RADICAL FILTERS OF SEMISIMPLE MODULES WITH FINITE NUMBER OF HOMOGENEOUS COMPONENTS

Yuriy MATURIN

Institute of Physics, Mathematics, Economics and IT
Drohobych State Pedagogical University, 3 Stryjska Str., Drohobych, 82100
e-mail: yuriy_maturin@hotmail.com

Radical filters of semisimple modules with finite homogeneous components are described.

Key words: semisimple ring, module, radical filter.

All rings are assumed to be associative with unit $1 \neq 0$ and all modules are left unitary.

Let R be a ring. The category of left R-modules will be denoted by $R-\operatorname{Mod}$. We shall write $N \leq M$ if N is a submodule of M. The set of all R-endomorphisms of M will be denoted by $\operatorname{End}(M)$. Let $\operatorname{soc}(M)$ denote the socle of M. Let $N \leq M$ and $f \in \operatorname{End}(M)$. Put

$$
(N: f)_{M}=\{x \in M \mid f(x) \in N\}, \operatorname{End}(M)_{N}=\{f \in \operatorname{End}(M) \mid f(M) \subseteq N\} .
$$

Let E be some non-empty collection of submodules of a left R-module M.
Consider the following conditions:

$$
\begin{gather*}
L \in E, L \leq N \leq M \Rightarrow N \in E \tag{1}\\
L \in E, f \in \operatorname{End}(M) \Rightarrow(L: f)_{M} \in E \tag{2}\\
N, L \in E \Rightarrow N \cap L \in E \tag{3}\\
N \in E, N \in \operatorname{Gen}(M), L \leq N \leq M \wedge \forall g \in \operatorname{End}(M)_{N}:(L: g)_{M} \in E \Rightarrow L \in E ; \tag{4}
\end{gather*}
$$

Definition 1. A non-empty collection E of submodules of a left R-module M satisfying (1), (2), (3) is called a preradical filter of M.

Definition 2. A non-empty collection E of submodules of a left R-module M satisfying (1), (2), (4) is called a radical filter of M.

Definition 3. A preradical (radical) filter E of a left R-module M is said to be trivial if either $E=\{L \mid L \leq M\}$ or $E=\{M\}$.

[^0]Proposition 1. Let M be a semisimple R-module with a unique homogeneous component and let $M=\underset{i \in I}{\oplus} M_{i}$, where M_{i} is simple for each $i \in I$. If $\operatorname{Card}(I)<\infty$, then every preradical filter of M is trivial.

Proof. Suppose that $\operatorname{Card}(I)<\infty$. Let E be a preradical filter of M such that $E \neq\{M\}$. We claim that $E=\{L \mid L \leq M\}$. Indeed, consider the submodule $L=\bigcap_{H \in E} H$ of M. Since L is a submodule of M, L is semisimple (see Proposition 9.4 [1, p. 117]. Suppose that $L \neq 0$. Hence there exists a simple submodule T of L.

Let $f: T \rightarrow M$ be an arbitrary R-homomorphism. Since M is semisimple, there exists a submodule H such that $M=H \oplus T$. Consider the map $g: M \rightarrow M$ such that $\forall t \in T \forall h \in H: g(t+h)=f(t)$. It is obvious that g is an R-homomorphism. Then $g(T)=f(T) . T \subseteq L$ implies that $f(T) \subseteq g(L)$. It is easy to see that $g(L) \subseteq L$. Therefore $f(T) \subseteq L$. It follows from this that $\sum_{q \in \operatorname{Hom}_{R}(T, M)} q(T)=\operatorname{Tr}_{M}(T) \subseteq L$ (see [p. 109, 1]). However, $\operatorname{Tr}_{M}(T)=M$. Hence $M=L$. Now we obtain $E=\{M\}$. However, this contradicts the original assumption that $E \neq\{M\}$. Therefore, we must conclude that $L=0$. By Proposition 10.6 [p.125,1], since $\operatorname{Card}(I)<\infty, M$ is a finitely cogenerated module. Taking into consideration this fact and $\bigcap_{H \in E} H=0$, we see that there exist submodules $H_{1}, H_{2}, \ldots, H_{n}$ of M belonging to E such that $H_{1} \bigcap H_{2} \bigcap \ldots \bigcap H_{n}=0$. Thus, by (3), $H_{1} \bigcap H_{2} \bigcap \ldots \bigcap H_{n} \in E$. Now we obtain $0 \in E$. Hence $E=\{L \mid L \leq M\}$.

