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Radical filters of semisimple modules with finite homogeneous components
are described.
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All rings are assumed to be associative with unit 1#0 and all modules are left
unitary.

Let R be a ring. The category of left R-modules will be denoted by R — Mod.
We shall write N < M if N is a submodule of M. The set of all R-endomorphisms of
M will be denoted by End(M). Let soc(M) denote the socle of M. Let N < M and
f € End(M). Put

(N : f)ar = {x € M|f(x) € N}, End(M)y = {f € End(M)|f(M) C N} .

Let E be some non-empty collection of submodules of a left R-module M.
Consider the following conditions:

LeE,L<N<M= NE€EE, (1)

LeE,fe EndM)= (L: f)m € E; (2)

N,.Le E=NNLEcE; (3)

N e E,NeGen(M),L<N<MAVge EndM)y:(L:g)y cE=LeE; (4)

Definition 1. A non-empty collection E of submodules of a left R-module M satisfying
(1), (2), (3) is called a preradical filter of M.

Definition 2. A non-empty collection E of submodules of a left R-module M satisfying
(1), (2), (4) is called a radical filter of M.

Definition 3. A preradical (radical) filter E of a left R-module M is said to be trivial
if either E={L|L < M} or E = {M}.
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Proposition 1. Let M be a semisimple R-module with a unique homogeneous component
and let M = ® M;, where M; is simple for each i € I. If Card(I) < oo, then every
icl

preradical filter of M is trivial.

Proof. Suppose that Card(I) < co. Let E be a preradical filter of M such that E # {M}.
We claim that £ = {L|L < M}. Indeed, consider the submodule L = (5 H of M.
Since L is a submodule of M, L is semisimple (see Proposition 9.4 [1, p. 117]. Suppose
that L # 0. Hence there exists a simple submodule T of L.

Let f: T — M be an arbitrary R-homomorphism. Since M is semisimple, there
exists a submodule H such that M = H & T. Consider the map g : M — M such that
Vt € TVh € H : g(t + h) = f(¢). It is obvious that g is an R-homomorphism. Then
g(T) = f(T). T C L implies that f(T) C g(L). It is easy to see that g(L) C L. Therefore
f(T') € L. It follows from this that > c rrom . (ran 4(1) = Tru(T) C L(see [p. 109,
1]). However, Tray(T) = M. Hence M = L. Now we obtain E = {M}. However, this
contradicts the original assumption that E # {M}. Therefore, we must conclude that
L = 0. By Proposition 10.6 [p.125,1], since Card(I) < oo, M is a finitely cogenerated
module. Taking into consideration this fact and ()5 H = 0, we see that there exist
submodules Hy, Ho, ..., H, of M belonging to E such that Hy ([ Hz()...()H» = 0. Thus,
by (3), Hi(VH2()...[VHnr € E. Now we obtain 0 € E. Hence E = {L|L < M}.

Lemma 1. If E is a radical filter of an R-module M, then E satisfies the following
condition

N,L€E,N€Gen(M)= N(|L€E. (3

Proof. Let E be a radical filter of an R-module M, N € Gen(M), and N,L € E.

Consider an arbitrary g belonging to End(M)y. Let z be an arbitrary element of
(L : g)am. Then g(x) € N and g(x) € L. Therefore, z € (L(\N : g)m. And now we
obtain (L : g)pr € (LN : g)m- By (2), since E is a radical filter of an R-module M,
(L : g)m € E. Taking into account (L : g)pr C (LN : g)am, by (1), (LN :g)m € E.
However, N € E, L(YIN C N, and N € Gen(M). By (4), N(\L € E.

Corollary 1. Let M be an R-module. If every submodule of M is generated by M, then
every radical filter of M is a preradical filter.

Example 1. Every radical filter of any ring is a preradical filter.

Proposition 2. If M is a semisimple R-module, then every radical filter of M is a
preradical filter.

Proof. Let K be any submodule of M. By Lemma 9.2 [1, p. 116], M = K @ H, where K
is a submodule of M. Consider the epimorphism f : M — K such that f(k+ h) = k for
every k € K and h € H. Hence K € Gen(M). Now apply Corollary 1.

Proposition 3. Let M be a semisimple R-module with a unique homogeneous component

and let M = @ M;, where M; is simple for each i € I. If Card(I) < oo, then every radical
i€l

filter of M is trivial.
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Proof. Apply Proposition 2 and Proposition 1.

Let M be a semisimple left R-module with a unique homogeneous component and
let M = & M;, where M; is simple for each i € I. If N = @& N;, where N; is simple for
el =r

each i € J and M = N, then Card(I) = Card(J). Put
Cards(M) := Card(I).

Proposition 4. Let M be a semisimple R-module with a unique homogeneous component.
If Cards(M) is infinite, then the collection

E,(M) :={L|L < M,Card,(M/L) < p}

is a non-trivial radical [preradical] filter of M for each infinite cardinal number p <
Cards(M).

Proof. Let Cards(M) be infinite and p be an infinite cardinal number such that p <
Cards(M). (1) Let L € E,(M) and L < N < M.

