УДК 512.536

ON THE DICHOTOMY OF A LOCALLY COMPACT SEMITOPOLOGICAL BICYCLIC MONOID WITH ADJOINED ZERO

Oleg GUTIK

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, e-mail: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

We prove that a Hausdorff locally compact semitopological bicyclic semigroup with adjoined zero \mathscr{C}^0 is either compact or discrete. Also we show that the similar statement holds for a locally compact semitopological bicyclic semigroup with an adjoined compact ideal and construct an example which witnesses that a counterpart of the statements does not hold when \mathscr{C}^0 is a Čechcomplete metrizable topological inverse semigroup.

Key words: semigroup, semitopological semigroup, topological semigroup, bicyclic monoid, locally compact space, Čech-complete space, metrizable space, zero, compact ideal.

1. INTRODUCTION AND PRELIMINARIES

Further we shall follow the terminology of [7, 8, 10, 24]. Given a semigroup S, we shall denote the set of idempotents of S by E(S). A semigroup S with the adjoined zero will be denoted by S^0 (cf. [8]).

A semigroup S is called *inverse* if for every $x \in S$ there exists a unique $y \in S$ such that xyx = x and yxy = y. Later such an element y will be denoted by x^{-1} and will be called the *inverse of* x. A map inv: $S \to S$ which assigns to every $s \in S$ its inverse is called *inversion*.

In this paper all topological spaces are Hausdorff. If Y is a subspace of a topological space X and $A \subseteq Y$, then by $cl_Y(A)$ we denote the topological closure of A in Y.

A semitopological (topological) semigroup is a topological space with separately continuous (jointly continuous) semigroup operations. An inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

We recall that a topological space X is:

• locally compact if every point x of X has an open neighbourhood U(x) with the compact closure $cl_X(U(x))$;

[©] Gutik O., 2015

• Čech-complete if X is Tychonoff and there exists a compactification cX of X such that the remainder $cX \setminus c(X)$ is an F_{σ} -set in cX.

The *bicyclic semigroup* (or the *bicyclic monoid*) $\mathscr{C}(p,q)$ is a semigroup with the identity 1 generated by two elements p and q with only one condition pq = 1. The distinct elements of the bicyclic monoid are exhibited in the following array:

The bicyclic monoid is a combinatorial bisimple F-inverse semigroup and it plays an important role in the algebraic theory of semigroups and in the theory of topological semigroups. For example the well-known Andersen's result [1] states that a (0-)simple semigroup with an idempotent is completely (0-)simple if and only if it does not contain an isomorphic copy of the bicyclic semigroup. The bicyclic semigroup admits only the discrete semigroup topology and if a topological semigroup S contains it as a dense subsemigroup then $\mathscr{C}(p,q)$ is an open subset of S [11]. Bertman and West in [6] extended this result for the case of semitopological semigroups. Stable and Γ -compact topological semigroups do not contain the bicyclic semigroup [2, 15]. The problem of an embedding of the bicyclic monoid into compact-like topological semigroups is discussed in [4, 5, 13].

In [11] Eberhart and Selden proved that if the bicyclic monoid $\mathscr{C}(p,q)$ is a dense subsemigroup of a topological monoid S and $I = S \setminus \mathscr{C}(p,q) \neq \emptyset$ then I is a two-sided ideal of the semigroup S. Also, there they described the closure of the bicyclic monoid $\mathscr{C}(p,q)$ in a locally compact topological inverse semigroup. The closure of the bicyclic monoid in a countably compact (pseudocompact) topological semigroups was studied in [5].

The well known A. Weil Theorem states that every locally compact monothetic topological group G (i.e., G contains a cyclic dense subgroup) is either compact or discrete (see [26]). Locally compact and compact monothetic topological semigroups was studied by Hewitt [14], Hofmann [16], Koch [18], Numakura [23] and others (see more information on this topics in the books [7] and [17]). Koch in [19] posed the following problem: "If S is a locally compact monothetic semigroup and S has an identity, must S be compact?" (see [7, Vol. 2, p. 144]). From the other side, Zelenyuk in [27] constructed a countable locally compact topological semigroup without unit which is neither compact nor discrete.