Lemma 1. If E is a radical filter of an R-module M, then E satisfies the following condition

$$
N, L \in E, N \in \operatorname{Gen}(M) \Rightarrow N \bigcap L \in E .\left(3^{\prime}\right)
$$

Proof. Let E be a radical filter of an R-module $M, N \in G e n(M)$, and $N, L \in E$.
Consider an arbitrary g belonging to $\operatorname{End}(M)_{N}$. Let x be an arbitrary element of $(L: g)_{M}$. Then $g(x) \in N$ and $g(x) \in L$. Therefore, $x \in(L \bigcap N: g)_{M}$. And now we obtain $(L: g)_{M} \subseteq(L \bigcap N: g)_{M}$. By (2), since E is a radical filter of an R-module M, $(L: g)_{M} \in E$. Taking into account $(L: g)_{M} \subseteq(L \bigcap N: g)_{M}$, by $(1),(L \bigcap N: g)_{M} \in E$. However, $N \in E, L \bigcap N \subseteq N$, and $N \in G e n(M)$. By (4), $N \bigcap L \in E$.

Corollary 1. Let M be an R-module. If every submodule of M is generated by M, then every radical filter of M is a preradical filter.

Example 1. Every radical filter of any ring is a preradical filter.
Proposition 2. If M is a semisimple R-module, then every radical filter of M is a preradical filter.

Proof. Let K be any submodule of M. By Lemma 9.2 [1, p. 116], $M=K \oplus H$, where K is a submodule of M. Consider the epimorphism $f: M \rightarrow K$ such that $f(k+h)=k$ for every $k \in K$ and $h \in H$. Hence $K \in G e n(M)$. Now apply Corollary 1 .

Proposition 3. Let M be a semisimple R-module with a unique homogeneous component and let $M=\underset{i \in I}{\oplus} M_{i}$, where M_{i} is simple for each $i \in I$. If $C \operatorname{ard}(I)<\infty$, then every radical filter of M is trivial.

Proof. Apply Proposition 2 and Proposition 1.
Let M be a semisimple left R-module with a unique homogeneous component and let $M=\underset{i \in I}{\oplus} M_{i}$, where M_{i} is simple for each $i \in I$. If $N=\underset{i \in J}{\oplus} N_{i}$, where N_{i} is simple for each $i \in J$ and $M \cong N$, then $\operatorname{Card}(I)=\operatorname{Card}(J)$. Put

$$
\operatorname{Card}_{s}(M):=\operatorname{Card}(I) .
$$

Proposition 4. Let M be a semisimple R-module with a unique homogeneous component. If $\operatorname{Card}_{s}(M)$ is infinite, then the collection

$$
E_{p}(M):=\left\{L \mid L \leq M, \operatorname{Card}_{s}(M / L)<p\right\}
$$

is a non-trivial radical [preradical] filter of M for each infinite cardinal number $p \leq$ $\operatorname{Card}_{s}(M)$.

Proof. Let $\operatorname{Card}_{s}(M)$ be infinite and p be an infinite cardinal number such that $p \leq$ $\operatorname{Card}_{s}(M)$. (1) Let $L \in E_{p}(M)$ and $L \leq N \leq M$.

