УДК 517.537.72

ON THE RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES

Oksana MULYAVA¹, Myroslav SHEREMETA²

¹Kyiv National University of Food Technologies, Volodymyrska Str. 68, 01601 Kyiv, UKRAINE e-mail: oksana.m@bigmir.net ²Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE e-mail: m.m.sheremeta@gmail.com

Let $\Lambda=(\lambda_n)$ be an increasing to $+\infty$ sequence of non-negative numbers, $S(\Lambda)$ be a class of entire Dirichlet series $F(s)=\sum_{n=1}^{\infty}f_n\exp\{s\lambda_n\}$ and $M_F(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbb{R}\}$. By L we denote a class of continuous non-negative on $(-\infty,+\infty)$ functions α such that $\alpha(x)=\alpha(x_0)\geq 0$ for $x\leq x_0$ and $\alpha(x)\uparrow+\infty$ as $x_0\leq x\to+\infty$. For $\alpha\in L$, $\beta\in L$ and $F\in S(\Lambda)$ the quantities $\varrho_{\alpha,\beta}[F]=\lim_{\sigma\to+\infty}\alpha(\ln M_F(\sigma))/\beta(\sigma)$ and $\lambda_{\alpha,\beta}[F]=\lim_{\sigma\to+\infty}\alpha(\ln M_F(\sigma))/\beta(\sigma)$ are called the generalized (α,β) -order and the generalized lower (α,β) -order of F. Define the generalized (α,β) -order and the generalized lower (α,β) -order of the function $F\in S(\Lambda)$ with respect to a function $G(s)=\sum_{n=1}^{\infty}g_n\exp\{s\lambda_n\}\in S(\Lambda)$ as follows $\varrho_{\alpha,\beta}[F]_G=\lim_{\sigma\to+\infty}\alpha(M_G^{-1}(M_F(\sigma)))/\beta(\sigma)$ and $\lambda_{\alpha,\beta}[F]_G=\lim_{\sigma\to+\infty}\alpha(M_G^{-1}(M_F(\sigma)))/\beta(\sigma)$. Under the condition $0<\lambda_{\alpha,\alpha}[G]=\varrho_{\alpha,\alpha}[G]<+\infty$, formulas have been found for calculating $\varrho_{\alpha,\beta}[F]_G$ and $\lambda_{\alpha,\beta}[F]_G$ through the coefficients f_n and g_n .

Key words: Dirichlet series, relative growth, generalized order.

²⁰²⁰ Mathematics Subject Classification: 30B50 © Mulyava, O.; Sheremeta, M., 2023

1. Introduction

Let f and g be entire transcendental functions and $M_f(r) = \max\{|f(z)| : |z| = r\}$. For the study of relative growth of the functions f and g Ch. Roy [1] used the order

$$\varrho_g[f] = \overline{\lim}_{r \to +\infty} \frac{\ln M_g^{-1}(M_f(r))}{\ln r}$$

and the lower order

$$\lambda_g[f] = \lim_{r \to +\infty} \frac{\ln M_g^{-1}(M_f(r))}{\ln r}$$

of the function f with respect to the function g. Research of relative growth of entire functions was continued by S.K. Data, T. Biswas and other mathematicians (see, for example, [2-5]) in terms of maximal terms, Nevanlinna characteristic function and k-logarithmic orders. In [6] it is considered a relative growth of entire functions of two complex variables and in [7] the relative growth of entire Dirichlet series is studied in the terms of R-orders.

Suppose that $\Lambda = (\lambda_n)$ is an increasing to $+\infty$ sequence of non-negative numbers and by $S(\Lambda)$ we denote a class of entire Dirichlet series

(1)
$$F(s) = \sum_{n=1}^{\infty} f_n \exp\{s\lambda_n\}, \quad s = \sigma + it.$$

For $\sigma < +\infty$ we put

$$M_F(\sigma) = \sup\{|F(\sigma + it)| : t \in \mathbb{R}\}.$$

We remark that the function $M_F(\sigma)$ is continuous and increasing to $+\infty$ on $(-\infty, +\infty)$ and, therefore, there exists the function $M_F^{-1}(x)$ inverse to $M_F(\sigma)$, which increase to $+\infty$ on $(x_0, +\infty)$.

