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1. Introduction and preliminaries

Further we shall follow the terminology of [7, 8, 10, 24]. Given a semigroup S, we
shall denote the set of idempotents of S by E(S). A semigroup S with the adjoined zero
will be denoted by S0 (cf. [8]).

A semigroup S is called inverse if for every x ∈ S there exists a unique y ∈ S such
that xyx = x and yxy = y. Later such an element y will be denoted by x−1 and will be
called the inverse of x. A map inv : S → S which assigns to every s ∈ S its inverse is
called inversion.

In this paper all topological spaces are Hausdor�. If Y is a subspace of a topological
space X and A ⊆ Y , then by clY (A) we denote the topological closure of A in Y .

A semitopological (topological) semigroup is a topological space with separately
continuous (jointly continuous) semigroup operations. An inverse topological semigroup
with continuous inversion is called a topological inverse semigroup.

We recall that a topological space X is:

• locally compact if every point x of X has an open neighbourhood U(x) with the
compact closure clX(U(x));
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• �Cech-complete if X is Tychono� and there exists a compacti�cation cX of X
such that the remainder cX \ c(X) is an Fσ-set in cX.

The bicyclic semigroup (or the bicyclic monoid) C (p, q) is a semigroup with the
identity 1 generated by two elements p and q with only one condition pq = 1. The
distinct elements of the bicyclic monoid are exhibited in the following array:

1 p p2 p3 · · ·
q qp qp2 qp3 · · ·
q2 q2p q2p2 q2p3 · · ·
q3 q3p q3p2 q3p3 · · ·
...

...
...

...
. . .

The bicyclic monoid is a combinatorial bisimple F -inverse semigroup and it plays an
important role in the algebraic theory of semigroups and in the theory of topological
semigroups. For example the well-known Andersen's result [1] states that a (0�)simple
semigroup with an idempotent is completely (0�)simple if and only if it does not contain
an isomorphic copy of the bicyclic semigroup. The bicyclic semigroup admits only the
discrete semigroup topology and if a topological semigroup S contains it as a dense
subsemigroup then C (p, q) is an open subset of S [11]. Bertman and West in [6] extended
this result for the case of semitopological semigroups. Stable and Γ-compact topological
semigroups do not contain the bicyclic semigroup [2, 15]. The problem of an embedding
of the bicyclic monoid into compact-like topological semigroups is discussed in [4, 5, 13].

In [11] Eberhart and Selden proved that if the bicyclic monoid C (p, q) is a dense
subsemigroup of a topological monoid S and I = S \ C (p, q) ̸= ∅ then I is a two-sided
ideal of the semigroup S. Also, there they described the closure of the bicyclic monoid
C (p, q) in a locally compact topological inverse semigroup. The closure of the bicyclic
monoid in a countably compact (pseudocompact) topological semigroups was studied
in [5].

The well known A. Weil Theorem states that every locally compact monothetic

topological group G (i.e., G contains a cyclic dense subgroup) is either compact or di-

screte (see [26]). Locally compact and compact monothetic topological semigroups was
studied by Hewitt [14], Hofmann [16], Koch [18], Numakura [23] and others (see more
information on this topics in the books [7] and [17]). Koch in [19] posed the following
problem: �If S is a locally compact monothetic semigroup and S has an identity, must S
be compact? � (see [7, Vol. 2, p. 144]). From the other side, Zelenyuk in [27] constructed a
countable locally compact topological semigroup without unit which is neither compact
nor discrete.

In this paper we prove that a Hausdor� locally compact semitopological bicyclic
semigroup with adjoined zero C 0 is either compact or discrete. Also we show that the
similar statement holds for a locally compact semitopological bicyclic semigroup with an
adjoined compact ideal and construct an example which witnesses that a counterpart of
the statements does not hold when C 0 is a �Cech-complete metrizable topological inverse
semigroup.
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2. On a locally compact semitopological bicyclic semigroup with

adjoined zero

The following proposition generalizes Theorem I.3 from [11].

Proposition 1. If the bicyclic monoid C (p, q) is a dense subsemigroup of a semitopologi-

cal monoid S and I = S \ C (p, q) ̸= ∅ then I is a two-sided ideal of the semigroup S.

