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In the paper we consider an isomorphic classification of the free (abelian)
paratopological groups and free homogeneous spaces. We give methods for construc-
ting examples of nonhomeomorphic spaces with topologically isomorphic free (abe-
lian) paratopological groups and free homogeneous spaces. We propose methods for
constructing examples of Mp-equivalent mappings.
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1. Preliminaries. Under a paratopological group we understand a pair (G, 7) consi-
sting of a group G and a topology 7 on G making the group operation -: G x G — G
on G continuous. If, in addition, the operation (-)~! : G — G of taking the inverse is
continuous with respect to the topology 7, then (G, ) is a topological group.

In the paper the word “space” means “topological space”.

Definition 1. Let X be a subspace of a paratopological group G with the identity e such
that e € X. Suppose that

1. The set X generates G algebraically, that is (X) = G,

2. Every continuous mapping f: X — H from X to an arbitrary paratopological group
H satisfying f(e) = ey, where ey is the unit of the group H, extends to a continuous
homomorphism f*: G — H.

Then G is called the Graev free paratopological group on (X,e) and is denoted by
FGp(X,e).

If we replace the word “group” by the words “abelian group” in the above definition
we obtain the definition of Graev free abelian paratopological group on (X, e), which we
denote by AG,(X,e).

Definition 2. Let X be a subspace of a paratopological group G. Suppose that
1. The set X generates G algebraically, that is (X) = G,
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2. Every continuous mapping f: X — H of X to an arbitrary paratopological group
H extends to a continuous homomorphism f*: G — H.
Then G is called Markov free paratopological group on X and is denoted by F,(X).

If we replace the word “group” by the words “abelian group” in the above definition we
obtain the definition of Markov free abelian paratopological group on X which we denote
by Ap(X).

Proposition 1 ([14]). Let X be a space.

1. Let e be an arbitrary point of the space X. Then free paratopological groups
FP(X,e) and AP(X,e) exist.

2. Let ey and ey be arbitrary points of the space X. Then the free paratopological
groups FP(X,e1) and FP(X,e3) are topologically isomorphic. The free paratopological
groups AP(X,e1) and AP(X,es) are topologically isomorphic as well.

Let X be a space. Similarly to the case of free topological groups we can prove that
the group F,(X) is topologically isomorphic to the group FG,(X ) and the group 4,(X)
is topologically isomorphic to the group AG,(X ), where X is the space obtained from
X by adding one isolated point.

Proposition 2 ([12]). For each space X the following claims hold.

1. The free paratopological groups Fp(X) and Ap(X) exist.

2. Let G1, Gy be arbitrary Markov free paratopological groups on X. Then there exists
a topological isomorphism i: Gy — Go such that i(x) = x for each point x € X.

3. Let Gy, G2 be arbitrary Markov free abelian paratopological groups on X. Then
there exists a topological isomorphism i: G1 — Ga such that i(x) = x for each point
zeX.

In [3] V.K. Bel’'nov have defined the category of homogeneous spaces and their morphi-
sms.

Definition 3. A triple (Y, G, h) is a homogeneous space, if Y is a topological space and
G is a topological group which acts effectively and transitively on Y by the continuous
mapping h.

Definition 4. A morphism of two homogeneous spaces p: (Y1,G1,h1) — (Y2,Ga, ha)
is a pair p = (f,v), where f: Y1 — Ys is a continuous mapping, ¥: G1 — G is a
continuous homomorphism such that the diagram

G1><Ylhl—>Y1

et | |

G2 x Yo ——=1Y)
ha

1s commutative.

One may naturally define the composition of morphisms and the identity morphism.
A morphism p: (Y1,G1,h1) — (Ya,Ga, hs) is called an isomorphism, if there exists a
morphism p’: (Y2,Ga,ha) — (Y1,G1,h1) such that p op’ and p’ o p are the identity
morphisms.
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Definition 5. Let (Y,G,h) be a homogeneous space. We say that a subset Yy C Y
generates (Y,G,h), if any morphism p = (f,¢): (Y,G,h) — (Y,G,h) is the identity
morphism provided f(Yo) =Yy and fly, is the identity mapping.

