УДК 517.53+519.213

REMARK TO LOWER ESTIMATES FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

Marta PLATSYDEM

Ivan Franko National University of Lviv, Universytetska Str., 1, Lviv, 79000 e-mail: marta.platsydem@gmail.com

Let α be a slowly increasing function and φ be the characteristic function of probability law F that is analytic in $\mathbb{D}_R = \{z : |z| < R\}, 0 < R \leqslant +\infty, M(r,\varphi) = \max\{|\varphi(z)| : |z| = r\} \text{ and } W_F(x) = 1 - F(x) + F(-x), x \geqslant 0.$ Conditions on W_F and α , under which $\alpha(\ln M(r,\varphi)) \geqslant (1+o(1))\varrho\alpha(1/(R-r))$ as $r \uparrow R$, are investigated.

Key words: analytic function, characteristic function, probability law.

A non-decreasing, left-continuous function F defined on $(-\infty, +\infty)$ is said [1, p. 10] to be a probability law if $\lim_{x \to +\infty} F(x) = 1$ and $\lim_{x \to -\infty} F(x) = 0$. Given real z, the function

$$\varphi(z) = \int_{-\infty}^{+\infty} e^{izx} dF(x)$$
 is called [1, p. 12] the characteristic function of this law. If φ has

an analytic continuation on the disk $\mathbb{D}_R = \{z: |z| < R\}$, $0 < R \leqslant +\infty$, then we call φ an analytic in \mathbb{D}_R characteristic function of the law F. In the sequel, we always assume that \mathbb{D}_R is the maximal disk of analyticity of φ . It is known [1, p. 37-38], that φ is an analytic in \mathbb{D}_R characteristic function of the law F if and only if $W_F(x) = 1 - F(x) + F(-x) = O(e^{-rx})$ as $x \to +\infty$ for every $r \in [0, R)$. Hence it follows that $\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{W_F(x)} = R$.

If we put $M(r,\varphi) = \max\{|\varphi(z)| : |z| = r\}$ and $\mu(r,\varphi) = \sup\{W_F(x)e^{rx} : x \ge 0\}$ for $0 \le r < R$, then [1, p. 54-55] $\mu(r,\varphi) \le 2M(r,\varphi)$. Therefore, the lower estimates for $\ln \mu(r,\varphi)$ imply the corresponding estimates for $\ln M(r,\varphi)$. Further, we assume that $\ln \mu(r,\varphi) \uparrow +\infty$ as $r \uparrow R$. Hence

$$\overline{\lim}_{x \to +\infty} W_F(x)e^{Rx} = +\infty. \tag{1}$$

By L_{si} we denote the class of positive, continuous functions α , defined on $(-\infty, +\infty)$, such that $\alpha(x) = \alpha(x_0)$ for $x \leq x_0$, $\alpha(x) \uparrow +\infty$ and $\alpha(cx) = (1 + o(1))\alpha(x)$ as $x_0 \leq x \uparrow +\infty$ for every $c \in (0, +\infty)$. In [2] the following statements are proved.

Proposition 1. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\frac{d \ln \beta^{-1}(\alpha(x))}{d \ln x} \leqslant q < 1$ for all x large enough and $\alpha \left(\frac{x}{\beta^{-1}(\alpha(x))}\right) = (1 + o(1))\alpha(x)$ as $x \to +\infty$, and φ be an analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of probability law F, for which $\beta \left(\frac{x_k}{\ln(W_F(x_k)e^{Rx_k})}\right) \leqslant \alpha(x_k)$ for some sequence of positive numbers (x_k) increasing to $+\infty$ such that $\beta^{-1}(\alpha(x_{k+1})) = O(\beta^{-1}(\alpha(x_k)))$ as $k \to \infty$. Then

$$\alpha(\ln \mu(r,\varphi)) \geqslant (1 + o(1))\beta(1/(R - r)), \quad r \uparrow R. \tag{2}$$

Proposition 2. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\frac{d \ln \alpha^{-1}(\beta(x))}{d \ln x} \leq q < 1$ for all x large enough $\frac{d\alpha^{-1}(\beta(x))}{dx} = \frac{1}{f(x)} \downarrow 0$ and $\alpha^{-1}(\beta(f(x))) = O(\alpha^{-1}(\beta(x)))$ as $x \to +\infty$, and φ be an analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of probability law F, for which $\alpha\left(\ln\left(W_F(x_k)e^{Rx_k}\right)\right) \geq \beta(x_k)$ for some sequence of positive numbers (x_k) , increasing to $+\infty$, such that $\lim_{k\to\infty} (f(x_{k+1})/f(x_k)) < 2$. Then asymptotic inequality (2) holds.