By L we denote a class of continuous non-negative on $(-\infty, +\infty)$ functions α such that $\alpha(x) = \alpha(x_0) \ge 0$ for $x \le x_0$ and $\alpha(x) \uparrow +\infty$ as $x_0 \le x \to +\infty$. We say that $\alpha \in L^0$, if $\alpha \in L$ and $\alpha((1+o(1))x) = (1+o(1))\alpha(x)$ as $x \to +\infty$. Finally, $\alpha \in L_{si}$, if $\alpha \in L$ and $\alpha(cx) = (1+o(1))\alpha(x)$ as $x \to +\infty$ for each $c \in (0, +\infty)$, i. e. α is a slowly increasing function. Clearly, $L_{si} \subset L^0$.

For $\alpha \in L$, $\beta \in L$ and $F \in S(\Lambda)$ the quantities

$$\varrho_{\alpha,\beta}[F] := \overline{\lim_{\sigma \to +\infty}} \frac{\alpha(\ln M_F(\sigma))}{\beta(\sigma)},$$
$$\lambda_{\alpha,\beta}[F] := \underline{\lim_{\sigma \to +\infty}} \frac{\alpha(\ln M_F(\sigma))}{\beta(\sigma)}$$

are called [8, 9] the generalized (α, β) -order and the generalized lower (α, β) -order of F accordingly. We say that F has the generalized regular (α, β) -growth, if

$$0 < \lambda_{\alpha,\beta}[F] = \varrho_{\alpha,\beta}[F] < +\infty.$$

The generalized (α, β) -order $\varrho_{\alpha,\beta}[F]_G$ and the generalized lower (α, β) -order $\lambda_{\alpha,\beta}[F]_G$ of the function $F \in S(\Lambda)$ with respect to a function $G \in S(\Lambda)$ given by Dirichlet series

 $G(s) = \sum_{n=1}^{\infty} g_n \exp\{s\lambda_n\}$ we define as follows

$$\varrho_{\alpha,\beta}[F]_G := \overline{\lim_{\sigma \to +\infty}} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)},$$
$$\lambda_{\alpha,\beta}[F]_G := \underline{\lim_{\sigma \to +\infty}} \frac{\alpha(M_G^{-1}(M_F(\sigma)))}{\beta(\sigma)}.$$

Connections between $\varrho_{\alpha,\beta}[F]_G$ and $\lambda_{\alpha,\beta}[F]_G$ from one side and $\varrho_{\alpha,\beta}[F]$, $\lambda_{\alpha,\beta}[F]$, $\varrho_{\alpha,\beta}[G]$ and $\lambda_{\alpha,\beta}[F]$ on the other hand investigated in the articles [10, 11]. In particular in [11] the following theorems are proved.

Theorem A. If $\alpha \in L$ and $\beta \in L$ then for each function $\gamma \in L$ such that

$$0 < \lambda_{\gamma,\alpha}[G] \le \varrho_{\gamma,\alpha}[G] < +\infty$$

the estimates

$$\varrho_{\gamma,\beta}[F]/\varrho_{\gamma,\alpha}[G] \le \varrho_{\alpha,\beta}[F]_G \le \varrho_{\gamma,\beta}[F]/\lambda_{\gamma,\alpha}[G]$$

and

$$\lambda_{\gamma,\beta}[F]/\varrho_{\gamma,\alpha}[G] \le \lambda_{\alpha,\beta}[F]_G \le \lambda_{\gamma,\beta}[F]/\lambda_{\gamma,\alpha}[G]$$

hold.

Theorem B. Let $\alpha \in L^0$, $\beta \in L^0$, $\gamma \in L_{si}$, $\frac{d\alpha^{-1}(c\gamma(x))}{d \ln x} = O(1)$ and $\frac{d\beta^{-1}(c\gamma(x))}{d \ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. Suppose that $\ln n = o(\lambda_n \alpha^{-1}(c\gamma(\lambda_n)))$ and $\ln n = o(\lambda_n \beta^{-1}(c\gamma(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$. If the function G has generalized regular (γ, α) -growth, $\gamma(\lambda_{n+1}) \sim \gamma(\lambda_n)$ and $\kappa_n[G] := \frac{\ln |g_n| - \ln |g_{n+1}|}{\lambda_{n+1} - \lambda_n} \nearrow +\infty$ as $n_0 \le n \to \infty$ then

(2)
$$\varrho_{\alpha,\beta}[F]_G = P_{\alpha,\beta} := \overline{\lim}_{n \to \infty} \frac{\alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)}.$$