Definition 6. A homogeneous space (Y, G, h) is called a free homogeneous space on the
space X, if the following holds:

1) X is a subspace of Y;

2) X generates (Y,G,h);

3) for any homogeneous space (Y1,G1,h1) and any continuous mapping fo: X — Y3
there ewists a continuous morphism p = (f,¢): (Y,G,h) — (Y1,G1, h1) such that
flx = fo.

In [3] it was proved that for every topological space X the free homogeneous space
on X exists and is unique up to the natural isomorphism.

In [8] Megrelishvili constructed examples of the nonhomeomorphic spaces with
isomorphic free homogeneous spaces. We will denote by H(X) the free homogeneous
space of a topological space X.

Definition 7. Topological spaces X and Y are called B-equivalent (X 2 Y) if free
homogeneous spaces H(X) and H(Y') are isomorphic.

M,
Definition 8. Topological spaces X and Y are called My-equivalent (X '~ Y) if the
Markov free paratopological groups F,(X) and F,(Y') are topologically isomorphic.

Definition 9. Let X1, X5, Y7, Y5 be topological spaces. A mapping f: X1 — Y is
called My,-equivalent to a mapping g: Xo — Ya if there exist topological isomorphisms
it Fp(X1) — Fp(X2) and j: F,(Y1) — Fp(Y2) such that jof* = g*oi where f*: Fp(X1) —
— F,(Y1) and g*: F,(X2) — Fp(Y2) are homomorphisms extending the mappings f and
g respectively.

If we replace the words “free paratopological group” by the words “free abelian
paratopological group” in Definitions 1.10 and 1.11 we obtain the definitions of A,-
equivalent spaces and A,-equivalent mappings.

Similarly to the case of free topological groups, the M,-equivalence of two spaces
implies the Ap-equivalence (see [12, Proposition 2.8]).

The problem of isomorphic classification of free topological groups has been studied
by many authors. Important results in this direction were obtained by Baars [2], Okunev
[9], [10] and Tkachuk [15]. In [12] Pyrch and Ravsky have considered the basic properties
of free paratopological groups related mostly to the separation properties. In this paper
the author continues the investigation of free paratopological groups, focusing on their
isomorphic classification.

The second section contains the methods for constructing the examples of nonhomeo-
morphic spaces with topologically isomorphic free paratopological (abelian) groups and
free homogeneous spaces.

The third section contains the method for constructing the examples of M-equivalent
mappings.

Some results of the paper were announced in [1] and [11].

2. On the method for constructing examples of M,-equivalent and B-
equivalent spaces. Let X be space. Denote by G(X) the subgroup of the abstract group
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F(X) (here F(X) is an abstract free group with the set of generators X) generated by
the set {zy~! € F(X)|z,y € X} and H(X) = {gz € F(X)|g € G(X), x € X }. Taking on
G(X) the discrete topology, we can consider the natural mapping P: G(X)x X — H(X)
defined by P(g,x) = gz. The set H(X) equipped with quotient topology generated by
the mapping P is denoted by Hp(X). The group G(X) acts on Hg(X) by the continuous
mapping h, where h(g, ) = gx. The triple (Hp(X), G(X), h) is a free homogeneous space
on X (see [3]). Sometimes we shall write shortly that the set H(X) is a free homogeneous
space on X. Consider on F(X) the topology of the free paratopological group F,(X).
Since H(X) C F(X), the set H(X) equipped with the subspace topology of F,(X) is
denoted by Hp(X).

Retractions 1 and 72 of a topological space X are called parallel provided ryory = ry
and ro ory = 19. By X @Y we denote the disjoint sum of topological spaces X and Y.

Let X, Y be spaces, f: X — Y be a continuous mapping. Then we can consruct a
morphism of homogeneous spaces f: H(X) — H(Y) by the following way. The morphism

f is a pair (f*, ), where

fr(wimywgy wongr) = f@1) f(wa) 7 e f(w2n) 71 f (@2041) and
w(xlxz_l...xg_nl) = f(x1)f(x2) L. f(wa,) 7L, for all 1,22, ..., T2n11 € X.

Proposition 3. Let r;: X — K;, i = 1,2, be parallel retractions of a topological space
X onto its discrete subspaces Ky and Ky and p;: X — X/K; be the quotient mappings.
Then the quotient spaces X /Ky and X /Ky are B-equivalent.