Hence $\operatorname{Card}_{s}(M / L)<p$. Since M, N are semisimple modules and $N \leq M, L \leq N$, there exist submodules $K \leq M, H \leq N$ such that

$$
M=N \oplus K, N=L \oplus H
$$

This implies that $M=L \oplus H \oplus K$.
It is easily seen that $\operatorname{Card}_{s}(M)=\operatorname{Card}_{s}(L)+\operatorname{Card}_{s}(H \oplus K)$. Since $H \oplus K \cong M / L$, $\operatorname{Card}_{s}(H \oplus K)=\operatorname{Card}_{s}(M / L)<p$. However, $\operatorname{Card}_{s}(H \oplus K)=\operatorname{Card}_{s}(H)+\operatorname{Card}_{s}(K)$. Therefore $\operatorname{Card}_{s}(H)+\operatorname{Card}_{s}(K)<p$. Since $\operatorname{Card}_{s}(K) \leq \operatorname{Card}_{s}(H)+\operatorname{Card}_{s}(K)$, $\operatorname{Card}_{s}(K)<p$. It is easy to see that $K \cong M / N$. Hence $\operatorname{Card}_{s}(M / N)=\operatorname{Card}_{s}(K)<p$. This means that $N \in E_{p}(M)$.
(2) Let $L \in E_{p}(M)$ and $f \in \operatorname{End}(M)$.

Let $m_{1}, m_{2} \in M$ such that $m_{1}-m_{2} \in(L: f)_{M}$. Hence $f\left(m_{1}\right)-f\left(m_{2}\right)=f\left(m_{1}-\right.$ $\left.m_{2}\right) \in L$. Therefore, we have a map

$$
g: M /(L: f)_{M} \rightarrow M / L
$$

where $\forall m \in M: g\left(m+(L: f)_{M}\right)=f(m)+L$. It is obvious that g is monomorphism. This implies that $M / L=D \oplus U$, where $D \cong M /(L: f)_{M}, U \leq M / L$. Thus $\operatorname{Card}_{s}(D)+$ $\operatorname{Card}_{s}(U)=\operatorname{Card}_{s}(M / L)$. But $\operatorname{Card}_{s}(D)=\operatorname{Card}_{s}\left(M /(L: f)_{M}\right)$. Hence, $\operatorname{Card}_{s}(M /(L:$ $\left.f)_{M}\right)+\operatorname{Card}_{s}(U)=\operatorname{Card}_{s}(M / L)<p$. This implies that $\operatorname{Card}_{s}\left(M /(L: f)_{M}\right)<p$. This means that $M /(L: f)_{M} \in E_{p}(M)$.
(4) Let $N \in E_{p}(M), N \in \operatorname{Gen}(M), L \leq N \leq M$ and $(L: g)_{M} \in E_{p}(M)$ for every $g \in \operatorname{End}(M)_{N}$.

As M is semisimple and $N \leq M$ we see that there exists a submodule T of M such that $M=N \oplus T$. Consider the projection