Proof. Fix an arbitrary element y ∈ I. If xy = z /∈ I for some x ∈ C (p, q) then
there exists an open neighbourhood U(y) of the point y in the space S such that
{x} · U(y) = {z} ⊂ C (p, q). The neighbourhood U(y) contains in�nitely many elements
of the semigroup C (p, q). This contradicts Lemma I.1 [11], which states that for each
v, w ∈ C (p, q) both sets {u ∈ C (p, q) : vu = w} and {u ∈ C (p, q) : uv = w} are �nite.
The obtained contradiction implies that xy ∈ I for all x ∈ C (p, q) and y ∈ I. The proof
of the statement that yx ∈ I for all x ∈ C (p, q) and y ∈ I is similar.

Suppose to the contrary that xy = w /∈ I for some x, y ∈ I. Then w ∈ C (p, q)
and the separate continuity of the semigroup operation in S implies that there exist
open neighbourhoods U(x) and U(y) of the points x and y in S, respectively, such that
{x}·U(y) = {w} and U(x)·{y} = {w}. Since both neighbourhoods U(x) and U(y) contain
in�nitely many elements of the semigroup C (p, q), both equalities {x} · U(y) = {w}
and U(x) · {y} = {w} contradict mentioned above Lemma I.1 from [11]. The obtained
contradiction implies that xy ∈ I.

For every non-negative integer n we put

C [qn] =
{
qnpi ∈ C (p, q) : i = 0, 1, 2, . . .

}
and C [pn] =

{
qipn ∈ C (p, q) : i = 0, 1, 2, . . .

}
.

Lemma 1. Let (C 0, τ) be a locally compact semitopological semigroup. Then the following

assertions hold:

(1) for every open neighbourhood U(0) of zero in (C 0, τ) there exists an open compact

neighbourhood V (0) of zero in (C 0, τ) such that V (0) ⊆ U(0);
(2) for every open compact neighbourhood U(0) of zero in (C 0, τ) and every open

neighbourhood V (0) of zero in (C 0, τ) the set U(0) ∩ V (0) is compact and open,

and the set U(0) \ V (0) is �nite.

Proof. The statements of the lemma are trivial in the case when τ is the discrete topology
on C 0, and hence later we shall assume that the topology τ is non-discrete.

(1) Let U(0) be an arbitrary open neighbourhood of zero in (C 0, τ). By Theorem 3.3.1
from [10] the space (C 0, τ) is regular. Since it is locally compact, there exists an open
neighbourhood V (0) ⊆ U(0) of zero in (C 0, τ) such that clC 0(V (0)) ⊆ U(0). Since all
non-zero elements of the semigroup C 0 are isolated points in (C 0, τ), clC 0(V (0)) = V (0),
and hence our assertion holds.

(2) Let U(0) be an arbitrary compact open neighbourhood of zero in (C 0, τ). Then
for an arbitrary open neighbourhood V (0) of zero in (C 0, τ) the family

U = {V (0), {{x} : x ∈ U(0) \ V (0)}}

is an open cover of U(0). Since the family U is disjoint, it is �nite. So the set U(0)\V (0)
is �nite and the set U(0) ∩ V (0) is compact.
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Lemma 2. If (C 0, τ) is a locally compact non-discrete semitopological semigroup, then

for each open neighbourhood U(0) of zero in (C 0, τ) there exist non-negative integers i
and j such that both sets C [qi] ∩ U(0) and C [pj ] ∩ U(0) are in�nite.

Proof. By Lemma 1(1), without loss of generality we may assume that U(0) is a compact
open neighbourhood of zero 0 in (C 0, τ). Put

Vq(0) = {x ∈ U(0) : x · q ∈ U(0)} and Vp(0) = {x ∈ U(0) : p · x ∈ U(0)} .
If the set C [qi] ∩ U(0) is �nite for any non-negative integer i, then the formula

qipl · q =

{
qi+1, if l = 0;
qipl−1, if l is a positive integer,

(1)

implies that the right translation ρq : C 0 → C 0 : x 7→ x · q shifts all non-zero elements
of the neighbourhood Vq(0). Then U(0) \ Vq(0) is an in�nite subset of C (p, q), which
contradicts Lemma 1(2). Similarly, if the set C [pj ] ∩ U(0) is �nite for any non-negative
integer j, then the formula

p · qjpl =
{

pl+1, if j = 0;
qj−1pl, if j is a positive integer,

(2)

implies that the left translation λp : C 0 → C 0 : x 7→ p · x shifts all non-zero elements of
the neighbourhood Vp(0). This implies that U(0) \ Vp(0) is an in�nite subset of C (p, q),
which contradicts Lemma 1(2).