If, moreover, $\kappa_n[F] \nearrow +\infty$ as $n_0 \leq n \to \infty$ then

(3)
$$\lambda_{\alpha,\beta}[F]_G = p_{\alpha,\beta} := \lim_{n \to \infty} \frac{\alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)}.$$

Remark that $\sigma = o(\ln M_G(\sigma))$ as $\sigma \to +\infty$ for each function $G \in S(\Lambda)$, whence it follows that $\lambda_{\alpha,\alpha}[G] \geq 1$. Therefore, the function G has the generalized regular (α,α) -growth if

$$1 \le \lambda_{\alpha,\alpha}[G] = \varrho_{\alpha,\alpha}[G] < +\infty.$$

Let us choose $\gamma(x) = \alpha(x)$ and assume that the function G has the generalized regular (α, α) -growth. Then by Theorem A we have $\varrho_{\alpha,\beta}[F]_G = \frac{\varrho_{\alpha,\beta}[F]}{\varrho_{\alpha,\alpha}[G]}$ and $\lambda_{\alpha,\beta}[F]_G = \frac{\lambda_{\alpha,\beta}[F]}{\varrho_{\alpha,\alpha}[G]}$.

It is clear that the function $\alpha \in L$ does not satisfy the condition $\frac{d\alpha^{-1}(c\alpha(x))}{d\ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. Therefore, we cannot use Theorem B in the case when $\gamma(x) = \alpha(x)$, and this note is devoted to the study of this case.

2. Auxiliary Lemmas

To prove the analogue of Theorem B, we need several lemmas.

Lemma 1 ([9, 13]). Let $\alpha \in L_{si}$, $\beta \in L^0$ and $\frac{d\beta^{-1}(c\alpha(x))}{d \ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$. If $\ln n = o(\lambda_n \beta^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$ and $G \in S(\Lambda)$ then

$$\varrho_{\alpha,\beta}[G] = \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}.$$

If, moreover, $\varrho_{\alpha,\beta}[G] < +\infty$, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ and $\kappa_n[G] \nearrow +\infty$ as $n_0 \le n \to \infty$ then

$$\lambda_{\alpha,\beta}[G] = \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}.$$

Lemma 2 ([9, 12]). Let $\mu_F(\sigma) = \max\{|f_n| \exp\{\sigma\lambda_n\} : n \geq 0\}$ be the maximal term of Dirichlet series (1) and $h_0 = \overline{\lim_{n \to \infty} \frac{\ln n}{-\ln |f_n|}} < 1$. Then for every $\varepsilon \in (0, h_0)$ there exists $A_0(\varepsilon) > 0$ such that for all $\sigma \geq 0$ the inequality

$$M_F(\sigma) \le A_0(\varepsilon)\mu_F\left(\frac{\sigma}{1 - h_0 - \varepsilon}\right)$$

holds.

Let Ω be a class of positive unbounded on $(-\infty, +\infty)$ functions Φ such that the derivative Φ' is positive continuously differentiable and increasing to $+\infty$ on $(-\infty, +\infty)$. From now on, we denote by φ the inverse function to Φ' , and let $\Psi(x) = x - \frac{\Phi(x)}{\Phi'(x)}$ be the function associated with Φ in the sense of Newton.

Lemma 3 ([9, 12, 13]). Let $\Phi \in \Omega$. In order that $\ln \mu_F(\sigma) \leq \Phi(\sigma)$ for all $\sigma \geq \sigma_0$, it is necessary and sufficient that $\ln |f_n| \leq -\lambda_n \Psi(\varphi(\lambda_n))$ for all $n \geq n_0$.

Using Lemmas 2 and 3, we prove the following lemma.

Lemma 4. Let $\alpha(e^x) \in L_{si}$, $\ln n = o(\lambda_n \alpha^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$ and $G \in S(\Lambda)$. Then

(4)
$$\varrho_{\alpha,\alpha}[G] = K_{\alpha,\alpha}[G] := \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n)}{\alpha\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}.$$

If, moreover, $\varrho_{\alpha,\alpha}[G] < +\infty$, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ and $\kappa_n[G] \nearrow +\infty$ as $n_0 \le n \to \infty$ then

(5)
$$\lambda_{\alpha,\alpha}[G] = k_{\alpha,\alpha}[G] := \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\alpha\left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}.$$

