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We construct two non-discrete inverse semigroup T1-topologies and a
compact inverse shift-continuous T1-topology on the bicyclic monoid C (p, q).
Also we give conditions on a T1-topology τ on C (p, q) to be discrete. In
particular, we show that if τ is an inverse semigroup T1-topology on C (p, q)
which satis�es one of the following conditions: τ is Baire, τ is quasi-regular or
τ is semiregular, then τ is discrete.
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1. Introduction and preliminaries

In this paper we shall follow the terminology of [6, 7, 8, 9, 12, 21, 25].

If (X, τ) is a topological space and Y ⊆ X, then we mean that Y is a subspace of
(X, τ) and by clY (A) and intY (A) we denote the closure and the interior, respectively,
of A ⊆ Y in the topological space Y .

A semigroup S is called inverse if for any element x ∈ S there exists a unique
x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse
of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns
to every element x of S its inverse element x−1 is called the inversion. On an inverse
semigroup S the semigroup operation determines the following partial order 4: s 4 t if
and only if there exists e ∈ E(S) such that s = te. This partial order is called the natural
partial order on S.
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A (semi)topological semigroup is a topological space with a (separately) continuous
semigroup operation. An inverse topological semigroup with continuous inversion is called
a topological inverse semigroup.

A topology τ on a semigroup S is called:

• a semigroup topology if (S, τ) is a topological semigroup;
• an inverse semigroup topology if (S, τ) is a topological inverse semigroup;
• a shift-continuous topology if (S, τ) is a semitopological semigroup;
• an inverse shift-continuous topology if (S, τ) is a semitopological semigroup with
continuous inversion.

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is determined as follows:

qkpl · qmpn =

 qk−l+mpn, if l < m;
qkpn, if l = m;
qkpl−m+n, if l > m.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a
group congruence [8].

It is well known that topological algebra studies the in�uence of topological properti-
es of its objects on their algebraic properties and the in�uence of algebraic properties of
its objects on their topological properties. There are two main problems in topological
algebra: the problem of non-discrete topologization and the problem of embedding into
objects with some topological-algebraic properties.

In mathematical literature the question about non-discrete (Hausdor�) topologizati-
on was posed by Markov [22]. Pontryagin gave well known conditions a base at the unity
of a group for its non-discrete topologization (see Theorem 4.5 of [18] or Theorem 3.9
of [23]). Various authors have re�ned Markov's question: can a given in�nite group G
endowed with a non-discrete group topology be embedded into a compact topological
group? Again, for an arbitrary Abelian group G the answer is a�rmative, but there is
a non-Abelian topological group that cannot be embedded into any compact topological
group (see Section 9 of [10]).

Also, Ol'shanskiy [24] constructed an in�nite countable group G such that every
Hausdor� group topology on G is discrete. Taimanov presented in [26] a commutati-
ve semigroup T which admits only discrete Hausdor� semigroup topology and gave in
[27] su�cient conditions on a commutative semigroup to have a non-discrete semigroup
topology. In [14] it is proved that each T1-topology with continuous shifts on T is discrete.

The bicyclic monoid admits only the discrete semigroup Hausdor� topology [11].
Bertman and West in [5] extended this result for the case of Hausdor� semitopological
semigroups. If a Hausdor� (semi)topological semigroup T contains the bicyclic monoid
C (p, q) as a dense proper semigroup then T \ C (p, q) is a closed ideal of T [11, 13].
Moreover, the closure of C (p, q) in a locally compact topological inverse semigroup can
be obtained (up to isomorphism) from C (p, q) by adjoining the additive group of integers
in a suitable way [11].
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Stable and Γ-compact topological semigroups do not contain the bicyclic monoid [1,
19, 20]. The problem of embedding the bicyclic monoid into compact-like topological
semigroups was studied in [2, 3, 4, 16].

In this paper we construct two non-discrete inverse semigroup T1-topologies and
a compact inverse shift-continuous T1-topologe on the bicyclic monoid C (p, q). Also we
give conditions on a T1-topology τ on C (p, q) to be discrete. In particular, we show that
if τ is an inverse semigroup T1-topology on C (p, q) which satis�es one of the following
conditions: τ is baire, τ is quasi-regular or τ is semiregular, then τ is discrete.