Lemma 3. Let (C 0, τ) be a locally compact non-discrete semitopological semigroup. Then

there exist non-negative integers i and j such that C [qi]\U(0) and C [pj ]\U(0) are �nite
for every open neighbourhood U(0) of zero 0 in (C 0, τ).

Proof. Fix an arbitrary open compact neighbourhood U0(0) of zero in (C 0, τ). Then
Lemma 2 implies that there exist non-negative integers i and j such that both sets
C [qi]∩U0(0) and C [pj ]∩U0(0) are in�nite. Let U(0) be an arbitrary open neighbourhood
of zero in (C 0, τ). By Lemma 1(2), the set U0(0) \ U(0) is �nite. By Lemma 1(1), there
exists an open compact neighbourhood U ′(0) ⊆ U(0) of zero in (C 0, τ).

Now, Lemma 1(1) and the separate continuity of the semigroup operation in (C 0, τ)
imply that there exists an open compact neighbourhood V (0) of zero 0 in (C 0, τ) such
that

V (0) ⊆ U ′(0), V (0) · q ⊆ U ′(0) and p · V (0) ⊆ U ′(0).

If the set C [qi] \ U(0) is in�nite, then formula (1) implies that the right translation
ρq : C 0 → C 0 : x 7→ x·q shifts all non-zero elements of the neighbourhood V (0) and hence
the inclusion V (0)·q ⊆ U ′(0) implies that U ′(0)\V (0) is an in�nite set, which contradicts
Lemma 1(2). Hence the set C [qi]\U(0) is �nite. Similarly, if the set C [pj ]\U(0) is in�nite,
then by formula (2) we have that the left translation λp : C 0 → C 0 : x 7→ p · x shifts all
non-zero elements of the neighbourhood V (0) and hence the by inclusion p ·V (0) ⊆ U ′(0)
we obtain that U ′(0) \ V (0) is an in�nite set, which contradicts Lemma 1(2). Therefore,
the set C [pj ] \ U(0) is �nite as well.

Lemma 4. Let (C 0, τ) be a locally compact non-discrete semitopological semigroup. Then

for every open neighbourhood U(0) of zero 0 in (C 0, τ) and any non-negative integer i
both sets C [qi] \ U(0) and C [pi] \ U(0) are �nite.
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Proof. By Lemma 1(1), without loss of generality we may assume that the open nei-
ghbourhood U(0) is compact. By Lemma 3 there exists a non-negative integer i0 such
that C [qi0 ]\U ′(0) is �nite for any open compact neighbourhood U ′(0) of zero 0 in (C 0, τ).

Fix an arbitrary non-negative integer i ̸= i0. If i < i0, then the separate conti-
nuity of the semigroup operation in (C 0, τ) implies that there exists an open compact
neighbourhood V (0) ⊆ U(0) of zero 0 in (C 0, τ) such that pi0−i · V (0) ⊆ U(0). Then

pi0−i · qi0pl = qipl, for any non-negative integer l. (3)

The set C [qi0 ]\V (0) is �nite, and hence by (3) the set C [qi]\U(0) ⊆ C [qi]\
(
pi0−i · V (0)

)
is �nite as well.

If i > i0, then the separate continuity of the semigroup operation in (C 0, τ) implies
that there exists an open compact neighbourhood W (0) ⊆ U(0) of zero 0 in (C 0, τ) such
that qi−i0 ·W (0) ⊆ U(0). Then

qi−i0 · qi0pl = qipl, for any non-negative integer l, (4)

The set C [qi0 ] \W (0) is �nite, and hence (4) implies that the set C [qi] \ U(0) ⊆ C [qi] \(
qi−i0 ·W (0)

)
is �nite as well.

The proof of �niteness of the set C [pi] \ U(0) is similar.