Proof. Let $\varrho_{\alpha,\alpha}[G] < +\infty$. Then for every $\varrho > \varrho_{\alpha,\alpha}[G]$ and all $\sigma \geq \sigma_0(\varrho)$ we have $\ln M_G(\sigma) \leq \alpha^{-1}(\varrho\alpha(\sigma))$ and in view of Cauchy inequality $\ln |g_n| \leq \alpha^{-1}(\varrho\alpha(\sigma)) - \sigma\lambda_n$ for all $\sigma \geq \sigma_0(\varrho)$ and $n \geq 1$. For $n \geq 1$ we choose $\sigma_n = \alpha^{-1}(\alpha(\lambda_n)/\varrho)$. Then $\sigma_n \geq \sigma_0$ for $n \geq n_0$ and, thus,

(6)
$$\ln |g_n| \le \lambda_n - \sigma_n \lambda_n = -\lambda_n (\alpha^{-1}(\alpha(\lambda_n)/\varrho) - 1), \quad n \ge n_0.$$

Hence it follows that

$$h_0 = \overline{\lim}_{n \to \infty} \frac{\ln n}{-\ln |g_n|} \le \overline{\lim}_{n \to \infty} \frac{\ln n}{\lambda_n \alpha^{-1}(\alpha(\lambda_n)/\varrho)} = 0$$

and by Lemma 2

$$\ln M_F(\sigma) \le \ln A_0(\varepsilon) + \ln \mu_F\left(\frac{\sigma}{1-\varepsilon}\right),$$

whence in view of Cauchy inequality $\mu_G(\sigma) \leq M_G(\sigma)$ and of the condition $\alpha \in L_{si}$ we get

$$\varrho_{\alpha,\alpha}[G] = \varrho_{\alpha,\alpha}[\mu_G] := \overline{\lim_{\sigma \to +\infty}} \frac{\alpha(\ln \mu_G(\sigma))}{\alpha(\sigma)},$$

and

$$\lambda_{\alpha,\alpha}[G] = \lambda_{\alpha,\alpha}[\mu_G] := \underline{\lim}_{\sigma \to +\infty} \frac{\alpha(\ln \mu_G(\sigma))}{\alpha(\sigma)}.$$

From (6) also it follows that $K_{\alpha,\alpha}[G] \leq \varrho$, and in view of the arbitrariness of ϱ we obtain $K_{\alpha,\alpha}[G] \leq \varrho_{\alpha,\alpha}[G]$. If $\varrho_{\alpha,\alpha}[G] = +\infty$ then the last inequality is trivial.

On the other hand, we suppose on the contrary that $K_{\alpha,\alpha}[G] < \varrho_{\alpha,\alpha}[G]$. Then for every $k \in (K_{\alpha,\alpha}[G], \varrho_{\alpha,\alpha}[G])$ and all $n \geq n_0(k)$ we have $\ln |g_n| \leq -\lambda_n \alpha^{-1}(\alpha(\lambda_n)/k)$. Now we put

(7)
$$\Phi(\sigma) = \int_{\sigma_0}^{\sigma} \alpha^{-1}(k\alpha(x))dx + \text{const}, \quad \sigma_0 > 0.$$

Then $\varphi(x) = \alpha^{-1}(\alpha(x)/k)$ and since

$$(x\Psi(\varphi(x)))' = (x\varphi(x) - \Phi(\varphi(x)))' = \varphi(x),$$

we obtain

(8)
$$x\Psi(\varphi(x)) = \int_{x_0}^x \alpha^{-1}(\alpha(x)/k)dx + \text{const.}$$

Therefore, by Lemma 3

$$\ln \mu_G(\sigma) \le \int_{\sigma_0}^{\sigma} \alpha^{-1}(k\alpha(x))dx + \text{const}, \quad \sigma \ge \sigma_0(\varrho),$$

if and only if

$$\ln |g_n| \le -\int_{x_0}^{\lambda_n} \alpha^{-1}(\alpha(x)/k) dx + \text{const.}$$