2. Examples of semigroup non-discrete T1-topologies on the

bicyclic monoid

In the following two examples we construct non-discrete T1-semigroup inverse
topologies on the bicyclic monoid.

Example 1. We construct the topology τ1 on C (p, q) in the following way. For any
qipj ∈ C (p, q) and n ∈ ω we denote

Un(qipj) =
{
qipj

}
∪
{
qspt : s, t > n

}
.

Let B1(qipj) =
{
Un(qipj) : n ∈ ω

}
be the system of open neighbourhoods at the point

qipj ∈ C (p, q). It is obvious that the family B1 =
⋃
i,j∈ω

B1(qipj) satis�es the properties

(BP1)�(BP3) of [12], and hence it generates a topology on C (p, q).

Proposition 1. (C (p, q), τ1) is a T1-topological inverse semigroup.

Proof. It is obvious that τ1 is a T1-topology on C (p, q).

Fix arbitrary qi1pj1 , qi2pj2 ∈ C (p, q) and n ∈ ω. The de�nition of the semigroup
operation on the bicyclic semigroup C (p, q) and routine calculations imply that

Um(qi1pj1) · Um(qi2pj2) ⊆ Un(qi1pj1 · qi2pj2)

and (
Un(qi1pj1)

)−1
=
(
Un(qj1pi1)

)
,

for m = max {2n, i1, j1, i2, j2}. This completes the proof of the proposition. �

For the natural partial order 4 on the bicyclic semigroup C (p, q) and any qipj ∈
C (p, q) we denote

↑4qipj =
{
qspt ∈ C (p, q) : qipj 4 qspt

}
;

↓4qipj =
{
qspt ∈ C (p, q) : qspt 4 qipj

}
;

l4qipj = ↑4qipj ∪ ↓4qipj ;
↓◦4qipj = ↓4qipj \

{
qipj

}
.

The following statement describes the natural partial order 4 on the bicyclic semi-
group C (p, q) and it follows from Lemma 1 of [15].

Lemma 1. Let qipj and qspt be arbitrary elements of the bicyclic semigroup C (p, q).
Then the following statements are equivalent:
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(i) qipj 4 qspt;
(ii) i > s and i− j = s− t;

(iii) j > t and i− j = s− t.

The semigroup operation on the bicyclic semigroup C (p, q) and Lemma 1 imply the
following lemma.

Lemma 2. If qipj and qspt are arbitrary elements of the bicyclic semigroup C (p, q),
then

l4qipj · l4qspt = l4qi+spj+t.

Example 2. We construct the topology τ2 on C (p, q) in the following way. For any
qipj ∈ C (p, q) and any non-negahtive integer n we denote

On(qipj) =
{
qipj

}
∪ ↓◦4qi+npj+n.

Let B2(qipj) =
{
On(qipj) : n ∈ ω

}
be the system of open neighbourhoods at the point

qipj ∈ C (p, q). It is obvious that the family B2 =
⋃
i,j∈ω

B2(qipj) satis�es the properties

(BP1)�(BP3) of [12], and hence it generates a topology on C (p, q).

Proposition 2. (C (p, q), τ2) is a T1-topological inverse locally compact semigroup.

Proof. It is obvious that τ2 is a T1-topology on C (p, q). Also, simple veri�cations show
that for each qipj ∈ C (p, q) and any open basic neighbourhood On(qipj) of qipj we have
that the set l4qipj \On(qipj) is �nite and

cl(C (p,q),τ2)(On(qipj)) = l4qipj .

This implies that the space l4qipj is compact and hence (C (p, q), τ2) is locally compact.

Fix arbitrary qi1pj1 , qi2pj2 ∈ C (p, q) and n ∈ ω. The de�nition of the semigroup
operation on the bicyclic semigroup C (p, q) and routine calculations imply that

Om(qi1pj1) ·Om(qi2pj2) ⊆ On(qi1pj1 · qi2pj2)

and (
On(qi1pj1)

)−1
=
(
On(qj1pi1)

)
,

for m = max {2n, i1, j1, i2, j2}, which completes the proof of the proposition. �

The following example shows that the bicyclic semigroup C (p, q) admits inverse
shift-continuous compact T1-topology.

