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ON THE RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES
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Let A = (An) be an increasing to +o0o sequence of non-negative numbers,

S(A) be a class of entire Dirichlet series F'(s) = Z frnexp{si.} and Mp(o) =
n=1

sup{|F(c 4+ it)| : ¢ € R}. By L we denote a class of continuous non-negative

on (—oo, +o0) functions « such that a(z) = a(zg) > 0 for z < zp and

a(z) T +oo as o <z — +oo. For a € L, B € L and F € S(A) the quantities

0uplF] = Tm_a(ln Mp(0))/8(0) and Aas[F] = lim_a(in Mx(0))/B(0)

o—+o00
are called the generalized (a, 8)-order and the generalized lower («, 3)-order
of F. Define the generalized («, 8)-order and the generalized lower («, 8)-order

of the function F' € S(A) with respect to a function G(s) = io: gn exp{sin} €
S(A) as follows gas[Flc = UETFOO Oé(Mél(MF(rf)))/ﬂ(ff)n:rlld AaslFla =
lim_a(Mg! (Mr(0))/3(0).

Under the condition 0 < Aq,a[G] = 0a,a|G] < +00, formulas have been found
for calculating ga,g[F|c and Ao g[F]c through the coefficients f, and gn.

Key words: Dirichlet series, relative growth, generalized order.

2020 Mathematics Subject Classification: 30B50
© Mulyava, O.; Sheremeta, M., 2023



Oksana MULYAVA, Myroslav SHEREMETA
74 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2023. Bumyck 95

1. INTRODUCTION

Let f and g be entire transcendental functions and M(r) = max{|f(z)| : |z| = r}.
For the study of relative growth of the functions f and g Ch. Roy [1] used the order

= In M (My(r))

9 [f] - rEEloo Inr
and the lower order
In MY (M
Mlf = i e M)
r—+o00 Inr

of the function f with respect to the function g. Research of relative growth of entire
functions was continued by S.K. Data, T. Biswas and other mathematicians (see, for
example, [2 - 5]) in terms of maximal terms, Nevanlinna characteristic function and k-
logarithmic orders. In [6] it is considered a relative growth of entire functions of two
complex variables and in [7] the relative growth of entire Dirichlet series is studied in the
terms of R-orders.

Suppose that A = ()\,) is an increasing to 400 sequence of non-negative numbers
and by S(A) we denote a class of entire Dirichlet series

(1) F(s) =Y foexp{sh,}, s=o+it.

n=1
For o < 400 we put
Mp (o) = sup{|F(c +it)| : t € R}.

We remark that the function Mp(o) is continuous and increasing to +o00 on (—oo, +00)
and, therefore, there exists the function M ' (z) inverse to Mz (o), which increase to +oo
on (xg, +00).

By L we denote a class of continuous non-negative on (—oo, +00) functions « such
that a(z) = a(zg) > 0 for x < zg and a(z) 1 +00 as xg < z — +00. We say that o € LY,
if e L and a((1+0(1))z) = (1+o(1))a(x) as  — +oo. Finally, o € Ly, if « € L and
alcz) = (1+0(1))a(z) as © — +oo for each ¢ € (0, +00), i. e. a is a slowly increasing
function. Clearly, Ly; C LO.

For a € L, § € L and F € S(A) the quantities

vuplF] = Tm W Me(0))
o—+oo B(o)
. a(ln Mp(0))
AocglF]: 611%00 B(o)

are called [8, 9] the generalized (o, B)-order and the generalized lower (o, §)-order of F'
accordingly. We say that F' has the generalized regular (a, §)-growth, if

0< )\aﬁ[F] = Qa)g[F] < +00.

The generalized (a, )-order g, g[F|c and the generalized lower («, 8)-order Ay g[F|q of
the function F' € S(A) with respect to a function G € S(A) given by Dirichlet series
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G(s) = > gnexp{si,} we define as follows
n=1

_ o aMg'(Mr(0)))
tuslFle = T e,
a(Mg' (Mr(9)))

Ao = lim
slFla JGm 3(0)

Connections between g, g[F|¢ and A\, g[F]c from one side and g4 g[F], Ao, g[F]; 00,8[G]
and A, g[F] on the other hand investigated in the articles [10, 11]. In particular in [11]
the following theorems are proved.

Theorem A. If a € L and 8 € L then for each function v € L such that
0 < Ay,0[G] < 04.0[G] < 400

the estimates

0v.8[F]/0y.a[G] < 0a.plFle < 04,8[F1/Ay.0[G]
and

Ay.8lEF1/ 04.alG] < AaplFla < Ay slF]/AalGl
hold.