Since

$$\int_{x_0}^{\lambda_n} \alpha^{-1}(\alpha(x)/k) dx \le \lambda_n(\alpha^{-1}(\alpha(\lambda_n)/k)),$$

from hence it follows that

$$\ln \mu_G(\sigma) \le \int_{\sigma_0}^{\sigma} \alpha^{-1}(k\alpha(x))dx + \text{const} \le (1 + o(1))\sigma\alpha^{-1}(k\alpha(\sigma)), \quad \sigma \to +\infty,$$

whence in view of condition $\alpha(e^x) \in L_{si}$ we obtain

$$\begin{split} \varrho_{\alpha,\alpha}[G] &= \varrho_{\alpha,\alpha}[\mu_G] \leq \\ &\leq \overline{\lim}_{\sigma \to +\infty} \frac{\alpha(\sigma\alpha^{-1}(k\alpha(\sigma)))}{\alpha(\sigma)} = \\ &= \overline{\lim}_{\sigma \to +\infty} \frac{\alpha(\exp\{\ln \sigma + \ln \alpha^{-1}(k\alpha(\sigma))\})}{\alpha(\sigma)} \leq \\ &\leq \overline{\lim}_{\sigma \to +\infty} \frac{\alpha(\exp\{2\max\{\ln \sigma, \ln \alpha^{-1}(k\alpha(\sigma))\}\})}{\alpha(\sigma)} = \\ &= \overline{\lim}_{\sigma \to +\infty} \frac{\alpha(\exp\{\max\{\ln \sigma, \ln \alpha^{-1}(k\alpha(\sigma))\}\})}{\alpha(\sigma)} = \\ &= \overline{\lim}_{\sigma \to +\infty} \frac{\max\{\alpha(\sigma), k\alpha(\sigma)\})}{\alpha(\sigma)} = \max\{1, k\}, \end{split}$$

which is impossible. Equality (4) is proved

Now we prove equality (5). Suppose that $k_{\alpha,\alpha}[G] > 0$. Then for every $k \in (0, k_{\alpha,\alpha}[G])$ and all $n \geq n_0$ we have $\ln |g_n| \geq -\lambda_n \alpha^{-1}(\alpha(\lambda_n)/k))$ and, therefore,

$$\ln \mu_G(\sigma) \ge -\lambda_n \alpha^{-1}(\alpha(\lambda_n)/k)) + \sigma \lambda_n$$

for all σ and $n \geq n_0$. We choose $\sigma_n = \alpha^{-1}(\alpha(\lambda_n)/k) + 1$. Then for $n \geq n_0$

$$\ln \mu_G(\sigma_n) \ge -\lambda_n \alpha^{-1}(\alpha(\lambda_n)/k)) + \alpha^{-1}(\alpha(\lambda_n)/k)\lambda_n + \lambda_n = \lambda_n.$$

If $\sigma_n \leq \sigma \leq \sigma_{n+1}$ then

$$\frac{\alpha(\ln \mu_G(\sigma))}{\alpha(\sigma)} \ge \frac{\alpha(\ln \mu_G(\sigma_n))}{\alpha(\sigma_{n+1})} =$$

$$= \frac{\alpha(\lambda_n)}{\alpha(\alpha^{-1}(\alpha(\lambda_{n+1})/k) + 1)} =$$

$$= (1 + o(1))k \frac{\alpha(\lambda_n)}{\alpha(\lambda_{n+1})} =$$

$$= (1 + o(1))k, \quad \sigma \to +\infty.$$

In view of the arbitrariness of k we obtain $k_{\alpha,\alpha}[G] \leq \lambda_{\alpha,\alpha}[G]$. If $k_{\alpha,\alpha}[G] = 0$ then the last inequality is trivial.

On the other hand, we suppose on the contrary that $k_{\alpha,\alpha}[G] < \lambda_{\alpha,\alpha}[G]$. Then for every $k \in (k_{\alpha,\alpha}[G], \lambda_{\alpha,\alpha}[G])$ there exists an increasing sequence (n_j) such that

$$\ln |g_{n_i}| \leq -\lambda_{n_i} \alpha^{-1} (\alpha(\lambda_{n_i})/k).$$

Since $\kappa_n[G] \nearrow +\infty$ as $n_0 \le n \to \infty$, we have

$$\ln \mu_G(\kappa_n[G]) = \ln |g_n| + \lambda_n \kappa_n[G]$$

and, thus,

$$\ln \mu_G(\kappa_{n_j}[G]) \le -\lambda_{n_j} \alpha^{-1}(\alpha(\lambda_{n_j})/k) + \lambda_{n_j} \kappa_{n_j}[G] \le$$

$$\le \ln \mu(\kappa_{n_j}[G]),$$

where

$$\ln \mu(\sigma) = \max\{-\lambda_n \alpha^{-1}(\alpha(\lambda_n)/k) + \lambda_n \sigma : n \ge n_0\}.$$