$$
g_{N}: M \rightarrow M, g_{N}(n+t)=n \text { for every } n \in N, t \in T
$$

Let $m_{1}, m_{2} \in M$ be such that $m_{1}-m_{2} \in\left(L: g_{N}\right)_{M}$. This implies that $g_{N}\left(m_{1}\right)-$ $g_{N}\left(m_{2}\right)=g_{N}\left(m_{1}-m_{2}\right) \in L$. Let n be an arbitrary element of N. Hence $g_{N}(n)=n$. If $g_{N}\left(m_{1}\right)-g_{N}\left(m_{2}\right) \in L$, then $m_{1}-m_{2} \in\left(L: g_{N}\right)_{M}$. From what has already been proved, we deduce that $q: M /\left(L: g_{N}\right)_{M} \rightarrow N / L$ is a bijection. It is easy to see that
q is an R-homomorphism. Therefore, $\operatorname{Card}_{s}\left(M /\left(L: g_{N}\right)_{M}\right)=\operatorname{Card}_{s}(N / L)$. Since $(L:$ $\left.g_{N}\right)_{M} \in E_{p}(M), \operatorname{Card}_{s}\left(M /\left(L: g_{N}\right)_{M}\right)<p$. Thus $\operatorname{Card}_{s}(N / L)<p$. Taking into account that M / L is semisimple and $N / L \leq M / L$, we have that there exists a submodule D of M / L such that $M / L=N / L \oplus D$. Therefore $D \cong(M / L) /(N / L) \cong M / N$. Since $M / L=$ $N / L \oplus D, \operatorname{Card}_{s}(M / L)=\operatorname{Card}_{s}(N / L)+\operatorname{Card}_{s}(D)=\operatorname{Card}_{s}(N / L)+\operatorname{Card}_{s}(M / N)$. We have $\operatorname{Card}_{s}(M / N)<p$, because $N \in E_{p}(M)$. Consider the following cases:
(i) $\operatorname{Card}_{s}(N / L)<\infty$ and $\operatorname{Card}_{s}(M / N)<\infty$;
(ii) $\operatorname{Card}_{s}(N / L)=\infty$ or $\operatorname{Card}_{s}(M / N)=\infty$.
(i) Assume $\operatorname{Card}_{s}(N / L)<\infty$ and $\operatorname{Card}_{s}(M / N)<\infty$. Hence

$$
\operatorname{Card}_{s}(M / L)=\operatorname{Card}_{s}(N / L)+\operatorname{Card}_{s}(M / N)<\infty .
$$

Therefore $\operatorname{Card}_{s}(M / L)=\operatorname{Card}_{s}(N / L)+\operatorname{Card}_{s}(M / N)<p$, because p is infinite.
(ii) Assume $\operatorname{Card}_{s}(N / L)=\infty$ or $\operatorname{Card}_{s}(M / N)=\infty$. Taking into account $\operatorname{Card}_{s}(M / L)=\operatorname{Card}_{s}(N / L)+\operatorname{Card}_{s}(M / N)$, by (2.1) [2, p. 417],

$$
\operatorname{Card}_{s}(M / L)=\max \left\{\operatorname{Card}_{s}(N / L), \operatorname{Card}_{s}(M / N)\right\}
$$

But $\operatorname{Card}_{s}(N / L)<p, \operatorname{Card}_{s}(M / N)<p$. Thus we have $\operatorname{Card}_{s}(M / L)<p$.
In both cases we obtain $\operatorname{Card}_{s}(M / L)<p$. It means that $L \in E_{p}(M)$. Therefore $E_{p}(M)$ is a non-empty set satisfying (1), (2), (4). Now apply Proposition 2.

Since M is semisimple and $\operatorname{Card}_{s}(M) \neq 0$, there exists a minimal submodule T of M. Hence $M=T \oplus W$ for some submodule $W \neq M$ of M. Therefore $M / W \cong T$. Hence, $\operatorname{Card}_{s}(M / W)=\operatorname{Card}_{s}(T)=1$. Thus, $W \in E_{p}(M)$ for each infinite cardinal number $p \leq \operatorname{Card}_{s}(M)$. We obtain $E_{p}(M) \neq\{M\}$ for each infinite cardinal number $p \leq \operatorname{Card}_{s}(M)$.

Since $\operatorname{Card}_{s}(M / 0)=\operatorname{Card}_{s}(M), 0 \notin E_{p}(M)$ for each infinite cardinal number $p \leq \operatorname{Card}_{s}(M)$.

Proposition 5. (Theorem 1 [5]). Let M be a semisimple R-module with a unique homogeneous component. If $\operatorname{Card}_{s}(M)$ is infinite, then every non-trivial radical [preradicall filter of M is of the form $E_{p}(M)$ for some infinite cardinal number $p \leq \operatorname{Card}_{s}(M)$.