In this paper we prove that a Hausdorff locally compact semitopological bicyclic semigroup with adjoined zero \mathscr{C}^0 is either compact or discrete. Also we show that the similar statement holds for a locally compact semitopological bicyclic semigroup with an adjoined compact ideal and construct an example which witnesses that a counterpart of the statements does not hold when \mathscr{C}^0 is a Čech-complete metrizable topological inverse semigroup.

 $\mathbf{34}$

2. On a locally compact semitopological bicyclic semigroup with adjoined zero

The following proposition generalizes Theorem I.3 from [11].

Proposition 1. If the bicyclic monoid $\mathscr{C}(p,q)$ is a dense subsemigroup of a semitopological monoid S and $I = S \setminus \mathscr{C}(p,q) \neq \emptyset$ then I is a two-sided ideal of the semigroup S.

Proof. Fix an arbitrary element $y \in I$. If $xy = z \notin I$ for some $x \in \mathscr{C}(p,q)$ then there exists an open neighbourhood U(y) of the point y in the space S such that $\{x\} \cdot U(y) = \{z\} \subset \mathscr{C}(p,q)$. The neighbourhood U(y) contains infinitely many elements of the semigroup $\mathscr{C}(p,q)$. This contradicts Lemma I.1 [11], which states that for each $v, w \in \mathscr{C}(p,q)$ both sets $\{u \in \mathscr{C}(p,q) : vu = w\}$ and $\{u \in \mathscr{C}(p,q) : uv = w\}$ are finite. The obtained contradiction implies that $xy \in I$ for all $x \in \mathscr{C}(p,q)$ and $y \in I$. The proof of the statement that $yx \in I$ for all $x \in \mathscr{C}(p,q)$ and $y \in I$ is similar.

Suppose to the contrary that $xy = w \notin I$ for some $x, y \in I$. Then $w \in \mathscr{C}(p,q)$ and the separate continuity of the semigroup operation in S implies that there exist open neighbourhoods U(x) and U(y) of the points x and y in S, respectively, such that $\{x\} \cdot U(y) = \{w\}$ and $U(x) \cdot \{y\} = \{w\}$. Since both neighbourhoods U(x) and U(y) contain infinitely many elements of the semigroup $\mathscr{C}(p,q)$, both equalities $\{x\} \cdot U(y) = \{w\}$ and $U(x) \cdot \{y\} = \{w\}$ contradict mentioned above Lemma I.1 from [11]. The obtained contradiction implies that $xy \in I$.

For every non-negative integer n we put

 $\mathscr{C}[q^n] = \left\{q^n p^i \in \mathscr{C}(p,q) \colon i = 0, 1, 2, \ldots\right\} \text{ and } \mathscr{C}[p^n] = \left\{q^i p^n \in \mathscr{C}(p,q) \colon i = 0, 1, 2, \ldots\right\}.$

Lemma 1. Let (\mathscr{C}^0, τ) be a locally compact semitopological semigroup. Then the following assertions hold:

- (1) for every open neighbourhood U(0) of zero in (\mathscr{C}^0, τ) there exists an open compact neighbourhood V(0) of zero in (\mathscr{C}^0, τ) such that $V(0) \subseteq U(0)$;
- (2) for every open compact neighbourhood U(0) of zero in (C⁰, τ) and every open neighbourhood V(0) of zero in (C⁰, τ) the set U(0) ∩ V(0) is compact and open, and the set U(0) \ V(0) is finite.

Proof. The statements of the lemma are trivial in the case when τ is the discrete topology on \mathscr{C}^0 , and hence later we shall assume that the topology τ is non-discrete.

(1) Let U(0) be an arbitrary open neighbourhood of zero in (\mathscr{C}^0, τ) . By Theorem 3.3.1 from [10] the space (\mathscr{C}^0, τ) is regular. Since it is locally compact, there exists an open neighbourhood $V(0) \subseteq U(0)$ of zero in (\mathscr{C}^0, τ) such that $\operatorname{cl}_{\mathscr{C}^0}(V(0)) \subseteq U(0)$. Since all non-zero elements of the semigroup \mathscr{C}^0 are isolated points in (\mathscr{C}^0, τ) , $\operatorname{cl}_{\mathscr{C}^0}(V(0)) = V(0)$, and hence our assertion holds.