Using Lemma 3 as above we get the inequality $\ln \mu(\sigma) \leq (1 + o(1))\sigma\alpha^{-1}(k\alpha(\sigma))$ as $\sigma \to +\infty$, i.e.,

$$\ln \mu_G(\kappa_{n_i}[G]) \le (1 + o(1))\kappa_{n_i}[G]\alpha^{-1}(k\alpha(\kappa_{n_i}[G])), \quad j \to \infty.$$

Hence in view of condition $\alpha(e^x) \in L_{si}$ as above we obtain

$$\lambda_{\alpha,\alpha}[G] = \lambda_{\alpha,\alpha}[\mu_G] \leq \underline{\lim}_{j \to \infty} \frac{\alpha(\sigma\alpha^{-1}(k\alpha(\kappa_{n_j}[G]))))}{\alpha(\kappa_{n_j}[G]))} \leq \max\{1,k\},$$

which is impossible. Equality (5) is proved.

3. Main result

The following theorem is an analogue of Theorem B.

Theorem 1. Let $\alpha(e^x) \in L_{si}$, $\beta \in L^0$, $\frac{d\beta^{-1}(c\alpha(x))}{d \ln x} = O(1)$ as $x \to +\infty$ and $\ln n = o(\lambda_n \beta^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$.

If the function G has generalized regular (α, α) -growth, $\alpha(\lambda_{n+1}) \sim \alpha(\lambda_n)$ and $\kappa_n[G] \nearrow +\infty$ as $n_0 \leq n \to \infty$ then (2) holds.

If, moreover, $\kappa_n[F] \nearrow +\infty$ as $n_0 \le n \to \infty$ then (3) holds.

Proof. At first we remark that from the condition $\frac{d\beta^{-1}(c\alpha(x))}{d\ln x} = O(1)$ as $x \to +\infty$ for each $c \in (0, +\infty)$ we obtain $\beta^{-1}(\alpha(x)) \le c_0 \ln x$, i.e.,

$$\beta^{-1}(x) \le c_0 \ln \alpha^{-1}(x) \le c_0 \alpha^{-1}(x)$$

for some $c_0 > 0$ and all $x \ge x_0$. Therefore, the condition $\ln n = o(\lambda_n \beta^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$ implies the condition $\ln n = o(\lambda_n \alpha^{-1}(c\alpha(\lambda_n)))$ as $n \to \infty$ for each $c \in (0, +\infty)$. Thus, all conditions of Lemmas 1 and 4 hold.

Since G has generalized regular (α, α) -growth, we have

$$0 < \varrho_{\alpha,\alpha}[G] = \varrho_{\alpha,\alpha}[G] < +\infty,$$

$$\varrho_{\alpha,\beta}[F]_G = \frac{\varrho_{\alpha,\beta}[F]}{\varrho_{\alpha,\alpha}[G]} \text{ and } \lambda_{\alpha,\beta}[F]_G = \frac{\lambda_{\alpha,\beta}[F]}{\varrho_{\alpha,\alpha}[G]}. \text{ Therefore, by Lemmas 1 and 4}$$

$$\varrho_{\alpha,\beta}[F] = \overline{\lim}_{n \to \infty} \alpha(\lambda_n) / \beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|} \right),$$
$$\lambda_{\alpha,\alpha}[G] = \varrho_{\alpha,\alpha}[G] = \lim_{n \to \infty} \alpha(\lambda_n) / \alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|} \right).$$

and

$$\varrho_{\alpha,\beta}[F]_G = \overline{\lim}_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)} \lim_{n \to \infty} \frac{\alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\alpha(\lambda_n)} =$$

$$= \overline{\lim}_{n \to \infty} \left(\frac{\alpha(\lambda_n)}{\beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)} \frac{\alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\alpha(\lambda_n)}\right) =$$

$$= P_{\alpha,\beta}.$$

Similarly,

$$\lambda_{\alpha,\beta}[F]_G = \lim_{n \to \infty} \frac{\alpha(\lambda_n)}{\beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)} \lim_{n \to \infty} \frac{\alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\alpha(\lambda_n)} =$$

$$= \lim_{n \to \infty} \left(\frac{\alpha(\lambda_n)}{\beta \left(\frac{1}{\lambda_n} \ln \frac{1}{|f_n|}\right)} \frac{\alpha \left(\frac{1}{\lambda_n} \ln \frac{1}{|g_n|}\right)}{\alpha(\lambda_n)} / \right) =$$

$$= p_{\alpha,\beta}.$$

Theorem 1 is proved.