Hence Cards(M/L) < p. Since M, N are semisimple modules and N < M,L < N,
there exist submodules K < M, H < N such that

M=N&K N=LoH.

This implies that M = L & H & K.

It is easily seen that Cards(M) = Cards(L)+ Cards(H® K). Since HO K 2 M/L,
Cards(H ® K) = Cards,(M/L) < p. However, Cards,(H & K) = Card,(H) + Cards(K).
Therefore Cards(H) + Cards(K) < p. Since Cards,(K) < Cards(H) + Cards(K),
Card,(K) < p. It is easy to see that K = M/N. Hence Cards(M/N) = Card,(K) < p.
This means that N € E,(M).

(2) Let L € E,(M) and f € End(M).

Let mqy,me € M such that m; —mo € (L : f)p. Hence f(mq) — f(ma) = f(my —
mg) € L. Therefore, we have a map

g:M/(L: f)y — M/L,

where Vm € M : gim + (L : f)pr) = f(m) + L. Tt is obvious that g is monomorphism.
This implies that M/L = D @& U, where D 2 M/(L: f)p, U < M/L. Thus Cards(D) +
Cards(U) = Cards(M/L). But Cards(D) = Cards(M/(L : f)a). Hence, Cards(M/(L :
fs) + Cards(U) = Cards(M/L) < p. This implies that Cards(M/(L : f)p) < p. This
means that M/(L: f)m € Ep(M).

(4) Let N € E,(M),N € Gen(M),L < N < M and (L : g)p € E,(M) for every
g e End(M)N

As M is semisimple and N < M we see that there exists a submodule T of M such
that M = N @ T. Consider the projection

gn M — M, gn(n+1t) =nfor everyn € N,t € T.

Let mi1,mo € M be such that my; — mg € (L : gn)n. This implies that gy (mq) —
gn(ma) = gn(my — mgy) € L. Let n be an arbitrary element of N. Hence gy(n) = n.
If gv(m1) — gn(me) € L, then my — mso € (L : gn)am. From what has already been
proved, we deduce that g : M/(L : gn)m — N/L is a bijection. It is easy to see that
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q is an R-homomorphism. Therefore, Cards(M/(L : gn)am) = Cards(N/L). Since (L :
gN)m € Ep(M), Cards(M/(L : gn)a) < p. Thus Cards(N/L) < p. Taking into account
that M/L is semisimple and N/L < M/L, we have that there exists a submodule D of
M/L such that M/L = N/L @ D. Therefore D = (M/L)/(N/L) = M/N. Since M/L =
N/L® D, Cards(M/L) = Cards(N/L)+ Cards(D) = Cards(N/L)+ Cards(M/N). We
have Cards(M/N) < p, because N € E,(M). Consider the following cases:

(i) Cards(N/L) < oo and Cards(M/N) < oo;

(ii) Cards(N/L) = oo or Cards(M/N) = oo.

(i) Assume Cards(N/L) < oo and Cards(M/N) < co. Hence

Cards(M/L) = Cards(N/L) + Cards(M/N) < oc.
Therefore Cards;(M/L) = Cards(N/L) + Cards(M/N) < p, because p is infinite.
(ii) Assume Cards(N/L) = oo or Cards(M/N) = oo. Taking into account
Cards(M/L) = Cards(N/L) + Cards(M/N), by (2.1) [2, p. 417],

Cards(M/L) = max{Cards(N/L),Cards(M/N)}.

But Cards(N/L) < p, Cards(M/N) < p. Thus we have Cards;(M/L) < p.

In both cases we obtain Cards(M/L) < p. It means that L € E,(M). Therefore
E,(M) is a non-empty set satistfying (1), (2), (4). Now apply Proposition 2.

Since M is semisimple and Cards(M) # 0, there exists a minimal submodule T
of M. Hence M = T @ Wfor some submodule W # M of M. Therefore M/W = T.
Hence, Card,(M/W) = Cards(T) = 1. Thus, W € E,(M) for each infinite cardinal
number p < Cards(M). We obtain E,(M) # {M} for each infinite cardinal number
p < Cards(M).

Since Cards(M/0) = Cards(M), 0 ¢ E,(M) for each infinite cardinal number
p < Cards(M).

Proposition 5. (Theorem 1 [5]). Let M be a semisimple R-module with a unique
homogeneous component. If Cards(M) is infinite, then every non-trivial radical [preradi-
call filter of M is of the form E,(M) for some infinite cardinal number p < Cards(M).

Corollary 2. If M is a semisimple R-module with a unique homogeneous component,
then:

(i) The set of all radical filters of M and the set of all preradical filters of M are
equal.

(i1) If Cards(M) is finite, then all radical [preradical] filters are trivial.

(iii) If Cards(M) is infinite, then {E,(M)|p = oco,p < Cards(M)} is the set of all
non-trivial radical [preradical] filters of M.