Example 3. We construct the topology τc on C (p, q) in the following way. For any
non-negahtive integer n we denote

Cn =
{
qipj ∈ C (p, q) : i, j 6 n

}
.

Let
Bc(q

ipj) =
{
Wn(qipj) =

{
qipj

}
∪ C (p, q) \ Cn : n ∈ ω

}
be the system of open neighbourhoods at the point qipj ∈ C (p, q). It is obvious that

the family Bc =
⋃
i,j∈ω

Bc(q
ipj) satis�es the properties (BP1)�(BP3) of [12], and hence it

generates the topology τc on C (p, q).
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Proposition 3. τc is an inverse shift-continuous compact T1-topology on C (p, q).

Proof. It is obvious that τc is a T1-topology on C (p, q). Since any basic open set is
co-�nite in (C (p, q), τc), the space (C (p, q), τc) is compact.

Since
(
Wn(qipj)

)−1
= Wn(qjpi), the inversion is continuous in (C (p, q), τc).

Fix arbitrary qipj , qkpl ∈ C (p, q). Let m > max {i, j, k, l}. By the de�nition of the
semigroup operation in C (p, q) we get that the following equalities hold

qipj · qspt =

 qi−j+spt, if 0 6 j 6 s 6 m and t > m;
qipj−s+t, if j > s, 0 6 s 6 m and t > m;
qi−j+spt, if s > m and t ∈ ω

and

qspt · qipj =

 qspt−i+j , if 0 6 m and t > m;
qs−t+ipj , if 0 6 t 6 i and s > m;
qspt−i+j , if t > i and s > m,

which imply that

qipj ·W2m(qkpl) ⊆Wm(qipj · qkpl)
and

W2m(qkpl) · qipj ⊆Wm(qkpl · qipj),
respectively, and hence τc is a shift-continuous T1-topology on C (p, q). �

3. When a T1-topology on the bicyclic monoid is discrete?

Next we shall study topological properties P such that if a T1-topological space
(C (p, q), τ) has property P and τ is a shift-continuous (semigroup, inverse semigroup)
topology on C (p, q), then τ is discrete. The �rst such P-property is the property to be
a Baire space.

We recall that a topological space X is said to be Baire if for each sequence

A1, A2, . . . , Ai, . . . of dense open subsets of X the intersection

∞⋂
i=1

Ai is a dense subset of

X [17].

Remark 1. The topological space (C (p, q), τ2) is not Baire, because (C (p, q), τ2) has no
an isolated point in itself (see Proposition 1.30 in [17]). But (C (p, q), τ2) is a locally
compact space. Indeed, the set l4qipj is compact for any qipj ∈ C (p, q), because the
set l4qipj \On(qipj) is �nite for all On(qipj) ∈ B2(qipj). Moreover, for any On(qipj) ∈
B2(qipj) we have that cl(C (p,q),τ2)(On(qipj)) = l4qipj .

Theorem 1. Every shift-continuous Baire T1-topology τ on the bicyclic monoid C (p, q)
is discrete.

Proof. By Proposition 1.30 of [17] the space (C (p, q), τ) has an isolated point qipj . Then
for an arbitrary point qmpn in (C (p, q), τ) the separate continuity of the semigroup
operation in (C (p, q), τ) implies that there exists an open neighbourhood U(qmpn) of
qmpn in (C (p, q), τ) such that

qipm · U(qmpn) · qnpj ⊆
{
qipj

}
.
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By Lemma I.1 of [11] the equations A · X = B and X · C = D have only �nite sets of
solutions in C (p, q), and hence the set U(qmpn) is �nite. Since τ is a T1-topology, the
point qmpn is isolated in (C (p, q), τ). This completes the proof of the theorem. �

Lemma 3. Let τ be a shift-continuous T1-topology on the bicyclic monoid C (p, q) such

that the maps C (p, q) → E(C (p, q)), x 7→ xx−1 and C (p, q) → E(C (p, q)), x 7→ x−1x
are continuous. If for some idempotent qipi ∈ C (p, q), i ∈ ω, there exists an open nei-

ghbourhood U(qipi) of qipi in (C (p, q), τ) such that the set U(qipi)∩E(C (p, q)) is �nite,
then τ is discrete.