Proof. Let K1 = @ {as}, then Ky = & {bs}, where b, = r2(as). Put X, = rfl(as) =
seS seS
= 75 (bs). Then X = @SXS. Consider the mappings fi, fo: X — H(X) defined by
ES

fi(x) = bsay'z and fo(x) = asby 'z if © € X,. Obviously, these mappings are conti-
nuous on each Xy, thus they are continuous on X. Let f,: H(X) — H(X) be the
morphisms constructed from the mappings f; as described before the proposition. It was
proved in [10] that (f, 1) is inverse to (f3,2), hence (ff, 1) is an isomorphism. Let
pi: H(X) — H(X/K;) be the morphisms constructed from the mappings p; as descri-
bed before the proposition. Similarly to [10] one can easily check that there exists an

isomorphism j: H(X/K;) — H(X/K>) such that jop} = p5 o f7. Thus X/ K, R X/ Ko.

Lemma 1. Let X be a topological space. Then the natural mapping h: Hg(X) — Hp(X)
1S CONLINUOUS.

Proof. Consider the mapping Pi: G(X) x X — H,(X), defined as Pi(g,a) = ga and the
quotient mapping P: G(X) x X — Hp(X) defined as P(g,a) = ga (see |8]). Since for
each g € G(X) the restriction Pj|gxx: g X X — H,(X) is continuous and G(X) x X =

= @ g x X. Then we see that the mapping P; is continuous on G(X) x X. The
geG(X)

continuity of the mapping h follows from the fact that the mapping P; = h o P and the
quotience of the mapping P.

Theorem 1. Let X, Y be topological spaces with isomorphic free homogeneous spaces.
Then Markov free paratopological groups of the spaces X and Y are topologically
isomorphic.
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Proof. Let (i,v): (Hp(X),G(X),h1) — (Hp(Y),G(Y),h2) be an isomorphism of
homogeneous spaces. Denote by px: Hg(X) — Hp(X) and py: Hg(Y) — H,(Y) the
natural mappings. Consider the mapping g: X — H,(Y") defined by g = py oi|x. Let us
extend the mapping g to a continuous homomorphism ¢*: F,,(X) — F,(Y). Since G(X)
acts transitively on H(X), we obtain py o4 = g* o px. Similarly, consider the mapping
f =pxoi!y. Let us extend f to a continuous homomorphism f*: F,(Y) — F,(X)
satisfying the property px o i~! = f* o py. From the last two equalities it follows that
pxoi toi|lx = f*ogopx, therefore f*og(x) = x for all z € X. Thus f*og* = 1p, (x).
Similarly, we can check that g* o f* = 1p (v), therefore g* is a topological isomorphism.

In [6] free (abelian) topological groups on functionally Hausdorff spaces were consi-
dered.

Definition 10. [6] Markov free topological group on a space X is a pair consisting of
a topological group Fyr(X) and a continuous function nx: X — Fp(X) such that any
continuous function from X to a topological group G “lifts” to a unique continuous group
homomorphism f: Far(X) — G such that fonx = f.

In the classic definitions of the free objects the mapping nx is an embedding, in the
above definition nx need not to be an embedding.

If X is a Tychonoff space then the mapping nx is a closed embedding and Fj;(X) is
free topological group of X in the sense of [7].

If we change the word “group” to the words “abelian group” in the above definition
we obtain the definition of Markov free abelian topological group on X which we denote
by AI\,{ (X)

The next propositions follows from [12, proposition 2.2].

Proposition 4. Let X and Y be functionally Hausdorff spaces with topologically isomor-
phic free paratopological groups. Then the groups Fa(X) and Fa(Y) on spaces X and
Y are topologically isomorphic.

Proposition 5. Let X and Y be functionally Hausdorff spaces with topologically isomor-
phic free abelian paratopological groups. Then the groups Ay (X) and Ay (Y') on spaces
X and Y are topologically isomorphic.

The following proposition provides a method for constructing examples of nonhomeo-
morphic spaces with topologically isomorphic free (abelian) paratopological groups.

Proposition 6. Let Xy, Y be topological spaces and pr: Xy — Yi, k = 1,2, be quotient
mappings and py.: Fp(Xy) — Fp(Yy) be the homomorphic extensions of the mappings p.
If there exists a topological isomorphism i: F,,(X1) — F,(X2) such that i(ker p}) = ker p}
then the mappings p1 and pa are M, -equivalent.