(2) Let U(0) be an arbitrary compact open neighbourhood of zero in (\mathscr{C}^0, τ) . Then for an arbitrary open neighbourhood V(0) of zero in (\mathscr{C}^0, τ) the family

$$\mathscr{U} = \{V(0), \{\{x\} \colon x \in U(0) \setminus V(0)\}\}$$

is an open cover of U(0). Since the family \mathscr{U} is disjoint, it is finite. So the set $U(0) \setminus V(0)$ is finite and the set $U(0) \cap V(0)$ is compact.

Lemma 2. If (\mathscr{C}^0, τ) is a locally compact non-discrete semitopological semigroup, then for each open neighbourhood U(0) of zero in (\mathscr{C}^0, τ) there exist non-negative integers i and j such that both sets $\mathscr{C}[q^i] \cap U(0)$ and $\mathscr{C}[p^j] \cap U(0)$ are infinite.

Proof. By Lemma 1(1), without loss of generality we may assume that U(0) is a compact open neighbourhood of zero 0 in (\mathscr{C}^0, τ) . Put

$$V_q(0) = \{ x \in U(0) \colon x \cdot q \in U(0) \}$$
 and $V_p(0) = \{ x \in U(0) \colon p \cdot x \in U(0) \}$

If the set $\mathscr{C}[q^i] \cap U(0)$ is finite for any non-negative integer *i*, then the formula

$$q^{i}p^{l} \cdot q = \begin{cases} q^{i+1}, & \text{if } l = 0; \\ q^{i}p^{l-1}, & \text{if } l \text{ is a positive integer}, \end{cases}$$
(1)

implies that the right translation $\rho_q: \mathscr{C}^0 \to \mathscr{C}^0: x \mapsto x \cdot q$ shifts all non-zero elements of the neighbourhood $V_q(0)$. Then $U(0) \setminus V_q(0)$ is an infinite subset of $\mathscr{C}(p,q)$, which contradicts Lemma 1(2). Similarly, if the set $\mathscr{C}[p^j] \cap U(0)$ is finite for any non-negative integer j, then the formula

$$p \cdot q^{j} p^{l} = \begin{cases} p^{l+1}, & \text{if } j = 0; \\ q^{j-1} p^{l}, & \text{if } j \text{ is a positive integer,} \end{cases}$$
(2)

implies that the left translation $\lambda_p \colon \mathscr{C}^0 \to \mathscr{C}^0 \colon x \mapsto p \cdot x$ shifts all non-zero elements of the neighbourhood $V_p(0)$. This implies that $U(0) \setminus V_p(0)$ is an infinite subset of $\mathscr{C}(p,q)$, which contradicts Lemma 1(2).

Lemma 3. Let (\mathscr{C}^0, τ) be a locally compact non-discrete semitopological semigroup. Then there exist non-negative integers i and j such that $\mathscr{C}[q^i] \setminus U(0)$ and $\mathscr{C}[p^j] \setminus U(0)$ are finite for every open neighbourhood U(0) of zero 0 in (\mathscr{C}^0, τ) .

Proof. Fix an arbitrary open compact neighbourhood $U_0(0)$ of zero in (\mathscr{C}^0, τ) . Then Lemma 2 implies that there exist non-negative integers *i* and *j* such that both sets $\mathscr{C}[q^i] \cap U_0(0)$ and $\mathscr{C}[p^j] \cap U_0(0)$ are infinite. Let U(0) be an arbitrary open neighbourhood of zero in (\mathscr{C}^0, τ) . By Lemma 1(2), the set $U_0(0) \setminus U(0)$ is finite. By Lemma 1(1), there exists an open compact neighbourhood $U'(0) \subseteq U(0)$ of zero in (\mathscr{C}^0, τ) .

Now, Lemma 1(1) and the separate continuity of the semigroup operation in (\mathscr{C}^0, τ) imply that there exists an open compact neighbourhood V(0) of zero 0 in (\mathscr{C}^0, τ) such that

$$V(0) \subseteq U'(0), \qquad V(0) \cdot q \subseteq U'(0) \quad \text{and} \quad p \cdot V(0) \subseteq U'(0)$$