Lemma 5. Let (C 0, τ) be a non-discrete locally compact semitopological semigroup. Then

for every open neighbourhood U(0) of zero 0 in (C 0, τ) the set C 0 \ U(0) is �nite.

Proof. Suppose to the contrary that there exists an open neighbourhood U(0) of zero 0 in
(C 0, τ) such that C 0 \U(0) is in�nite. Lemma 1(1) implies that without loss of generality
we may assume that the neighbourhood U(0) is compact.

Now, the separate continuity of the semigroup operation in (C 0, τ) implies that there
exists an open neighbourhood V (0) ⊆ U(0) of zero 0 in (C 0, τ) such that p ·V (0) ⊆ U(0).
By Lemma 4 for every non-negative integer n both sets C [qn] \ U(0) and C [pn] \ U(0)
are �nite. Thus, the following conditions hold:

(i) U(0) ∪
∪m

n=0 (C [qn] ∪ C [pn]) ̸= C 0 for every positive integer m;
(ii) for every positive integer k there exists a non-negative integer kmax such that{

qkpj : j > kmax
}
⊂ U(0).

We have p · qkpl = qk−1pk for any integers k > 1 and l. This and conditions (i) and (ii)
imply that the set U(0) \ V (0) is in�nite, which contradicts Lemma 1(2). The obtained
contradiction implies the statement of the lemma.

The following simple example shows that on the semigroup C 0 there exists a
topology τAc such that (C 0, τAc) is a compact semitopological semigroup.

Example 1. On the semigroup C 0 we de�ne a topology τAc in the following way:

(i) every element of the bicyclic monoid C (p, q) is an isolated point in the space
(C 0, τAc);

(ii) the family B(0) =
{
U ⊆ C 0 : U ∋ 0 and C (p, q) \ U is �nite

}
determines a base

of the topology τAc at zero 0 ∈ C 0,

i.e., τAc is the topology of the Alexandro� one-point compacti�cation of the discrete
space C (p, q) with the remainder {0}. The semigroup operation in (C 0, τAc) is separately
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continuous, because all elements of the bicyclic semigroup C (p, q) are isolated points in
the space (C 0, τAc).

Remark 1. In [6] Bertman and West showed that the discrete topology τd is a unique
topology on the bicyclic monoid C (p, q) such that C (p, q) is a semitopological semi-
group. So τAc is the unique compact topology on C 0 such that (C 0, τAc) is a compact
semitopological semigroup.

Lemma 5 and Remark 1 imply the following dichotomy for a locally compact semi-
topological semigroup C 0.

Theorem 1. If C 0 is a Hausdor� locally compact semitopological semigroup, then either

C 0 is discrete or C 0 is topologically isomorphic to (C 0, τAc).

Since the bicyclic monoid C (p, q) does not embeds into any Hausdor� compact
topological semigroup [2], Theorem 1 implies the following corollary.

Corollary 1. If C 0 is a Hausdor� locally compact semitopological semigroup, then C 0

is discrete.

The following example shows that a counterpart of the statement of Corollary 1
does not hold when C 0 is a �Cech-complete metrizable topological inverse semigroup.

Example 2. On the semigroup C 0 we de�ne a topology τ1 in the following way:

(i) every element of the bicyclic monoid C (p, q) is an isolated point in the space
(C 0, τ1);

(ii) the family B(0) = {Un : n = 0, 1, 2, 3, . . .}, where

Un = {0} ∪
{
qipj ∈ C (p, q) : i, j > n

}
,

determines a base of the topology τ1 at zero 0 ∈ C 0.

It is obvious that (C 0, τ1) is �rst countable space and the arguments presented in [12,
p. 68] show that (C 0, τ1) is a Hausdor� topological inverse semigroup.

First we observe that each element of the family B(0) is an open closed subset
of (C 0, τ1), and hence the space (C 0, τ1) is regular. Since the set C 0 is countable, the
de�nition of the topology τ1 implies that (C 0, τ1) is second countable, and hence by
Theorem 4.2.9 from [10] the space (C 0, τ1) is metrizable. Also, it is obvious that the space
(C 0, τ1) is �Cech-complete, as a union two �Cech-complete spaces: that are the discrete
space C (p, q) and the singleton space {0}.