Proof. Suppose that such the mapping 7 exists. Let us define a mapping j: F,(Y1) —
— F,(Y2) by putting j(a) = p5 o i(p})~'(a) for each a € F,(Y1). One can easy check
that j is well defined and is a topological isomorphism such that j o p} = p} oi. By [12,
Proposition 2.10], the homomorphism pj is open. The composition pj o i is continuous,
thus the mapping j is continuous. The continuity of j~! can be checked similarly.
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Proposition 7. Let r;: X — K; 1= 1,2, be parallel retractions of the topological space
X onto its subspaces K1 and Ky such that F,(K1) and F,(K2) are topological groups and

M. M,
pi: X — X/K; be quotient mappings. Then py ~ pa. In particular, X/K, ~ X/Ks.

Proof. Since F,(K;) are topological groups, then the mappings r1(z)™': X — F,(K1),
ro(x)™': X — F,(K>) are continuous. Since K; are retracts of X, the embeddings
K; — X extend to embeddings t;: F,(K;) — F,(X) [12], so the mappings

th orl(x)71: X = Fy(X), t org(x)71: X — Fy(X)

are continuous. Let us define the mapping j: X — F,(X) by putting

j(@) = ri(z)"tzre(z)~!. The mappings * — r;(z)~! are continuous because F,(K;)
are topological groups, thus the mapping j is continuous. Denote by J: F,(X) — F,(X)
the homomorphic extension of the mapping j. It was proved in [10] that JoJ = 1x (x).
Denote by p;: X — X/K; the quotient mappings and by p;: F,(X) — F,(X/K;) their
homomorphic extensions. It was proved in [10] that J(K;) = K, therefore J(ker pj) =
= ker p5. And now the proof follows from Proposition 6.

Let us characterize the spaces for which their free (abelian) paratopological group is
a topological group.

Proposition 8. The following conditions are equivalent for a topological space X :
i) the paratopological group F,(X) is the disjoint sum & Zs of its antidiscrete
seS

subspaces Zs,
i’) the paratopological group Ap(X) is the disjoint sum & As of its antidiscrete
ses

subspaces As,
i) the paratopological group F,(X) is a topological group,
ii’) the paratopological group A,(X) is a topological group,
iii) the topological space X is the disjoint sum @SXS of its antidiscrete subspaces Xs.
sE

Proof. The implications (i = ii) and (¢’ = 4i’) follows from the fact that each locally
compact paratopological group is a topological group (see [13]).

(15 = i4i),(it" = 4ii) Let U be an open subset of the space X. If the assumption
(i) holds then [12, theorem 2.4] implies that U is a closed subset of X . If the assumption
(#4') holds then similarly to |12, theorem 2.4] we can prove that U is a closed subset
of X . Therefore, each open subset of X is clopen. Define the relation “~” on X by the
following. Let z,y € X. We put = ~ y if and only if there is no open subset of the
space X containing exactly one of the points z and y. Let T, X be the quotient space
of X determined by the relation “~” and ¢q: X — Ty X be the quotient mapping. Let U
be a closed subspace of ToX. Then ¢~ !(U) is closed and hence open subset in X. By
the quotience of ¢ we see that the set U is open in TpX. Let a,b € Ty X be an arbitrary
distinct points. Then there exists an open subset V' of Ty X containing exactly one of these
points. The set X \ V is also open and contains the other point. Thus the topological
space TpX is a T3 space. So every point is closed, and hence is open in Ty X, that is the
topological space Ty X is discrete. Hence X is a disjoint sum of its antidiscrete subspaces.

(191 = 1),(i7i = i’) Consider the quotient mapping ¢: X — Y, where the image of
each X is a singleton. The topological space Y is discrete, therefore ker ¢* is a clopen
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antidiscrete subgroup of the paratopological group F,(X), that is F,(X) is the disjoint

sum @ Z, of its antidiscrete subspaces Z.
ses

Example 1. [5] Let X = C'xN, where C'is a convergent sequence with the limit point ¢y,
N is a countable discrete space, a € C'\ {co}. Then the sets K1 = {co} xN, K3 = {a} xN
are discrete parallel retracts of the topological space X. The quotient space X/K; is
homeomorphic to the Fréchet fan, and the quotient space X /K is homeomorphic to X.
Thus, local compactness, metrizability, the first and second axioms of countability, Cech
completeness are not preserved by the relation of Mp-equivalence. The quotient mappi-
ng p1: X — X/K; is not open, and has no right inverse, while the quotient mapping
p2: X — X/Ks is open and has a right inverse.