Remark. Let $\beta(x) = x$ and $\alpha(x) = \ln_k x$ for $x \ge x_0$, where $\ln_k x$ is the kth iteration of the logarithm, i.e., $\ln_1 x = \ln x$ and $\ln_k x = \ln \ln_{k-1} x$ for $k \ge 2$. If $k \ge 2$ then these functions satisfy the conditions of Theorem 1. The functions $\beta(x) = x$ and $\alpha(x) = \ln x$ for $x \ge e$ does not satisfy these conditions. In this case $\varrho_R[F] := \overline{\lim_{\sigma \to +\infty}} \frac{\ln \ln M_F(\sigma)}{\sigma}$ and $\lambda_R[F] := \underline{\lim_{\sigma \to +\infty}} \frac{\ln \ln M_F(\sigma)}{\sigma}$ are the R-order and the lower R-order F respectively [14]. Moreover, let $\varrho_l[F] := \overline{\lim_{\sigma \to +\infty}} \frac{\ln \ln M_F(\sigma)}{\ln \sigma}$ and $\lambda_l[F] := \underline{\lim_{\sigma \to +\infty}} \frac{\ln \ln M_F(\sigma)}{\ln \sigma}$ be the

logarithmic order and the lower logarithmic order respectively. We put

$$\varrho_{R,l}[F]_G := \overline{\lim_{\sigma \to +\infty}} \frac{\ln M_G^{-1}(M_F(\sigma))}{\sigma},$$
$$\lambda_{R,l}[F]_G := \underline{\lim_{\sigma \to +\infty}} \frac{\ln M_G^{-1}(M_F(\sigma))}{\sigma}.$$

In [11] the following result is obtained

Proposition. If the function G has regular logarithmic growth (i.e., $0 < \lambda_l[F] = \varrho_l[F] < +\infty$), $\ln n = o(\lambda_n \ln \lambda_n)$, $\ln \lambda_{n+1} \sim \ln \lambda_n$ and $\kappa_n[G] \nearrow +\infty$ as $n_0 \le n \to \infty$

$$\varrho_{R,l}[F]_G = \overline{\lim}_{n \to \infty} \frac{\lambda_n \ln \lambda_n \ln (1/|g_n|)}{\ln (1/|f_n|) \ln \ln (1/|g_n|)}.$$

If, moreover, $\kappa_n[F] \nearrow +\infty$ as $n_0 \le n \to \infty$ then

$$\lambda_{R,l}[F]_G = \varliminf_{n \to \infty} \frac{\lambda_n \ln \, \lambda_n \ln \left(1/|g_n|\right)}{\ln \left(1/|f_n|\right) \ln \, \ln \left(1/|g_n|\right)}.$$

This result does not follow from Theorem 1.