Corollary 2. If M is a semisimple R-module with a unique homogeneous component, then:
(i) The set of all radical filters of M and the set of all preradical filters of M are equal.
(ii) If $\operatorname{Card}_{s}(M)$ is finite, then all radical [preradical] filters are trivial.
(iii) If $\operatorname{Card}_{s}(M)$ is infinite, then $\left\{E_{p}(M) \mid p=\infty, p \leq \operatorname{Card}_{s}(M)\right\}$ is the set of all non-trivial radical [preradical] filters of M.
Proof. Apply Propositions 1, 3, 4, 5.
Proposition 6. If M is a left R-module such that $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$, where $M_{i}=\operatorname{Tr}_{M}\left(M_{i}\right)$ for each $i \in\{1,2, \ldots, n\}$ and $S \leq M \Rightarrow S \in G e n(M)$ for every S, then:
(i) Every radical [preradical] filter E of M is of the form

$$
E=\left\{J_{1}+J_{2}+\ldots+J_{n} \mid J_{i} \in E_{i}(i \in\{1,2, \ldots, n\})\right\},
$$

where E_{i} is a radical [preradical] filter of M_{i} for each $i \in\{1,2, \ldots, n\}$.
(ii) If E_{i} is a radical [preradical] filter of M_{i} for each $i \in\{1,2, \ldots, n\}$, then $E=$ $\left\{J_{1}+J_{2}+\ldots+J_{n} \mid J_{i} \in E_{i}(i \in\{1,2, \ldots, n\})\right\}$ is a radical [preradical] filter of M.

Proof. (i) By Theorem 2 [5]. (ii) By Theorem 1 [6].

Theorem 1. If M is a semisimple R-module with a finite number of homogeneous components $M_{1}, M_{2}, \ldots, M_{n}$, then:
(i) The set of all radical filters of M and the set of all preradical filters of M are equal.
(ii) $\left\{\left\{J_{1}+J_{2}+\ldots+J_{n} \mid J_{i} \in E_{i}(i \in\{1,2, \ldots, n\})\right\} \mid E_{i} \in\left\{E_{p_{i}}\left(M_{i}\right) \mid p_{i}=\infty, p_{i} \leq\right.\right.$ $\left.\left.\leq \operatorname{Card}_{s}\left(M_{i}\right)\right\} \bigcup \cdot\left\{\left\{M_{i}\right\},\left\{L_{i} \mid L_{i} \leq M_{i}\right\}\right\}(i \in\{1,2, \ldots, n\})\right\}$ is the set of all radical filters of M.

Proof. By Propositions 1, 6 and Corollary 2.

Corollary 3. If M is a finitely generated semisimple R-module, then the set of all radical [preradical] filters of M is a 2^{n}-element set, where n is a number of homogeneous components of M.

Remark 1. Let $M=\underset{\alpha<\xi}{\oplus} M_{\alpha}$ be a semisimple R-module, where $M_{\alpha} \neq 0$ is a homogeneous component of M for any ordinal number $\alpha<\xi, \xi$ is a limit ordinal number, and σ is a limit ordinal number such that $\sigma \leq \xi$. Consider

$$
F_{\sigma}:=\left\{K \leq M \mid \underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha} \subseteq K, \chi<\sigma\right\}
$$

We see that $\bigcap F_{\sigma}=\underset{\sigma \leq \alpha<\xi}{\oplus} M_{\alpha} \notin F_{\sigma}$ and F_{σ} is a radical filter of M.
Indeed, let $\sigma \leq \eta<\xi$. If $\chi<\sigma$, then $\chi<\eta<\xi$ and we have $M_{\eta} \subseteq \underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha}$ for every $\chi<\sigma$. Thus $M_{\eta} \subseteq \bigcap_{\chi<\sigma} \underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha}=\bigcap F_{\sigma}$ for $\sigma \leq \eta<\xi$.

Let $\eta<\sigma$. Since σ is a limit ordinal number, $\eta+1<\sigma$. Since $\left(\underset{\eta+1 \leq \alpha<\xi}{\oplus} M_{\alpha}\right) \bigcap M_{\eta}=$ $0, \bigcap F_{\sigma} \bigcap M_{\eta}=0$ for $\eta<\sigma$.