Proof. Since τ is a T1-topology on C (p, q), without loss of generality we may assume
that U(qipi) ∩ E(C (p, q)) =

{
qipi

}
. By Lemma I.1 of [11] the equations A ·X = B and

X ·C = D have only �nite sets of solutions in C (p, q), and hence the separate continuity
of the semigroup operation in (C (p, q), τ) implies that for any idempotent qjpj ∈ C (p, q),
j ∈ ω, there exists an open neighbourhood V (qjpj) of qipi in (C (p, q), τ) such that

qipj · V (qjpj) · qjpi ⊆ U(qipi).

Also, by the de�nition of the semigroup operation on C (p, q) we get that the set U(qjpj)∩
E(C (p, q)) is �nite, as well. Hence without loss of generality we may assume that every
idempotent qjpj ∈ C (p, q), j ∈ ω has an open neighbourhood W (qjpj) in (C (p, q), τ)
such that W (qjpj) ∩ E(C (p, q)) =

{
qjpj

}
.

Since the maps C (p, q) → E(C (p, q)), x 7→ xx−1 and C (p, q) → E(C (p, q)), x 7→
x−1x are continuous, for any point qmpn ∈ C (p, q), m.n ∈ ω, there exists an open
neighbourhood O(qmpn) of the point qmpn in (C (p, q), τ) such that

qm1pn1 · (qm1pn1)−1 = qm1pm1 ⊆ {qmpm}

and

(qm1pn1)−1 · qm1pn1 = qn1pn1 ⊆ {qnpn},

for all qm1pn1 ∈ O(qmpn). The last two inclusions imply that the neighbourhood O(qmpn)
is a singleton, i.e., O(qmpn) = {qmpn}. This implies the statement of the lemma. �

Let X be a topological space and Y be a subspace of X. We shall say that the space
Y is quasi-regular at a point x ∈ Y if for any open neighbourhood U(x) of x in Y there
exists an open nonempty subset V in Y such that clY (V ) ⊆ U(x).

Lemma 4. Let τ be a shift-continuous T1-topology on C (p, q). If there exists a point

qipj ∈ C (p, q) such that l4qipj is quasi-regular at qipj, then for any point qmpn ∈ C (p, q)
the space l4qmpn is quasi-regular at qmpn.

Proof. First we observe that for any qipj ∈ C (p, q) the set ↓4qipj is open in l4qipj
because the τ is a T1-topology on C (p, q).

We de�ne the mapping fq
mpn

qipj : C (p, q) → C (p, q) by the formula fq
mpn

qipj (x) = qipm ·
x · qnpj , for any i, j,m, n ∈ ω. Then by Lemma 1 we have that qm+kpn+k ∈ ↓4qipj and
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the semigroup operation in C (p, q) implies that

fq
mpn

qipj (qm+kpn+k) = qipm · qm+kpn+k · qnpj =

= qi(pmqm+k)(pn+kqn)pj =

= qiqkpkpj =

= qi+kpj+k,

for any k ∈ ω. Hence, the restrictions

fq
mpn

qipj �↓4qmpn : ↓4qmpn → ↓4qipj and fq
ipj

qmpn�↓4qipj : ↓4qipj → ↓4qmpn

are mutually inverse mappings and by the separate continuity of the semigroup operation
in (C (p, q), τ) they are homeomorphisms. Since the set ↓4qspt is open in l4qspt for any
s, t ∈ ω, the above arguments imply the statement of the lemma. �

Proposition 4. Let τ be an inverse semigroup T1-topology on C (p, q). If there exists an
idempotent qipi ∈ C (p, q) such that the space E(C (p, q)) is quasi-regular at qipi, then τ
is discrete.