A0 () _ 1) g B _

Theorem B. Let a € L°, 3 € L°, v € Ly,

dln x In z
O(1) as © — +oo for each ¢ € (0,+00). Suppose that In n = o(\,a"t(cy(\,))) and
In n=oM\B cy(A\n))) as n — oo for each ¢ € (0,+00). If the function G has generali-

_ gl =M gnal L
)\n+1 - )\n

zed regqular (v, a)-growth, v(Any1) ~ v(An) and k,[G] :

ng < n — oo then

1 1
- a<A1“ ||)
(2) 0aplFlG = Pag = Iim —son19nl/

n—oo

3) MAHG=Mﬁ:nt<11)

Remark that o = o(In Mg(0)) as ¢ — +oo for each function G € S(A), whence it
follows that A, o[G] > 1. Therefore, the function G has the generalized regular («, a)-
growth if

1 < Xa,alG] = 0a,0|G] < +00.

Let us choose v(z) = a(x) and assume that the function G has the generalized regular

F F
(o, o)-growth. Then by Theorem A we have o, g[F|c = CaslF] and A\, g[Flg = /g\aﬁ{G} .

Oa,a[G]
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da=(ca(x
It is clear that the function a € L does not satisfy the condition % =0(1)
nx

as x — oo for each ¢ € (0, +00). Therefore, we cannot use Theorem B in the case when
~v(x) = a(z), and this note is devoted to the study of this case.

2. AUXILIARY LEMMAS

To prove the analogue of Theorem B, we need several lemmas.

—1
Lemma 1 ([9, 13]). Leta € Ly;, B € LY and 45~ (ca(z)) =0(1) as © — +o0 for each

nx
c € (0,400). If In n = o(A\, B (ca(N,))) as n — oo for each c € (0,+00) and G € S(A)
then

0aplG) = T — 2l
(5 )
If, moreover, 0, 5[G] < +00, a(Ant1) ~ a(An) and £,[G) 7 400 as ng < n — oo then
T a(An)
nooo o 11\
(50 )
Lemma 2 ([9, 12]). Let pr(o) = max{|fn|exp{oA.} : n > 0} be the mazimal term of
Dirichlet series (1) and hg = lim — 2% 1. Then for every e € (0, ho) there exists

n—oc —1In ‘fn|
Aop(e) > 0 such that for all o > 0 the inequality

o
< -
Me(o) < Aofer (== )
holds.

Let © be a class of positive unbounded on (—oo,+00) functions ® such that the

derivative @’ is positive continuously differentiable and increasing to +o0o on (—o0o, +00).
P(z)
@'(x)

From now on, we denote by ¢ the inverse function to @', and let ¥(x) = = —

the function associated with ® in the sense of Newton.

Lemma 3 (|9, 12, 13]). Let ® € Q. In order that In pur(o) < (o) for all ¢ > oy, it is
necessary and sufficient that In |f,| < =X, ¥(o(\,)) for all n > ng.

Using Lemmas 2 and 3, we prove the following lemma.

Lemma 4. Let a(e®) € Ly, In n = o(A,a=(ca(N,))) as n — oo for each ¢ € (0, +00)
and G € S(A). Then

(4) 00,0|G] = K0o.o[G] := lim
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If, moreover, 0n.o[G] < +00, a(Ant1) ~ a(A,) and k,[G) / +00 as ng < n — oo then

o T a(A,)
(5) Aa,alGl = koG] = nl%o a(llnl)'
An |9n|

Proof. Let 04,4[G] < 400. Then for every ¢ > 04,4[G] and all o0 > o¢(0) we have
In Mg(o) < a!(pa(r)) and in view of Cauchy inequality In |g,| < a=(pa(c)) — o),
for all o > oy(p) and n > 1. For n > 1 we choose o, = a~*(a(\,)/0). Then o,, > o¢ for
n > ng and, thus,

(6) In [gn| < A\ — 0pdn = =Aa(a Ha(N\,)/0) — 1), n>ny.

Hence it follows that
— Inn — Inn
ho= lim — < 1i =0
0 nl_)H;o —In |gn| - nl_)H;o )\nafl(a()\n)/g)

g
1—¢)’

whence in view of Cauchy inequality pe(0) < Mg(o) and of the condition o € Lg; we
get

and by Lemma 2

In Mp(o) <In Ag(e) +In pr (

- = a(ln pg(o))
Qa,a[G] - QQ’Q[MG] T a'gr-ir-loo W

and ,
AaalG] = Aaalpc] = lim M_
o— 400 a(g)
From (6) also it follows that K, [G] < ¢, and in view of the arbitrariness of ¢ we obtain
K0,0[G] < 00,a[G]- If 04,o[G] = 400 then the last inequality is trivial.