The condition on α and β in Proposition 1 assume that the function α increases slower than the function β . In Proposition 2, α increases quicker than β .

Here we consider the case when $\beta(x) = \varrho \alpha(x)$ for all $x \ge x_0$, where $0 < \varrho < +\infty$, that is the functions β and α have the same growth. We use a result from [2].

Let $\Omega(R)$ be a class of positive, unbounded functions Φ , defined on (0,R), such that the derivative Φ' is positive continuously differentiable and increasing to $+\infty$ on (0,R). For $\Phi \in \Omega(R)$ we denote by ϕ the function inverse to Φ' , and let $\Psi(r) = r - \frac{\Phi(r)}{\Phi'(r)}$ be the function associated with Φ in the sense of Newton.

Lemma 1. Let $\Phi \in \Omega(R)$, $0 < R < +\infty$, and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F for which (1) holds and

$$\ln W_F(x_k) \geqslant -x_k \Psi(\phi(x_k)) \tag{3}$$

for some sequence of positive numbers (x_k) increasing to $+\infty$ such that $\phi(x_{k+1}) - \phi(x_k) \le h(x_{k+1})$, where h is a positive continuous and non-increasing function on $[x_0, +\infty)$ and $R > \phi(x) - h(x) \to R$ as $x \to +\infty$. Then

$$\ln \mu(r, f)) \geqslant \Phi(r - h(\Phi'(r))), \quad r_0 \leqslant r < R. \tag{4}$$

Using this lemma we prove the following theorem.

Theorem 1. Let $\alpha \in L_{si}$ be a continuously differentiable function and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F. Suppose that one of the following conditions is fulfilled:

1)
$$\varrho > 1$$
, $\lim_{x \to +\infty} \frac{d \ln \alpha^{-1}(x)}{d \ln \alpha^{-1}(\varrho x)} = q(\varrho) < 1$, $\alpha\left(\frac{x}{\alpha(x)}\right) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ and

$$\alpha \left(\frac{x_k}{\ln \left(W_F(x_k) e^{Rx_k} \right)} \right) \leqslant \frac{\alpha(x_k)}{\varrho} \tag{5}$$

for some sequence of positive numbers (x_k) increasing to $+\infty$ such that $\alpha^{-1}(\alpha(x_{k+1})/\varrho) = O(\alpha^{-1}(\alpha(x_k)/\varrho))$ as $k \to \infty$;

2)
$$0 < \varrho < 1$$
, $\overline{\lim}_{x \to +\infty} \frac{d \ln \alpha^{-1}(\varrho x)}{d \ln \alpha^{-1}(x)} = q(\varrho) < 1$, $\frac{d \alpha^{-1}(\varrho \alpha(x))}{dx} = \frac{1}{f(x)} \downarrow 0$, $\alpha^{-1}(\varrho \alpha(f(x))) = \frac{1}{f(x)} \downarrow 0$

$$= O(\alpha^{-1}(\varrho\alpha(x)))$$
 as $x \to +\infty$ and

$$\alpha \left(\ln \left(W_F(x_k) e^{Rx_k} \right) \right) \geqslant \rho \alpha(x_k) \tag{6}$$

for some sequence of positive numbers (x_k) increasing to $+\infty$ such that $\overline{\lim}_{k\to\infty} \frac{f(x_{k+1})}{f(x_k)} < 2$.

$$\alpha(\ln \mu(r,\varphi)) \geqslant (1+o(1))\rho\alpha\left(\frac{1}{R-r}\right), \quad r \uparrow R.$$
 (7)

Proof. At first let $\varrho > 1$. Then (5) implies the inequality $\ln W_F(x_k) \geqslant -Rx_k + \frac{x_k}{\alpha^{-1}(\alpha(x_k)/\varrho)}$. Since $\lim_{x \to +\infty} \frac{d \ln \alpha^{-1}(x)}{d \ln \alpha^{-1}(\varrho x)} = q(\varrho) < 1$, we have $\frac{d \ln \alpha^{-1}(\alpha(x)/\varrho)}{d \ln x} \leqslant (1+o(1))q(\varrho)$ and $\frac{x}{\alpha^{-1}(\alpha(x)/\varrho)} \uparrow +\infty$ as $x_0 \leqslant x \to +\infty$. Therefore, using l'Hospital's rule we obtain

$$\frac{x}{\alpha^{-1}(\alpha(x)/\varrho)} \geqslant (1+o(1))(1-q(\varrho))\int_{x_0}^x \frac{dt}{\alpha^{-1}(\alpha(t)/\varrho)}, \quad x \to +\infty,$$

and, thus,

$$\ln W_F(x_k) \geqslant -Rx_k + (1 - q_1) \int_{x_0}^{x_k} \frac{dt}{\alpha^{-1}(\alpha(t)/\varrho)}$$
(8)

for every $q_1 \in (q(\varrho), 1)$ and all k large enough. We put

$$\Phi(r) = \int_{r_0}^{r} \alpha^{-1} \left(\varrho \alpha \left(\frac{1 - q_2}{R - x} \right) \right) dx, \quad q_1 < q_2 < 1.$$
 (9)