Let X, Y be topological spaces. A mapping f: X — Y is called a local homeomorphism
if for each # € X there exists an open neighborhood U (z) such that the restriction f|y ()
is a homeomorphism from U(x) onto an open subspace of Y.

Example 2. Let C; = {z;,y:}, % = {{0}, {2}, {zs,y:}} for i = 1,2. Denote by X the
disjoint sum of the topological spaces (C1,71) and (Ca,72). The subsets K1 = {x1, 22}
and Ko = {y1,y2} are discrete parallel retracts of X, so the quotient mappings p;: X —
— X/K; and po: X — X /Ky are Mp-equivalent. The mapping p; is open not closed, local
homeomorphism. The mapping ps is closed not open and it is not a local homeomorphism.

A topological space X is called resolvable (respectively w-resolvable) if X can be
partitioned into two (respectively countably many) dense subsets.

Example 3. Let X = [0,1] U [2,3] U {4} be a subspace of the reals with the natural
topology. Then the subspaces K1 = {1,4} and Ko = {1,2} are discrete parallel retracts
of X. Then X/K, =1® 1, X/Ky =I@® {z}, where I is the closed unit interval. Thus

M

I® I ~ I®{x}. The space I & I is w-resolvable, while I @ {z} is not resolvable. Hence
resolvability and w-resolvability are not preserved by the relation of My-equivalence.

3. On the method for constructing examples of M,-equivalent mappings.
Proposition 9. Let X be a Tychonoff space and r;: X — K, i = 1,2, its retractions

M

onto the same retract K such that F,(K) is a topological group. Then ~ .
Proof. Obviously r1 org = ry and ro 01y =11,

Consider the mappings h(z), g(x): X — F,(X) defined by the formulas
h(z) = zri(x) " tra(x), g(x) = are(z) " Lri(z).

Since F,(K) is topological group, the mappings r1(z)™': X — F,(K), ro(z)"': X —
— F,(K) are continuous. Since K is a retract of X, the embedding K — X extends
to an embedding t: Fj,(K) — F,(X) [12], so the mappings t o 1 (z)™': X — F,(X),
torg(z)~1: X — F,(X) are continuous. Thus the mappings h and g are also continuous.

Let h*,¢g*: F,(X) — F,(X) be a homomorphic extensions of the mappings h and g. If
z € X then

h* o g(x) = [xre (x)717’1 ()] x ri[zrs (x)717’1 (x)]fl X To[xry (x)717’1

= xro(x) !t xri(x) x ri(ri(2)) 7t x ri(ra(z) x r(z) 7 X ro

xra(ra(z)) 7 X ro(r1(x)) = =
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So, h* o g* = 1F,(x). Similarly one can check that g* o h* = 1p (x). Hence, h* is a

topological isomorphism. Moreover,

ra(g(x)) = ra(x) X r2(r2(2)) "t X 12(11(2)) = T2 () X T2(2)

ri(h(x)) = ri(z) x ri(r1(x)) " x ri(re(z) = r1(2) x ri(z) ! X ro(z) =
From these facts we conclude that r; M ra.

Let X and Y be spaces. A map f: X — Y is called monotone (respectively easy,
zero-dimensional) if any f~!(y) is connected (respectively hereditary disconnected, zero-
dimensional) for each point y € Y [4, p. 526, 538].

Example 4. Let X be the space of reals. Consider on X the following topology: the set
(—00,0] is equipped with the standart topology and [0, 4+00) is an antidiscrete subset of
X. Then the mappings f, g defined as f(z) = |z| and g(z) = 2T = (z+ f(z))/2 forz € R

M
are retractions from R onto R* = [0,00). So, by Proposition 9 we obtain that f ~ g.
The mapping f is not monotone, easy, zero-dimensional, the mapping g is monotone, not
easy, not zero-dimensional.
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