On the other hand, we suppose on the contrary that K, o[G] < 0a,o[G]. Then for
every k € (Ka.alGl, 00,0[G]) and all n > no(k) we have In |g,| < =A™ (a(A,)/k).
Now we put
(7) (o) = /a‘l(ka(m’))dw +const, g > 0.

oo

Then p(x) = a1 (a(x)/k) and since
(2P (p(2))) = (zp(x) — 2(p(2)) = p(@),

we obtain

(8) 2 (o(z)) = / o~ (a(z)/k)dz + const.
Therefore, by Lemma 3

In pg(o) < /a_l(ka(x))dx + const, o > op(0),

g0
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if and only if
An

In |g,| < —/a_l(oz(ac)/k)dx+const.
Zo

Since
An

/ o~ a(@)/k)dz < An(a~ (a(An)/K)),

from hence it follows that

In pg(o) < /oz_l(ka(x))dx + const < (14 o(1))oa (ka(o)), o — +oo,
oo
whence in view of condition a(e®) € Ls; we obtain
Qa,a[G} = Qa,a[MG] <
a(ca™(ka(o)))

< lim ————— =

~ 5% afo)

o a(exp{ln o+1In a_l(ka(a))})
o—+00 (o) -

. i a(exp{2max{ln o, In a~(ka(c))}}) _

~ o—too a(o)

. a(exp{max{Iln o, In a~!(ka(o))}}) _
o—r+00 a(o)

I max{a(c), ka(o)}) max

- aL-i—oo alo) .k

which is impossible. Equality (4) is proved.
Now we prove equality (5). Suppose that kq o[G] > 0. Then for every k € (0, koo [G])
and all n > ng we have In |g,,| > —A\,a"1(a(A,)/k)) and, therefore,

In pg (o) = =Ana™ (a(Aa)/k)) + oA
for all o and n > ng. We choose o, = a~1(a(\,)/k) + 1. Then for n > ng
In g (0n) > —Ana (A /k) +a Ha(M\)/E) A 4+ A = A

If 0, <o <o0pt1 then

a(ln ;LG(O') Oé(ln ,LLG(J7L) _
a(o) 2 alops1)
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In view of the arbitrariness of k we obtain kq o[G] < A o[G]. If kq,o[G] = 0 then
the last inequality is trivial.

On the other hand, we suppose on the contrary that ky o[G] < A,o[G]. Then for
every k € (ka,a[G], Aa,a[G]) there exists an increasing sequence (n;) such that

10 [gn, | < —An, 0™ (@(0m, ) /)
Since £, [G] / +00 as ng < n — oo, we have
I g (5n[G1) = 10 [gn] + Ansin[G]
and, thus,
I 16 (i, [G]) < —Any @™ (@00 ) /) + Ay, [G] <
<In p(kn, [G]),

where
In p(0) = max{—X,a " (a(A)/k) + Ano = 0> ng}.

Using Lemma 3 as above we get the inequality In u(c) < (14 0(1))ca=t(ka(o)) as
o — 400, i.e.,

In pg(kn, [G]) < (14 0(1))kn, [G]ail(ka(/@”j [G])), J— oc.
Hence in view of condition a(e®) € Ly; as above we obtain

a(oa™ (ka(kn,[G]))))

AaaG) = Aaalpe] < lim < max{1,k},
j—oo a(kn, [G]))
which is impossible. Equality (5) is proved. O

3. MAIN RESULT

The following theorem is an analogue of Theorem B.

~1
Theorem 1. Let a(e®) € Ly, B € L, M
dln x

In n = o(A\,B"ca(N\,))) as n — oo for each ¢ € (0, +00).

If the function G has generalized regular (o, a)-growth, a(An41) ~ a(A,) and
kn|G] 400 as ng < n — oo then (2) holds.

If, moreover, k,[F] 7 400 as ng < n — oo then (3) holds.

dB~*(ca(z))
dln =

= 0(1) as x — +oo and

Proof. At first we remark that from the condition =0(1) as ¢ — +oo for
each ¢ € (0, +00) we obtain 371 (a(z)) < c¢oln z, i.e.,

B x) < coln a () < ot (z)
for some ¢y > 0 and all z > zo. Therefore, the condition In n = o(A\,8 (ca()\,))) as
n — oo for each ¢ € (0,+00) implies the condition In n = o(A,a~t(ca(N,))) as n — oo
for each ¢ € (0,400). Thus, all conditions of Lemmas 1 and 4 hold.