If the set $\mathscr{C}[q^i] \setminus U(0)$ is infinite, then formula (1) implies that the right translation $\rho_q \colon \mathscr{C}^0 \to \mathscr{C}^0 \colon x \mapsto x \cdot q$ shifts all non-zero elements of the neighbourhood V(0) and hence the inclusion $V(0) \cdot q \subseteq U'(0)$ implies that $U'(0) \setminus V(0)$ is an infinite set, which contradicts Lemma 1(2). Hence the set $\mathscr{C}[q^i] \setminus U(0)$ is finite. Similarly, if the set $\mathscr{C}[p^j] \setminus U(0)$ is infinite, then by formula (2) we have that the left translation $\lambda_p \colon \mathscr{C}^0 \to \mathscr{C}^0 \colon x \mapsto p \cdot x$ shifts all non-zero elements of the neighbourhood V(0) and hence the by inclusion $p \cdot V(0) \subseteq U'(0)$ we obtain that $U'(0) \setminus V(0)$ is an infinite set, which contradicts Lemma 1(2). Therefore, the set $\mathscr{C}[p^j] \setminus U(0)$ is finite as well.

Lemma 4. Let (\mathscr{C}^0, τ) be a locally compact non-discrete semitopological semigroup. Then for every open neighbourhood U(0) of zero 0 in (\mathscr{C}^0, τ) and any non-negative integer i both sets $\mathscr{C}[q^i] \setminus U(0)$ and $\mathscr{C}[p^i] \setminus U(0)$ are finite. Proof. By Lemma 1(1), without loss of generality we may assume that the open neighbourhood U(0) is compact. By Lemma 3 there exists a non-negative integer i_0 such that $\mathscr{C}[q^{i_0}] \setminus U'(0)$ is finite for any open compact neighbourhood U'(0) of zero 0 in (\mathscr{C}^0, τ) .

Fix an arbitrary non-negative integer $i \neq i_0$. If $i < i_0$, then the separate continuity of the semigroup operation in (\mathscr{C}^0, τ) implies that there exists an open compact neighbourhood $V(0) \subseteq U(0)$ of zero 0 in (\mathscr{C}^0, τ) such that $p^{i_0-i} \cdot V(0) \subseteq U(0)$. Then

$$p^{i_0-i} \cdot q^{i_0} p^l = q^i p^l,$$
 for any non-negative integer $l.$ (3)

The set $\mathscr{C}[q^{i_0}] \setminus V(0)$ is finite, and hence by (3) the set $\mathscr{C}[q^i] \setminus U(0) \subseteq \mathscr{C}[q^i] \setminus (p^{i_0-i} \cdot V(0))$ is finite as well.

If $i > i_0$, then the separate continuity of the semigroup operation in (\mathscr{C}^0, τ) implies that there exists an open compact neighbourhood $W(0) \subseteq U(0)$ of zero 0 in (\mathscr{C}^0, τ) such that $q^{i-i_0} \cdot W(0) \subseteq U(0)$. Then

 $q^{i-i_0} \cdot q^{i_0} p^l = q^i p^l, \qquad \text{for any non-negative integer } l, \tag{4}$

The set $\mathscr{C}[q^{i_0}] \setminus W(0)$ is finite, and hence (4) implies that the set $\mathscr{C}[q^i] \setminus U(0) \subseteq \mathscr{C}[q^i] \setminus (q^{i-i_0} \cdot W(0))$ is finite as well.

The proof of finiteness of the set $\mathscr{C}[p^i] \setminus U(0)$ is similar.

Lemma 5. Let (\mathscr{C}^0, τ) be a non-discrete locally compact semitopological semigroup. Then for every open neighbourhood U(0) of zero 0 in (\mathscr{C}^0, τ) the set $\mathscr{C}^0 \setminus U(0)$ is finite.

Proof. Suppose to the contrary that there exists an open neighbourhood U(0) of zero 0 in (\mathscr{C}^0, τ) such that $\mathscr{C}^0 \setminus U(0)$ is infinite. Lemma 1(1) implies that without loss of generality we may assume that the neighbourhood U(0) is compact.