Proof. Let U(qipi) be an open neighbourhood of the point qipi in E(C (p, q)). Without
loss of generality we may assume that the set U(qipi) is in�nite, because otherwise by
Lemma 3 the topological space (C (p, q), τ) is discrete. Since (C (p, q), τ) is a T1-space,
Vqipi = U(qipi) \ {qipi} is an open set in E(C (p, q)). Then there exists a nonempty open
subset Wqipi ⊆ Vqipi such that clE(C (p,q))(Wqipi) ⊆ Vqipi . Hence

O(qipi) = U(qipi) \ clE(C (p,q))(Wqipi)

is an open neighbourhood of the point qipi in E(C (p, q)). Without loss of generality we
may assume that the setWqipi is in�nite, because otherwise there exists an idempotent in
(C (p, q), τ) which has a �nite open neighbourhood, and hence by Lemma 3 the topological
space (C (p, q), τ) is discrete. The structure of the natural partial order 4 on the bicyclic
monoid C (p, q) implies that the set ↑4qipi is �nite, and hence there exists an idempotent
qjpj ∈ Wqipi such that qjpj ∈ ↓◦4qipi. Then qjpj · qipi = qjpj and the continuity of

the semigroup operation in (C (p, q), τ) implies that there exist open neighbourhoods
W1(qipi) and W1(qjpj) of the points qipi and qjpj in (C (p, q), τ), respectively, such that

(1) (W1(qjpj) ∩ E(C (p, q))) · (W1(qipi) ∩ E(C (p, q))) ⊆Wqipi ,

W1(qipi) ∩ E(C (p, q)) ⊆ O(qipi),

W1(qjpj) ∩ E(C (p, q)) ⊆Wqipi ,

and the sets W1(qipi) ∩ E(C (p, q)) and W1(qjpj) ∩ E(C (p, q)) are in�nite. The last two
properties imply that for any

qkpk ∈W1(qjpj) ∩ E(C (p, q))

there exists

qlpl ∈W1(qipi) ∩ E(C (p, q))

such that

qkpk · qlpl = qlpl · qkpk = qlpl,
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which contradicts condition (1). The obtained contradiction implies that at least one of
the sets W1(qipi) ∩E(C (p, q)) or W1(qjpj) ∩E(C (p, q)) is �nite. Then by Lemma 3 the
topology τ is discrete. �

Lemma 4 and Proposition 4 imply the following theorem.

Theorem 2. Let τ be an inverse semigroup T1-topology on C (p, q). If there exists a point

qipj ∈ C (p, q) such that the space l4qipj is quasi-regular at qipj, then τ is discrete.

Let X be a topological space and Y be a subspace of X. We shall say that the
space Y is semiregular at point x ∈ Y if there exists a basis B(x) of the topology of the
space Y at x which consists of regular open subsets of Y , i.e., U = intY (clY (U)) for any
U ∈ B(x).

The proof of the following lemma is similar to Lemma 4.

Lemma 5. Let τ be a shift-continuous T1-topology on C (p, q). If there exists a point

qipj ∈ C (p, q) such that the space l4qipj is semiregular at qipj, then for any point

qmpn ∈ C (p, q) the space l4qmpn is semiregular at qmpn.

Proposition 5. Let τ be a shift-continuous T1-topology on the bicyclic monoid C (p, q)
such that the maps C (p, q) → E(C (p, q)), x 7→ xx−1 and C (p, q) → E(C (p, q)), x 7→
x−1x are continuous. If there exists an idempotent qipi ∈ C (p, q) such that the space

E(C (p, q)) is semiregular at qipi, then τ is discrete.

Proof. Suppose to the contrary that there exists an inverse semigroup non-discrete
T1-topology on C (p, q) such that he space E(C (p, q)) is semiregular at qipi for some
idempotent qipi ∈ C (p, q). We claim that clE(C (p,q))(U(qipi)) = l4qipi for any regular

open neighbourhood U(qipi) in E(C (p, q)) of the point qipi.