Proof. Apply Propositions 1, 3, 4, 5.
Proposition 6. If M is a left R-module such that M = My & My @ ... ® M, where

M; = Try(M;) for each i € {1,2,...,n} and S < M = S € Gen(M) for every S, then:
(i) Every radical [preradical] filter E of M is of the form

E={Ji+Jo+t .t Jol|Ji € Ei(i € {1,2,..n})},
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where E; is a radical [preradical] filter of M; for each i € {1,2,...,n}.
(i1) If E; is a radical [preradical] filter of M; for each i € {1,2,...,n}, then E =
{Ih+Ja+ ..+ Ju|Ji € E;i(i € {1,2,...,n})} is a radical [preradical] filter of M.

Proof. (i) By Theorem 2 [5]. (ii) By Theorem 1 [6].

Theorem 1. If M is a semisimple R-module with a finite number of homogeneous
components My, Mo, ..., M,,, then:

(i) The set of all radical filters of M and the set of all preradical filters of M are
equal.

(’LZ) {{J1 +Jo+ ...+ J, |Jl S El(l S {1,2, ,n})} |Ez € {E L(Ml) |pi =00,p; <
< Cards,(M)YU. {{M;},{Li|L; < M; }}(i € {1,2,....,n})} is the set of all radical filters
of M.

Proof. By Propositions 1, 6 and Corollary 2.

Corollary 3. If M is a finitely generated semisimple R-module, then the set of all
radical [preradical] filters of M is a 2"-element set, where n is a number of homogeneous
components of M.

Remark 1. Let M = & M, be a semisimple R-module, where M, # 0 is a homogeneous
a<

component of M for any ordinal number a < &, £ is a limit ordinal number, and o is a
limit ordinal number such that ¢ < . Consider

F,={K<M| & M,CK,x<o}
x<a<§

We see that ((Fe = @® M, ¢ F, and F, is a radical filter of M.
oc<la<é

Indeed, let 0 <1 < & If x < o, then x <7 < { and we have M, C & M, for
xSa<g

every x < 0. Thus M, C @ My=\F,foroc<n<¢&.
<a<¢

x<o
x<
Let n < 0. Since o is a limit ordinal number, n+1 < o. Since ( & M,) M, =

n+1<a<é
0, NFo M, =0forn<o.
Put D := (F,. Let K, be a minimal submodule of M, for any a < ¢&.
Taking into account Proposition 9.4 [1], we obtain D € Gen({K,|a < &}). Hence

D = @gtrD(Ka). Since W — trw(K,),W € R — Mod is a hereditary preradi-
a<

cal [4], trp(Ky) = tryy(Ko)(ND = Moq(\D. Thus N F, = D = & (M,(\D) =
a<é
EB(MOCHD)EB D (MOCHD):O@ S My= & M,.
ocla< ocla<§

a<lo I3 < ocla<f
Let x < 0. Hence M, N\ Fo =M, () & My=0.Thus & M, isnot contai-
oc<la<§

xsa<§
ned in () F,, for any x < o. Hence (| F, ¢ Fy.
Consider conditions 1, 2, 4 for radical filters.
(1) This is clear.
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(2) Let x <o, K <M, &® M, C K, and f € End(M). Since M,, is a fully

x<a<§
invariant submodule of M for any a < &,f( & M,)C & M, Hence @ M, C
xsa<g

xsa<g xsa<g
(K : f)ar- Therefore (K : f)p € Fy,.
(4) Let N € F,,L < N < M and Vg € End(M)y : (L : g)m € F,. Hence there
exists an ordinal number x < ¢ such that <€9 5Mo‘ C N. Consider
x<la<

g: M — M,glmi +mg) =my,(m1 € @& My,mae & M,).
x<a<§ a<x

It is easily seen that g € End(M)y. Thus (L : g)m € F,. Hence there exists § < o
such that @& M, C (L: g)m- Put v := max(x, ). Hence
BLla<g

© Ad@ ::g( S2) Ala)g;L~

y<a<§ y<a<§

Therefore

LeF,.

Let fo(0 < &) be an element of End(M) such that fa(m) = m for every m € My
and fp(m) = 0 for every m € M,,, where o < £ and « # 6.
Put

Foo={fo(L)|L € Fy }.
Let 0 < 0 and S < Mpy. Then ® M,C @ M,+ S, because 0+ 1 < o.
0+1<a<f 0+1<a<f

Hence @& My+S€F, ThusS=/fo( & M,+5S)eF,9. Weobtain F,g =
0+1<a<§ 0+1<a<§

{S|S < My} for any 0 < o.
Let 0 < 6 < ¢ and let H be an arbitrary element of F, 9. Then there exists K € F,
such that fo(K) = H.Hence & M, C K for some x < 0. Since o <0 < ¢ and x < o,

x<a<{

X < 6 < & Therefore My € @& M, C K. Hence, My = fo(Mp) C fo(K) C My. We
x<a<§

obtain H = Mjy.

Therefore {>
6 ())-
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ace Ha|Ho € Fro} = {T < M| F, CT} # F, (see Proposition
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