REFERENCES

- Ch. Roy, On the relative order and lower order of an entire function, Bull. Calcutta Math. Soc. 102 (2010), no.1, 17-26.
- S. K. Data and A. R. Maji, Relative order of entire functions in terms of their maximum terms, Int. J. Math. Anal., Ruse 5 (2011), no. 41-44, 2119-2126.
- 3. S. K. Data, T. Biswas, and Ch. Ghosh, Growth analysis of entire functions concerning generalized relative type and generalized relative weak type, Facta Univ., Ser. Math. Inf. 30 (2015), no. 3, 295–324.
- S. K. Data, T. Biswas, and A. Hoque, Some results on the growth analysis of entire function using their maximum terms and relative L*-order, J. Math. Ext. 10 (2016), no. 2, 59-73.
- S. K. Data, T. Biswas, and P. Das, Some results on generalized relative order of meromorphic functions, Ufa Math. J. 8 (2016), no. 2, 95-103. DOI: 10.13108/2016-8-2-95
- S. K. Data and T. Biswas, Growth analysis of entire functions of two complex variables, Sahand Commun. Math. Anal. 3 (2016), no. 2, 13-22. DOI: 20.1001.1.23225807.2016.03.2.2.7
- S. K. Data and T. Biswas, Some growth analysis of entire functions in the form of vector valued Dirichlet series on the basis on their relative Ritt L*-order and relative Ritt L*-lower order, New Trends in Msth. Sci. 5 (2017), no. 2, 97-103. DOI: 10.20852/ntmsci.2017.159
- 8. Ya. D. Pyanylo and M. N. Sheremeta, On the growth of entire fuctions given by Dirichlet series, Izv. Vyssh. Uchebn. Zaved., Mat. (1975), no. 10, 91-93 (in Russian).
- 9. M. M. Sheremeta, Entire Dirichlet series, ISDO, Kyiv, 1993 (in Ukrainian).
- O. M. Mulyava and M. M. Sheremeta, Relative growth of Dirichlet series, Mat. Stud. 49 (2018), no. 2, 158-164. DOI: 10.15330/ms.49.2.158-164
- 11. O. M. Mulyava and M. M. Sheremeta, Relative growth of entire Dirichlet series with different generalized orders, Bukovyn. Mat. Zh. 9 (2021), no. 2, 22–34. DOI: 10.31861/bmj2021.02.02
- 12. M. M. Sheremeta, Asymptotic behaviours of entire functions given by power series and Dirichlet series, Doct. Diss., Kiyv, 1987 (in Russian).
- M. N. Sheremeta and S. I. Fedynyak, On the derivative of Dirichlet series, Sib. Math. J. 39 (1998), No. 1, 181–197. DOI: 10.1007/BF02732373

 J. F. Ritt, On certain points in the theory of Dirichlet series, Amer. J. Math. 50 (1928), no. 1, 73-83. DOI: 10.2307/2370849

> Стаття: надійшла до редколегії 01.01.2023 доопрацьована 15.02.2023 прийнята до друку 20.04.2023

ПРО ВІДНОСНЕ ЗРОСТАННЯ ЦІЛИХ РЯДІВ ДІРІХЛЕ

Оксана МУЛЯВА¹, Мирослав ШЕРЕМЕТА²

¹ Київський національний університет харчових технологій, вул. Володимирівська 68, Київ, 01033 e-mail: oksana.m@bigmir.net

² Львівський національний університет імені Івана Франка, вул. Університетська 1, 79001, Львів e-mail: m.m.sheremeta@qmail.com

Нехай $\Lambda=(\lambda_n)$ — зростаюча до $+\infty$ послідовність невід'ємних чисел, $S(\Lambda)$ — клас цілих рядів Діріхле $F(s)=\sum\limits_{n=1}^\infty f_n\exp\{s\lambda_n\}$ і $M_F(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbb{R}\}$. Через L позначимо клас таких неперервних невід'ємних на $(-\infty,+\infty)$ функцій α , що $\alpha(x)=\alpha(x_0)\geq 0$ для $x\leq x_0$ і $\alpha(x)\uparrow+\infty$ при $x_0\leq x\to+\infty$. Для $\alpha\in L$, $\beta\in L$ і $F\in S(\Lambda)$ величини $\varrho_{\alpha,\beta}[F]=\lim_{\sigma\to+\infty}\alpha(\ln M_F(\sigma))/\beta(\sigma)$ і $\lambda_{\alpha,\beta}[F]=\lim_{\sigma\to+\infty}\alpha(\ln M_F(\sigma))/\beta(\sigma)$ називаються узагальненим (α,β) -порядком і узагальненим нижнім (α,β) -порядком функції F. Означимо узагальнений (α,β) -порядок і узагальнений нижній (α,β) -порядок функції $F\in S(\Lambda)$ відносно функції $G(s)=\sum_{n=1}^\infty g_n\exp\{s\lambda_n\}\in S(\Lambda)$ рівностями $\varrho_{\alpha,\beta}[F]_G=\varlimsup_{\sigma\to+\infty}\alpha(M_G^{-1}(M_F(\sigma)))/\beta(\sigma)$ і $\lambda_{\alpha,\beta}[F]_G=\varlimsup_{\sigma\to+\infty}\alpha(M_G^{-1}(M_F(\sigma)))/\beta(\sigma)$. За умови $0<\lambda_{\alpha,\alpha}[G]=\varrho_{\alpha,\alpha}[G]<+\infty$ знайдено формули для обчислення $\varrho_{\alpha,\beta}[F]_G$ і $\lambda_{\alpha,\beta}[F]_G$ через коефіцієнти f_n і g_n .

Ключові слова: ряд Діріхле, відносне зростання, узагальнений порядок.