Since G has generalized regular (a, a)-growth, we have

0 < 00,a[G] = 00,a[G] < 400,
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0a,8[F] Aa,8[F]
0aplFlc = ——= and A\, g|F|g = . Therefore, by Lemmas 1 and 4
oS = ale) ¢ Mol = e

guslF] = T a6 (5 ).

n—o00 |fn|
. 1 1
and
(1 ! 1 )
a| —In
- a(A, ) A In
ennlFle = L — 70 iy el
—In — n
()
(1 | 1 )
al —1In
e ) |
/\'fL |fn|
:Pa)/B
Similarly,
<1 ) 1 )
al —In —
. a(A, ) A In
alFlo = im0 iy S
o (1 In 1)
= lim a(/\”) An |9n| / _
A | fal
= Pa,s-
Theorem 1 is proved. 0

Remark. Let f(z) =  and a(z) = Ing = for x > x(, where Ing « is the kth iteration
of the logarithm, i.e.; Iny x =In z and Iny z = In Ing_1 x for k > 2. If £ > 2 then these
functions satisfy the conditions of Theorem 1. The functions §(z) = z and a(z) = In

— Inln M
for x > e does not satisfy these conditions. In this case gr[F] := lirf InIn Mi(o)
o—+o00 o
Inln M
and Ag[F]:= lim LF(U) are the R-order and the lower R-order F' respectively
o—400 g

— Inln M Inln M
[14]. Moreover, let g;[F] := lim In In M (o) and A\[F] := lim In In Mp(o)

o—+00 Ino 0 +00 Ino

be the
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logarithmic order and the lower logarithmic order respectively. We put

— In M5z (Mp(0))

orilFle = Tm ——C——22,
In MY (M
AilFle = tim 2 Me (P(0)
o—+o0 g

In [11] the following result is obtained.
Proposition. If the function G has regular logarithmic growth (i.e., 0 < N[F] =
= o[F] < 4+0), Inn =o(A,1n A\p), In Apy1 ~1In A, and k,[G] 7 +00 as ng < n — o0
then

_ AnIn Ay In (1/]gy]
Flg = lim
enilfle = 0 T (117 i 1/l
If, moreover, k,|[F]| /' 400 as ng < n — oo then

— lim AnIn A, In (1/]gn])
MdlFle = I o i tn (1190 )

This result does not follow from Theorem 1.
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Hexait A = (A\n) — 3pocTaioua OO +00 MOC/IIOBHICTL HEBIIT€MHUX HH-
cen, S(A) — wxuac ninux pagis dipixiae F(s) = Y foexp{si.} i Mr(o) =
n=1

sup{|F (o + it)| : t € R}. Yepe3 L no3HaummMo K/IaC TAKMX HEIEPEPBHUX He-

Bim'emunx Ha (—00, +00) dyErmii o, mo a(z) = a(xg) > 0 ama z < o i

a(z) T oo mpum 290 < z — 4oo. ma a« € L, B € L'i F € S(A) Bemman-

mn Qo p[F] = lim a(ln Mp(0))/B(0) i Aap[F] = lim a(ln Mr(0))/B(0)
o—400 o—+oo

HA3UBAIOTHCS y3arajbHeHuM (v, 3)-mopsiakoM i y3arajbHeHUM HuKHIM («, f3)-

nopsagakom ¢ynkmii F. O3naunmo y3araabaeruii (o, 8)-mopsiaok i yzaraabHe-

nuit wokeii (o, B)-nopagok dyukuii F € S(A) Bigpocno dynxuii G(s) =
S guexp(sha) € S(A) pinnocrmm guslFl = Tm_a(Mg' (Mr(0)))/8(0)
n=1 o—+00

i Aap[Fle = lim o(Mg"(Mr(0)))/B(0).

o——+oo
3a ymoBu 0 < Ao ,o[G] = 04,0[G] < +00 3Halmen0 Gopmynn mua o6IuC/IeHHS
0a.8F]a 1 Aa,g[F)c gepe3 xoebinieatu fr i gn.

Karouosi caosa: pan [lipixie, BiHOCHe 3pOCTAHHS, Y3araJIbHEHUN TOPIIOK.