Put $D:=\bigcap F_{\sigma}$. Let K_{α} be a minimal submodule of M_{α} for any $\alpha<\xi$. Taking into account Proposition 9.4 [1], we obtain $D \in G e n\left(\left\{K_{\alpha} \mid \alpha<\xi\right\}\right)$. Hence $D=\underset{\alpha<\xi}{\oplus} \operatorname{tr}_{D}\left(K_{\alpha}\right)$. Since $W \mapsto \operatorname{tr}_{W}\left(K_{\alpha}\right), W \in R-\operatorname{Mod}$ is a hereditary preradical [4], $\operatorname{tr}_{D}\left(K_{\alpha}\right)=\operatorname{tr}_{M}\left(K_{\alpha}\right) \bigcap D=M_{\alpha} \bigcap D$. Thus $\bigcap F_{\sigma}=D=\underset{\alpha<\xi}{\oplus}\left(M_{\alpha} \bigcap D\right)=$ $\underset{\alpha<\sigma}{\oplus}\left(M_{\alpha} \bigcap D\right) \oplus \underset{\sigma \leq \alpha<\xi}{\oplus}\left(M_{\alpha} \bigcap D\right)=0 \oplus \underset{\sigma \leq \alpha<\xi}{\oplus} M_{\alpha}=\underset{\sigma \leq \alpha<\xi}{\oplus} M_{\alpha}$.

Let $\chi<\sigma$. Hence $M_{\chi} \bigcap \bigcap F_{\sigma}=M_{\chi} \bigcap \underset{\sigma \leq \alpha<\xi}{\oplus} M_{\alpha}=0$. Thus $\underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha}$ is not contained in $\bigcap F_{\sigma}$ for any $\chi<\sigma$. Hence $\bigcap F_{\sigma} \notin F_{\sigma}$.

Consider conditions 1, 2, 4 for radical filters.
(1) This is clear.
(2) Let $\chi<\sigma, K \leq M, \underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha} \subseteq K$, and $f \in \operatorname{End}(M)$. Since M_{α} is a fully invariant submodule of M for any $\alpha<\xi, f\left(\underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha}\right) \subseteq \underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha}$. Hence $\underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha} \subseteq$ $(K: f)_{M}$. Therefore $(K: f)_{M} \in F_{\sigma}$.
(4) Let $N \in F_{\sigma}, L \leq N \leq M$ and $\forall g \in \operatorname{End}(M)_{N}:(L: g)_{M} \in F_{\sigma}$. Hence there exists an ordinal number $\chi<\bar{\sigma}$ such that $\underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha} \subseteq N$. Consider

$$
g: M \rightarrow M, g\left(m_{1}+m_{2}\right)=m_{1},\left(m_{1} \in \underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha}, m_{2} \in \underset{\alpha<\chi}{\oplus} M_{\alpha}\right)
$$

It is easily seen that $g \in \operatorname{End}(M)_{N}$. Thus $(L: g)_{M} \in F_{\sigma}$. Hence there exists $\beta<\sigma$ such that $\underset{\beta<\alpha<\xi}{\oplus} M_{\alpha} \subseteq(L: g)_{M}$. Put $\gamma:=\max (\chi, \beta)$. Hence

$$
\underset{\gamma \leq \alpha<\xi}{\oplus} M_{\alpha}=g\left(\underset{\gamma \leq \alpha<\xi}{\oplus} M_{\alpha}\right) \subseteq L
$$

Therefore

$$
L \in F_{\sigma}
$$

Let $f_{\theta}(\theta<\xi)$ be an element of $\operatorname{End}(M)$ such that $f_{\theta}(m)=m$ for every $m \in M_{\theta}$ and $f_{\theta}(m)=0$ for every $m \in M_{\alpha}$, where $\alpha<\xi$ and $\alpha \neq \theta$.