Now, the separate continuity of the semigroup operation in (\mathscr{C}^0, τ) implies that there exists an open neighbourhood $V(0) \subseteq U(0)$ of zero 0 in (\mathscr{C}^0, τ) such that $p \cdot V(0) \subseteq U(0)$. By Lemma 4 for every non-negative integer n both sets $\mathscr{C}[q^n] \setminus U(0)$ and $\mathscr{C}[p^n] \setminus U(0)$ are finite. Thus, the following conditions hold:

- (i) $U(0) \cup \bigcup_{n=0}^{m} (\mathscr{C}[q^n] \cup \mathscr{C}[p^n]) \neq \mathscr{C}^0$ for every positive integer m;
- (ii) for every positive integer k there exists a non-negative integer k_{\max} such that $\{q^k p^j : j \ge k_{\max}\} \subset U(0).$

We have $p \cdot q^k p^l = q^{k-1}p^k$ for any integers $k \ge 1$ and l. This and conditions (i) and (ii) imply that the set $U(0) \setminus V(0)$ is infinite, which contradicts Lemma 1(2). The obtained contradiction implies the statement of the lemma.

The following simple example shows that on the semigroup \mathscr{C}^0 there exists a topology τ_{Ac} such that $(\mathscr{C}^0, \tau_{Ac})$ is a compact semitopological semigroup.

Example 1. On the semigroup \mathscr{C}^0 we define a topology τ_{Ac} in the following way:

- (i) every element of the bicyclic monoid $\mathscr{C}(p,q)$ is an isolated point in the space $(\mathscr{C}^0, \tau_{\mathsf{Ac}});$
- (ii) the family $\mathscr{B}(0) = \{ U \subseteq \mathscr{C}^0 \colon U \ni 0 \text{ and } \mathscr{C}(p,q) \setminus U \text{ is finite} \}$ determines a base of the topology τ_{Ac} at zero $0 \in \mathscr{C}^0$,

i.e., τ_{Ac} is the topology of the Alexandroff one-point compactification of the discrete space $\mathscr{C}(p,q)$ with the remainder {0}. The semigroup operation in $(\mathscr{C}^0, \tau_{Ac})$ is separately

continuous, because all elements of the bicyclic semigroup $\mathscr{C}(p,q)$ are isolated points in the space $(\mathscr{C}^0, \tau_{Ac})$.

Remark 1. In [6] Bertman and West showed that the discrete topology τ_{d} is a unique topology on the bicyclic monoid $\mathscr{C}(p,q)$ such that $\mathscr{C}(p,q)$ is a semitopological semigroup. So τ_{Ac} is the unique compact topology on \mathscr{C}^{0} such that $(\mathscr{C}^{0}, \tau_{Ac})$ is a compact semitopological semigroup.

Lemma 5 and Remark 1 imply the following dichotomy for a locally compact semitopological semigroup \mathscr{C}^0 .

Theorem 1. If \mathscr{C}^0 is a Hausdorff locally compact semitopological semigroup, then either \mathscr{C}^0 is discrete or \mathscr{C}^0 is topologically isomorphic to $(\mathscr{C}^0, \tau_{Ac})$.

Since the bicyclic monoid $\mathscr{C}(p,q)$ does not embeds into any Hausdorff compact topological semigroup [2], Theorem 1 implies the following corollary.

Corollary 1. If \mathcal{C}^0 is a Hausdorff locally compact semitopological semigroup, then \mathcal{C}^0 is discrete.

The following example shows that a counterpart of the statement of Corollary 1 does not hold when \mathscr{C}^0 is a Čech-complete metrizable topological inverse semigroup.

Example 2. On the semigroup \mathscr{C}^0 we define a topology τ_1 in the following way:

- (i) every element of the bicyclic monoid $\mathscr{C}(p,q)$ is an isolated point in the space (\mathscr{C}^0, τ_1) ;
- (*ii*) the family $\mathscr{B}(0) = \{U_n : n = 0, 1, 2, 3, ...\},$ where

$$U_n = \{0\} \cup \left\{q^i p^j \in \mathscr{C}(p,q) \colon i, j > n\right\},\$$

determines a base of the topology τ_1 at zero $0 \in \mathscr{C}^0$.

It is obvious that (\mathscr{C}^0, τ_1) is first countable space and the arguments presented in [12, p. 68] show that (\mathscr{C}^0, τ_1) is a Hausdorff topological inverse semigroup.

First we observe that each element of the family $\mathscr{B}(0)$ is an open closed subset of (\mathscr{C}^0, τ_1) , and hence the space (\mathscr{C}^0, τ_1) is regular. Since the set \mathscr{C}^0 is countable, the definition of the topology τ_1 implies that (\mathscr{C}^0, τ_1) is second countable, and hence by Theorem 4.2.9 from [10] the space (\mathscr{C}^0, τ_1) is metrizable. Also, it is obvious that the space (\mathscr{C}^0, τ_1) is Čech-complete, as a union two Čech-complete spaces: that are the discrete space $\mathscr{C}(p, q)$ and the singleton space $\{0\}$.