3. On a locally compact semitopological bicyclic semigroup with an

adjoined compact ideal

Later we need the following notions. A continuous map f : X → Y from a topological
space X into a topological space Y is called:

• quotient if the set f−1(U) is open in X if and only if U is open in Y (see [22]
and [10, Section 2.4]);

• hereditarily quotient or pseudoopen if for everyB ⊂ Y the restriction f |B : f−1(B)
→ B of f is a quotient map (see [20, 21, 3] and [10, Section 2.4]);

• closed if f(F ) is closed in Y for every closed subset F in X;
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• perfect if X is Hausdor�, f is a closed map and all �bers f−1(y) are compact
subsets of X [25].

Every closed map and every hereditarily quotient map are quotient [10]. Moreover, a
continuous map f : X → Y from a topological space X onto a topological space Y is
hereditarily quotient if and only if for every y ∈ Y and every open subset U in X which
contains f−1(y) we have that y ∈ intY (f(U)) (see [10, 2.4.F]).

Later we need the following trivial lemma, which follows from separate continuity
of the semigroup operation in semitopological semigroups.

Lemma 6. Let S be a Hausdor� semitopological semigroup and I be a compact ideal

in S. Then the Rees-quotient semigroup S/I with the quotient topology is a Hausdor�

semitopological semigroup.

Theorem 2. Let (CI , τ) be a Hausdor� locally compact semitopological semigroup, CI =
C (p, q)⊔I and I is a compact ideal of CI . Then either (CI , τ) is a compact semitopological

semigroup or the ideal I open.

Proof. Suppose that I is not open. By Lemma 6 the Rees-quotient semigroup CI/I with
the quotient topology τq is a semitopological semigroup. Let π : CI → CI/I be the natural
homomorphism which is a quotient map. It is obvious that the Rees-quotient semigroup
CI/I is isomorphic to the semigroup C 0 and the image π(I) is zero of C 0. Now we shall
show that the natural homomorphism π : CI → CI/I is a hereditarily quotient map. Since
π(C (p, q)) is a discrete subspace of (CI/I, τq), it is su�cient to show that for every open
neighbourhood U(I) of the ideal I in the space (CI , τ) we have that the image π(U(I))
is an open neighbourhood of the zero 0 in the space (CI/I, τq). Indeed, CI \ U(I) is a
closed-and-open subset of (CI , τ), because the elements of the bicyclic monoid C (p, q)
are isolated point of (CI , τ). Also, since the restriction π|C (p,q) : C (p, q) → π(C (p, q))
of the natural homomorphism π : CI → CI/I is one-to-one, π(CI \ U(I)) is a closed-
and-open subset of (CI/I, τq). So π(U(I)) is an open neighbourhood of the zero 0 of
the semigroup (CI/I, τq), and hence the natural homomorphism π : CI → CI/I is a
hereditarily quotient map. Since I is a compact ideal of the semitopological semigroup
(CI , τ), π

−1(y) is a compact subset of (CI , τ) for every y ∈ CI/I. By Din' N'e T'ong's
Theorem (see [9] or [10, 3.7.E]), (CI/I, τq) is a Hausdor� locally compact space. If I is
not open then by Theorem 1 the semitopological semigroup (CI/I, τq) is topologically
isomorphic to (C 0, τAc) and hence it is compact. Next we shall prove that the space
(CI , τ) is compact. Let U = {Uα : α ∈ I } be an arbitrary open cover of (CI , τ). Since
I is compact, there exist Uα1 , . . . , Uαn ∈ U such that I ⊆ Uα1 ∪ · · · ∪ Uαn . Put U =
Uα1 ∪ · · · ∪ Uαn . Then CI \ U is a closed-and-open subset of (CI , τ). Also, since the
restriction π|C (p,q) : C (p, q) → π(C (p, q)) of the natural homomorphism π : CI → CI/I is
one-to-one, π(CI \ U(I)) is a closed-and-open subset of (CI/I, τq), and hence the image
π(CI \U(I)) is �nite, because the semigroup (CI/I, τq) is compact. Thus, the set CI \U
is �nite and hence the space (CI , τ) is compact as well.

Corollary 2. If (CI , τ) is a locally compact topology topological semigroup, CI = C (p, q)⊔
I and I is a compact ideal of CI , then the ideal I is open.
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