Put

$$
F_{\sigma, \theta}=\left\{f_{\theta}(L) \mid L \in F_{\sigma}\right\} .
$$

Let $\theta<\sigma$ and $S \leq M_{\theta}$. Then $\underset{\theta+1 \leq \alpha<\xi}{\oplus} M_{\alpha} \subseteq \underset{\theta+1 \leq \alpha<\xi}{\oplus} M_{\alpha}+S$, because $\theta+1<\sigma$. Hence $\underset{\theta+1 \leq \alpha<\xi}{\oplus} M_{\alpha}+S \in F_{\sigma}$. Thus $S=f_{\theta}\left(\underset{\theta+1 \leq \alpha<\xi}{\oplus} M_{\alpha}+S\right) \in F_{\sigma, \theta}$. We obtain $F_{\sigma, \theta}=$ $\left\{S \mid S \leq M_{\theta}\right\}$ for any $\theta<\sigma$.

Let $\sigma \leq \theta<\xi$ and let H be an arbitrary element of $F_{\sigma, \theta}$. Then there exists $K \in F_{\sigma}$ such that $f_{\theta}(K)=H$. Hence $\underset{\chi \leq \alpha<\xi}{\oplus} M_{\alpha} \subseteq K$ for some $\chi<\sigma$. Since $\sigma \leq \theta<\xi$ and $\chi<\sigma$, $\chi<\theta<\xi$. Therefore $M_{\theta} \subseteq \underset{\chi \leq \alpha<\xi}{\oplus \leq \alpha<\xi} M_{\alpha} \subseteq K$. Hence, $M_{\theta}=f_{\theta}\left(M_{\theta}\right) \subseteq f_{\theta}(K) \subseteq M_{\theta}$. We obtain $H=M_{\theta}$.

Therefore $\left\{\sum_{\alpha<\xi} H_{\alpha} \mid H_{\alpha} \in F_{\sigma, \alpha}\right\}=\left\{T \leq M \mid \bigcap F_{\sigma} \subseteq T\right\} \neq F_{\sigma}$ (see Proposition 6 (i)).

Acknowledgement. I would like to thank Professor M. Ya. Komarnytskyi for helpful discussions.

References

1. Anderson F.W., Fuller K.R. Rings and categories of modules // Berlin-Heidelberg-New York: Springer, 1973. 340p.
2. Sierpinski W. Cardinal and ordinal numbers // Warszawa: PWN, 2nd edition, 1965. 492 p.
3. Hausdorff F. Set theory // AMS Bookstore, 2005. 352 p.
4. Kashu A.I. Radicals and torsions in modules // Chisinau: Stiintca, 1983. 156 p.
5. Maturin Yu. Form of filters of semisimple modules and direct sums // Algebra and Discrete Mathematics. - Vol.16, №2. - 2013. - P.226-232.
6. Maturin Yu. Filters and their triviality // Visnyk of the Lviv Univ. Series Mech.-Math. Issue 78. - 2013. - P.87-91.

Стаття: надійшла до редколегії 15.06.2015
доопрацъована 22.10.2015
прийнята до друку 11.11.2015

РАДИКАЛЬНІ ФІЛЬТРИ НАПІВПРОСТИХ МОДУЛІВ ЗІ СКІНЧЕННОЮ КІЛЬКІСТЮ ОДНОРІДНИХ КОМПОНЕНТ

Юрій МАТУРІН

Інститут фізики, математики, економіки та інноваційних технологій Дрогобицького державного педагогічного університету імені Івана Франка, вул. Стрийсъка,3, Дрогобич
Лъвівсъка обл., Україна, 82100
e-mail: yuriy_maturin@hotmail.com

Описано радикальні фільтри напівпростих модулів зі скінченною кількістю однорідних компонент.

Ключові слова: напівпросте кільце, модуль, радикальний фільтр.

[^0]: (C) Maturin Yu., 2015