3. On a locally compact semitopological bicyclic semigroup with an adjoined compact ideal

Later we need the following notions. A continuous map $f: X \to Y$ from a topological space X into a topological space Y is called:

- quotient if the set $f^{-1}(U)$ is open in X if and only if U is open in Y (see [22] and [10, Section 2.4]);
- hereditarily quotient or pseudoopen if for every B ⊂ Y the restriction f|_B: f⁻¹(B)
 → B of f is a quotient map (see [20, 21, 3] and [10, Section 2.4]);
- closed if f(F) is closed in Y for every closed subset F in X;

• *perfect* if X is Hausdorff, f is a closed map and all fibers $f^{-1}(y)$ are compact subsets of X [25].

Every closed map and every hereditarily quotient map are quotient [10]. Moreover, a continuous map $f: X \to Y$ from a topological space X onto a topological space Y is hereditarily quotient if and only if for every $y \in Y$ and every open subset U in X which contains $f^{-1}(y)$ we have that $y \in \operatorname{int}_Y(f(U))$ (see [10, 2.4.F]).

Later we need the following trivial lemma, which follows from separate continuity of the semigroup operation in semitopological semigroups.

Lemma 6. Let S be a Hausdorff semitopological semigroup and I be a compact ideal in S. Then the Rees-quotient semigroup S/I with the quotient topology is a Hausdorff semitopological semigroup.

Theorem 2. Let (\mathscr{C}_I, τ) be a Hausdorff locally compact semitopological semigroup, $\mathscr{C}_I = \mathscr{C}(p,q) \sqcup I$ and I is a compact ideal of \mathscr{C}_I . Then either (\mathscr{C}_I, τ) is a compact semitopological semigroup or the ideal I open.

Proof. Suppose that I is not open. By Lemma 6 the Rees-quotient semigroup \mathscr{C}_I/I with the quotient topology τ_q is a semitopological semigroup. Let $\pi: \mathscr{C}_I \to \mathscr{C}_I/I$ be the natural homomorphism which is a quotient map. It is obvious that the Rees-quotient semigroup \mathscr{C}_I/I is isomorphic to the semigroup \mathscr{C}^0 and the image $\pi(I)$ is zero of \mathscr{C}^0 . Now we shall show that the natural homomorphism $\pi: \mathscr{C}_I \to \mathscr{C}_I/I$ is a hereditarily quotient map. Since $\pi(\mathscr{C}(p,q))$ is a discrete subspace of $(\mathscr{C}_I/I, \tau_q)$, it is sufficient to show that for every open neighbourhood U(I) of the ideal I in the space (\mathscr{C}_I, τ) we have that the image $\pi(U(I))$ is an open neighbourhood of the zero 0 in the space $(\mathscr{C}_I/I, \tau_q)$. Indeed, $\mathscr{C}_I \setminus U(I)$ is a closed-and-open subset of (\mathscr{C}_I, τ) , because the elements of the bicyclic monoid $\mathscr{C}(p,q)$ are isolated point of (\mathscr{C}_I, τ) . Also, since the restriction $\pi|_{\mathscr{C}(p,q)} : \mathscr{C}(p,q) \to \pi(\mathscr{C}(p,q))$ of the natural homomorphism $\pi: \mathscr{C}_I \to \mathscr{C}_I/I$ is one-to-one, $\pi(\mathscr{C}_I \setminus U(I))$ is a closedand-open subset of $(\mathscr{C}_I/I, \tau_q)$. So $\pi(U(I))$ is an open neighbourhood of the zero 0 of the semigroup $(\mathscr{C}_I/I, \tau_q)$, and hence the natural homomorphism $\pi : \mathscr{C}_I \to \mathscr{C}_I/I$ is a hereditarily quotient map. Since I is a compact ideal of the semitopological semigroup $(\mathscr{C}_I, \tau), \pi^{-1}(y)$ is a compact subset of (\mathscr{C}_I, τ) for every $y \in \mathscr{C}_I/I$. By Din' N'e T'ong's Theorem (see [9] or [10, 3.7.E]), $(\mathscr{C}_I/I, \tau_q)$ is a Hausdorff locally compact space. If I is not open then by Theorem 1 the semitopological semigroup $(\mathscr{C}_I/I, \tau_q)$ is topologically isomorphic to $(\mathscr{C}^0, \tau_{Ac})$ and hence it is compact. Next we shall prove that the space (\mathscr{C}_{I},τ) is compact. Let $\mathscr{U} = \{U_{\alpha}: \alpha \in \mathscr{I}\}$ be an arbitrary open cover of (\mathscr{C}_{I},τ) . Since I is compact, there exist $U_{\alpha_1}, \ldots, U_{\alpha_n} \in \mathscr{U}$ such that $I \subseteq U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$. Put U = $U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$. Then $\mathscr{C}_I \setminus U$ is a closed-and-open subset of (\mathscr{C}_I, τ) . Also, since the restriction $\pi|_{\mathscr{C}(p,q)} : \mathscr{C}(p,q) \to \pi(\mathscr{C}(p,q))$ of the natural homomorphism $\pi : \mathscr{C}_I \to \mathscr{C}_I/I$ is one-to-one, $\pi(\mathscr{C}_I \setminus U(I))$ is a closed-and-open subset of $(\mathscr{C}_I/I, \tau_q)$, and hence the image $\pi(\mathscr{C}_I \setminus U(I))$ is finite, because the semigroup $(\mathscr{C}_I / I, \tau_q)$ is compact. Thus, the set $\mathscr{C}_I \setminus U$ is finite and hence the space (\mathscr{C}_{I}, τ) is compact as well.