Suppose to the contrary that there exists an idempotent qjpj ∈ C (p, q) such that

qjpj /∈ clE(C (p,q))(U(qipi)),

i.e., there exists an open neighbourhood U(qjpj) of the point qjpj in E(C (p, q)) such that
U(qjpj) ∩ U(qipi) = ∅. If the point qjpj has a �nite neighbourhood, then by Lemma 3
the topology τ is discrete. Hence all open neighbourhoods of the point qjpj are in�nite
in E(C (p, q)). If j < i then qipi · qjpj = qipi. The separate continuity of the semigroup
operation in (C (p, q), τ) implies that for a regular open neighbourhood U(qipi) of qipi in
E(C (p, q)) there exists an open neighbourhood V (qjpj) ⊆ U(qjpj) of qjpj in E(C (p, q))
such that

V (qjpj) · qipi ⊆ U(qipi).

By the de�nition of the bicyclic semigroup C (p, q) the neighbourhood V (qjpj) contains
in�nitely many idempotents qkpk, k ∈ ω, such that qipi · qkpk = qkpk. Since V (qjpj) ∩
U(qipi) = ∅, this contradicts the inclusion V (qjpj) · qipi ⊆ U(qipi). If j > i then qipi ·
qjpj = qjpj . The separate continuity of the semigroup operation in (C (p, q), τ) implies
that for an open neighbourhood U(qjpj) of qjpj in E(C (p, q)) there exists a regular open
neighbourhood V (qipi) ⊆ U(qipi) of qipi in E(C (p, q)) such that V (qipi)·qjpj ⊆ U(qjpj).
Again, by the de�nition of the bicyclic semigroup C (p, q) the neighbourhood V (qipi)
contains in�nitely many idempotents qkpk, k ∈ ω, such that qjpj · qkpk = qkpk. Similar
as in previous case we obtain a contradiction.
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The obtained contradictions imply that

clE(C (p,q))(U(qipi)) = l4qipi

for any regular open neighbourhood U(qipi) in E(C (p, q)) of the point qipi. This equality
contradicts the assumption that (C (p, q), τ) is a T1-space. Hence τ is the discrete topology
on the bicyclic monoid C (p, q). �

Lemma 5 and Proposition 5 imply the following theorem.

Theorem 3. Let τ be a shift-continuous T1-topology on the bicyclic monoid C (p, q) such
that the maps C (p, q)→ E(C (p, q)), x 7→ xx−1 and C (p, q)→ E(C (p, q)), x 7→ x−1x are

continuous. If there exists a point qipj ∈ C (p, q) such that the space l4qipj is semiregular

at qipj, then τ is discrete.
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Ïîáóäîâàíî äâi íåäèñêðåòíi iíâåðñíi íàïiâãðóïîâi T1-òîïîëîãi¨ òà êîì-
ïàêòíó iíâåðñíó òðàíñëÿöiéíî íåïåðåðâíó T1-òîïîëîãiþ íà áiöèêëi÷íîìó
ìîíî¨äi C (p, q). Òàêîæ çíàéäåíî óìîâè, çà ÿêèõ T1-òîïîëîãiÿ τ íà C (p, q)
¹ äèñêðåòíîþ. Çîêðåìà, äîâîäèìî, ÿêùî τ � iíâåðñíà íàïiâãðóïîâà T1-
òîïîëîãiÿ íà áiöèêëi÷íîìó ìîíî¨äi C (p, q), ÿêà çàäîâîëüíÿ¹ îäíó ç óìîâ: τ
� áåðiâñüêà, τ � êâàçi-ðåãóëÿðíà àáî τ � íàïiâðåãóëÿðíà, òî τ äèñêðåòíà.

Êëþ÷îâi ñëîâà: áiöèêëi÷íé ìîíî¨ä, òîïîëîãi÷íà íàïiâãðóïà, íàïiâòîïî-
ëîãi÷íà íàïiâãðóïà, äèñêðåòíèé, áåðiâñüêèé ïðîñòið, êîìïàêòíèé, ëîêàëü-
íî êîìïàêòíèé, êâàçi-ðåãóëÿðíèé, íàïiâðåãóëÿðíèé.


