 0=ty < t1 <ty < <lp1 <ty=1 wheret; =L andi=0,1,2,...n
Define f,,: I — I by the conditions:

].) fn(t2i) = 0, for i = O, . [%],

2) fa(toiq1) =1,fori=0,...([2] + ((-1)"" = 1)3);

3) fu: [ti—1;t;] — I is a linear map, for all i = 1,2,...n — 1.

Let us estimate the distance

dirr ((fn), (€)) = dan({f ' (fa(@)) | w € T}, {c (c(2)) | @ € T}).

According to condition (3), on each segment [t;_1;¢;], where i = 1,2,...n—1, there exists
a point from {f, (f.(z))}, where 0 < z < 1. Thus,

dr (£ (fa(@)), ¢ (e(2))) = du (£ (fa(@)), 1) <

From this it follows:

i (o), ) = i (U (Ful)) |2 € T} ATY) <
We conclude that lli}r{)10<fn> = {c).

S =

Example 2. Let us consider a sequence {(f,) | n € N} of elements of the space ¥(I)
such that:

1) (fn) € K, for each n € N;

2) (fn) does not converge to the constant map 11ir£10<fn) £ {c).

Let02t0<t1:%<t2<t3<t4<"-<tn_1 <tn=1,whereti=%+%and
1=0,1,2,...n+ 1. Define f,: I — I by the conditions:

1) fu(z) =2z, for z € [0, 1];

2) fn(tQZ) = 1, for i = O, NN [%],

. n _1\n+1__

3) fultzisn) =0, for i = 0,... ([4] + =50,

4) fn: [ti—1;t;] = I is a linear map, for all ¢ = 0,1,2,...n + 1.

Let us estimate the distance

dirr ((fa), ) = dan({f7 ' (fa(@)) [ @ € I} {7 (c(2)) | 2 € I}).
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According to condition (4), on each segment [t;_1;t;], where i = 1,2,...n—1, there exists
a point from {f, ' (fn(z))}, where 3 <z < 1. Therefore,

A (£ (@)™ @) = dar (7 @) D) < -
However, for z € [0, 3], we obtain f,;'(fn(z)) = f,*(22) = {z} and then
(5 ale))s e €)= (7 G, ) = max, o = 33 > 1.

Thus,

dir((fa), () = dan({f7 ' (fu(@)) |2 € I} {c H(c(@) |z € 1}) > i’

which means that the sequence is not convergent.
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