Corollary 2. If (\mathscr{C}_I, τ) is a locally compact topology topological semigroup, $\mathscr{C}_I = \mathscr{C}(p, q) \sqcup$ I and I is a compact ideal of \mathscr{C}_I , then the ideal I is open.

ACKNOWLEDGEMENTS

The author acknowledges T. Banakh and A. Ravsky for their comments and suggestions.

References

- 1. Andersen O. Ein Bericht über die Struktur abstrakter Halbgruppen /O. Andersen// PhD Thesis, Hamburg, 1952.
- Anderson L.W. Some results on stability in semigroups / L.W. Anderson, R.P. Hunter, R.J. Koch// Trans. Amer. Math. Soc. - 1965. - Vol. 117. - P. 521-529.
- Arkhangel'skiĭ A. V. Bicompact sets and the topology of spaces / A.V. Arkhangel'skiĭ// Dokl. Akad. Nauk SSSR - 1963. - Vol. 150. - P. 9--12 (in Russian); English version in: Soviet Math. Dokl. - 1963. - Vol. 4. - P. 561-564.
- Banakh T. The Rees-Suschkiewitsch Theorem for simple topological semigroups / T. Banakh, S. Dimitrova, O. Gutik// Mat. Stud. - 2009. - Vol. 31, №2. - P. 211-218.
- Banakh T. Embedding the bicyclic semigroup into countably compact topological semigroups / T. Banakh, S. Dimitrova, O. Gutik// Topology Appl. - 2010. - Vol. 157, №18. -P. 2803-2814.
- Bertman M.O. Conditionally compact bicyclic semitopological semigroups / M.O. Bertman, T.T. West// Proc. Roy. Irish Acad. - 1976. - Vol. A76, №21-23. - P. 219-226.
- 7. Carruth J.H. The theory of topological semigroups / J.H. Carruth, J.A. Hildebrant, R.J. Koch. Vols. I and II. New York and Basel: Marcell Dekker, Inc., 1983 and 1986.
- 8. Clifford A. H. The algebraic theory of semigroups / A.H. Clifford, G.B. Preston. Vols. I and II. Providence, R.I.: Amer. Math. Soc. Surveys 7, 1961 and 1967.
- T'ong D.N. Preclosed mappings and A. D. Taĭmanov's theorem / Din' N'e T'ong// Dokl. Akad. Nauk SSSR - 1963. - Vol. 152. - P. 525-528 (in Russian); English version in: Soviet Math. Dokl. - 1963. - Vol. 4. - P. 1335-1338.
- 10. Engelking R. General topology / R. Engelking. 2nd ed. Berlin: Heldermann, 1989.
- Eberhart C. On the closure of the bicyclic semigroup / C. Eberhart, J. Selden// Trans. Amer. Math. Soc. - 1969. - Vol. 144. - P. 115-126.
- Gutik O.V. Any topological semigroup topologically isomorphically embeds into a simple path-connected topological semigroup / O.V. Gutik// In: Algebra and Topology, Lviv Univ. Press - 1969. - P. 65-73, (in Ukrainian).
- Gutik O. On countably compact 0-simple topological inverse semigroups / O. Gutik, D. Repovš// Semigroup Forum - 2007. - Vol. 75, №2. - P. 464-469.
- 14. Hewitt E. Compact monothetic semigroups / E. Hewitt// Duke Math. J. 1956. Vol. 23, Nº 3. P. 447–457.
- Hildebrant J.A. Swelling actions of Γ-compact semigroups / J.A. Hildebrant, R.J. Koch// Semigroup Forum 1986. Vol. 33, №1. P. 65-85.
- Hofmann K.H. Topologische Halbgruppen mit dichter submonoger Untenhalbgruppe / K.H. Hofmann// Math. Zeit. - 1974. - Vol. 74. - P. 232-276.
- 17. Hofmann K.H. Elements of compact semigroups / K.H. Hofmann, P.S. Mostert. Columbus: Chas. E. Merrill Co., 1966.
- 18. Koch R.J. On monothetic semigroups / R.J. Koch// Proc. Amer. Math. Soc. 1957. Vol. 8, Nº2. P. 397–401.
- Koch R.J. Some open questions in topological semigroups / R.J. Koch// Anais Acad. Brasil. Ci. - 1969. - Vol. 41, №1. - P. 19-20.
- McDougle P. A theorem on quasi-compact mappings / P. McDougle// Proc. Amer. Math. Soc. - 1958. - Vol. 9, №3. - P. 474-477.