Then
$$\Phi'(r) = \alpha^{-1} \left(\varrho \alpha \left(\frac{1 - q_2}{R - x} \right) \right)$$
, $\phi(x) = R - \frac{1 - q_2}{\alpha^{-1} (\alpha(x)/\varrho)}$ and

$$x\Psi(\phi(x)) = \int_{x_0}^x \phi(t)dt + \text{const} = Rx - (1 - q_2) \int_{x_0}^x \frac{dt}{\alpha^{-1}(\alpha(t)/\varrho)} + \text{const},$$

i. e. in view of (8) and of the inequality $q_1 < q_2$ we obtain (3).

Since $\alpha^{-1}(\alpha(x_{k+1})/\varrho) \leqslant K\alpha^{-1}(\alpha(x_k)/\varrho)$, K > 1, for all $k \geqslant k_0$, we have

$$\frac{1}{\alpha^{-1}(\alpha(x_k)/\varrho)} - \frac{1}{\alpha^{-1}(\alpha(x_{k+1})/\varrho)} \leqslant \frac{K - 1}{\alpha^{-1}(\alpha(x_{k+1})/\varrho)}.$$

Therefore, putting $h(x) = \frac{(K-1)(1-q_2)}{\alpha^{-1}(\alpha(x)/\varrho)}$, we obtain $\phi(x) - h(x) = R - \frac{K(1-q_2)}{\alpha^{-1}(\alpha(x)/\varrho)} \to R$ as $x \to +\infty$, $h(\Phi'(r)) = (K-1)(R-r)$ and $\phi(x_{k+1}) - \phi(x_k) \leqslant h(x_{k+1})$ for $k \geqslant k_0$. Finally, for every $\eta > 0$ and all $r \in [r_0(\eta), R)$ from (9) it follows that

$$\Phi(r) = \int_{r-\eta(R-r)}^{r} \alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{R-x} \right) \right) dx \geqslant \eta(R-r)\alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{(1+\eta)(R-r)} \right) \right).$$

Therefore, by Lemma 1

$$\ln \mu(r,\varphi) \geqslant \eta(R - r + h(\Phi'(r)))\alpha^{-1} \left(\varrho\alpha \left(\frac{1 - q_2}{(1 + \eta)(R - r + h(\Phi'(r)))}\right)\right) =$$

$$= \eta K(R - r)\alpha^{-1} \left(\varrho\alpha \left(\frac{1 - q_2}{(1 + \eta)K(R - r)}\right)\right),$$

whence in view of the condition $\alpha(x/\alpha(x)) = (1+o(1))\alpha(x)$ as $x \to +\infty$ we have

$$\alpha(\ln \mu(r,\varphi)) \geqslant \alpha \left(\eta K(R-r)\alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{(1+\eta)K(R-r)} \right) \right) \right) =$$

$$= (1+o(1))\alpha \left(\frac{\alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{(1+\eta)K(R-r)} \right) \right)}{\frac{1-q_2}{(1+\eta)K(R-r)}} \right) =$$

$$= (1+o(1))\varrho \alpha \left(\frac{1-q_2}{(1+\eta)K(R-r)} \right) = (1+o(1))\varrho \alpha \left(\frac{1}{R-r} \right), \ r \uparrow R,$$

thus we obtain (7).

Now let $0 < \varrho < 1$. If we put $x\Psi(\phi(x)) = Rx - \alpha^{-1}(\varrho\alpha(x))$ then (6) implies (3), $\phi(x) = (x\Psi(\phi(x)))' = R - 1/f(x)$, $\Phi'(r) = f^{-1}(1/(R-r))$ and since $\frac{d \ln \alpha^{-1}(\varrho\alpha(x))}{d \ln x} \le q(\varrho)(1+\varrho(1))$ as $x \to +\infty$ we have

$$\Phi(r) = \int_{r_0}^r f^{-1} \left(\frac{1}{R - x} \right) dx = \int_{f^{-1}(1/(R - r_0))}^{f^{-1}(1/(R - r_0))} t d\left(\frac{-1}{f(t)} \right) =$$

$$= -(R - r)f^{-1}(1/(R - r)) + \alpha^{-1}(\varrho\alpha(f^{-1}(1/(R - r)))) + \text{const} =$$