- McDougle P. Mapping and space relations / P. McDougle// Proc. Amer. Math. Soc. 1959.
 Vol. 10, №2. P. 320-323.
- Moore R.L. Concerning upper semi-continuous collections of continua / R.L. Moore// Trans. Amer. Math. Soc. - 1925. - Vol. 27. - P. 416-428.
- Numakura K. On bicompact semigroups / K. Numakura// Math. J. Okayama Univ. 1952.
 Vol. 1. P. 99-108.
- Ruppert W. Compact semitopological semigroups: an intrinsic theory / W. Ruppert. Lect. Notes Math. 1079. - Berlin: Springer, 1984.
- 25. Vainštein I.A. On closed mappings of metrc spaces / I.A. Vainštein// Dokl. Akad. Nauk SSSR 1947. Vol. 57. P. 319-321 (in Russian).
- 26. Weil A. L'integration dans les groupes lopologiques et ses applications / A. Weil. Actualites Scientifiques No. 869, Paris: Hermann, 1938.
- Zelenyuk E.G. On Pontryagin's alternative for topological semigroups / E.G. Zelenyuk// Mat. Zametki – 1988. – Vol. 44, №3. – P. 402-403 (in Russian).

Стаття: надійшла до редколегії 10.09.2015 доопрацьована 04.11.2015 прийнята до друку 11.11.2015

ПРО ДИХОТОМІЮ ЛОКАЛЬНО КОМПАКТНОГО НАПІВТОПОЛОГІЧНОГО БІЦИКЛІЧНОГО МОНОЇДА З ПРИЄДНАНИМ НУЛЕМ

Олег ГУТІК

Львівський національний університет імені Івана Франка, вул. Університетська 1, Львів, 79000

Доведено таке: що гаусдорфова локально компактна напівтопологічна біциклічна напівгрупа з приєднаним нулем \mathscr{C}^0 є або компактною, або дискретною. Також доведено, що аналогічне твердження виконується для локально компактного напівтопологічного біциклічного моноїда з приєднаним компактним ідеалом, і побудовано приклад, який доводить, що аналог цих тверджень не виконується, коли \mathscr{C}^0 — повна за Чехом метризовна топологічна інверсна напівгрупа.

Ключові слова: напівгрупа, напівтопологічна напівгрупа, топологічна напівгрупа, біциклічний моноїд, локально компактний простір, повний за Чехом простір, метризовний простір, нуль, компактний ідеал.