$$= \alpha^{-1}(\varrho\alpha(f^{-1}(1/(R - r)))) \left\{ 1 - \frac{(R - r)f^{-1}(1/(R - r))}{\alpha^{-1}(\varrho\alpha(f^{-1}(1/(R - r))))} \right\} + \text{const} \geqslant$$

$$\geqslant (1 - q)\alpha^{-1}(\varrho\alpha(f^{-1}(1/(R - r))))$$

for every $q \in (q(\varrho), 1)$ and all $r \in [r_0(q), R)$. But the condition $\alpha^{-1}(\varrho\alpha(f(x))) = O(\alpha^{-1}(\varrho\alpha(x)))$ as $x \to +\infty$ implies that $\alpha^{-1}(\varrho\alpha(1/(R-r))) \leqslant K\alpha^{-1}(\varrho\alpha(f^{-1}(1/(R-r))))$, K = const > 0. Therefore, $\Phi(r) \geqslant K_1\alpha^{-1}(\varrho\alpha(1/(R-r)))$, $K_1 = \text{const} > 0$, and if we put $h(x) = a(R - \phi(x))$, 0 < a < 1, then

$$\Phi(r - h(\Phi'(r)) \geqslant K_1 \alpha^{-1} \left(\varrho \alpha \left(\frac{1}{(1+a)(R-r)} \right) \right). \tag{10}$$

It is clear that, in view of the relation $\phi(x) = R - 1/f(x)$, the condition $\phi(x_{k+1}) - \phi(x_k) \le h(x_{k+1})$ is equivalent to the condition $f(x_{k+1}) \le (1+a)f(x_k)$ and the last one follows from the condition $\lim_{k\to\infty} \frac{f(x_{k+1})}{f(x_k)} < 2$. Therefore, by Lemma 1 we see that (4) and (10) implies (7). The proof of Theorem 1 is complete.

Since $\ln M(r,\varphi) \ge \ln \mu(r,\varphi) - \ln 2$, choosing $\alpha(x) = \ln x$ from Theorem 1 we obtain the following assertion.

Corollary 1. Let φ be an analytic in \mathbb{D}_R characteristic function of a probability law F.

Suppose that one of the following conditions is fulfilled: 1) $\varrho > 1$ and $\ln \left(W_F(x_k) e^{Rx_k} \right) \geqslant x_k^{(\varrho-1)/\varrho}$ for some sequence of positive numbers (x_k) increasing to $+\infty$ such that $x_{k+1} = O(x_k)$ as $k \to \infty$; 2) $0 < \varrho < 1$ and $\ln(W_F(x_k)e^{Rx_k}) \ge x^\varrho$ for some sequence of positive numbers (x_k)

increasing to $+\infty$ such that $\overline{\lim_{k\to\infty}} \left(\frac{x_{k+1}}{x_k}\right)^{1-\varrho} < 2$. Then $\ln \ln M(r,\varphi) \geqslant (1+o(1))\varrho \ln(1/(R-r))$ as $r \uparrow R$.

References

- 1. Linnik Yu.V., Decomposition of random variables and vectors /Yu.V. Linnik, I.V. Ostrovskii // Moskow.: Nauka. — 1972. — 479p. (in Russian)
- Parolya M.I., Sheremeta M.M. Estimates from below for characteristic functions of probability laws / M.I. Parolya, M.M. Sheremeta // Matem. studii. — 2013. — Vol.39, No 1. — P. 54 - 66

Стаття: надійшла до редколегії 12.12.2014. доопрацьована 02.11.2015. прийнята до друку 11.11.2015.

ЗАУВАЖЕННЯ ЩОДО ОЦІНОК ЗНИЗУ ДЛЯ ХАРАКТЕРИСТИЧНИХ ФУНКЦІЙ ЙМОВІРНІСНИХ ЗАКОНІВ

Марта ПЛАЦИДЕМ

Львівський національний університет імені Івана Франка, вул. Університетська, 1, Львів, 79000 $e ext{-}mail: marta.platsydem@gmail.com$

Нехай α — повільно зростаюча функція, а φ — аналітична в $\mathbb{D}_R = \{z :$ |z| < R}, $0 < R \leqslant +\infty$, характеристична функція ймовірнісного закону F, $M(r,\varphi) = \max\{|\varphi(z)| : |z| = r < R\}$ i $W_F(x) = 1 - F(x) + F(-x), x \ge$ 0. Досліджено умови на функції W_F і α , за яких правильна нерівність $\alpha(\ln M(r,\varphi)) \geqslant (1+o(1))\varrho\alpha(1/(R-r)), \ r \uparrow R.$

Ключові слова: аналітична функція, характеристична функція, ймовірнісний закон.