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We construct two non-discrete inverse semigroup 7T7-topologies and a
compact inverse shift-continuous Ti-topology on the bicyclic monoid € (p, q).
Also we give conditions on a 7i-topology 7 on %(p,q) to be discrete. In
particular, we show that if 7 is an inverse semigroup Ti-topology on % (p, q)
which satisfies one of the following conditions: 7 is Baire, 7 is quasi-regular or
T is semiregular, then 7 is discrete.
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1. INTRODUCTION AND PRELIMINARIES

In this paper we shall follow the terminology of [6, 7, 8, 9, 12, 21, 25].

If (X, 7) is a topological space and Y C X, then we mean that Y is a subspace of
(X,7) and by cly(A) and inty (A) we denote the closure and the interior, respectively,
of A CY in the topological space Y.

A semigroup S is called inverse if for any element x € S there exists a unique
x~! € Ssuch that z2~ 'z = 2 and 2 '2z~! = 27! The element 2~ is called the inverse
of x € S. If S is an inverse semigroup, then the function inv: S — S which assigns
to every element x of S its inverse element z ' is called the inversion. On an inverse
semigroup S the semigroup operation determines the following partial order <: s < t if
and only if there exists e € E(S) such that s = te. This partial order is called the natural
partial order on S.
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A (semi)topological semigroup is a topological space with a (separately) continuous
semigroup operation. An inverse topological semigroup with continuous inversion is called
a topological inverse semigroup.

A topology 7 on a semigroup S is called:

a semigroup topology if (S, 7) is a topological semigroup;

an inverse semnigroup topology if (S, 7) is a topological inverse semigroup;

a shift-continuous topology if (S, 7) is a semitopological semigroup;

an inverse shift-continuous topology if (S, 7) is a semitopological semigroup with
continuous inversion.

The bicyclic monoid €(p, q) is the semigroup with the identity 1 generated by two
elements p and ¢ subjected only to the condition pg = 1. The semigroup operation on
€ (p, q) is determined as follows:

gitrmpn i L < my
¢ -q"pt =4 v if | =m;
gept=mtr i 1> m.
It is well known that the bicyclic monoid € (p, ¢) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on %(p,q) is a
group congruence [8].

It is well known that topological algebra studies the influence of topological properti-
es of its objects on their algebraic properties and the influence of algebraic properties of
its objects on their topological properties. There are two main problems in topological
algebra: the problem of non-discrete topologization and the problem of embedding into
objects with some topological-algebraic properties.

In mathematical literature the question about non-discrete (Hausdorff) topologizati-
on was posed by Markov [22]. Pontryagin gave well known conditions a base at the unity
of a group for its non-discrete topologization (see Theorem 4.5 of [18] or Theorem 3.9
of [23]). Various authors have refined Markov’s question: can a given infinite group G
endowed with a non-discrete group topology be embedded into a compact topological
group? Again, for an arbitrary Abelian group G the answer is affirmative, but there is
a non-Abelian topological group that cannot be embedded into any compact topological
group (see Section 9 of [10]).

Also, Ol’shanskiy [24] constructed an infinite countable group G such that every
Hausdorff group topology on G is discrete. Taimanov presented in [26] a commutati-
ve semigroup ¥ which admits only discrete Hausdorff semigroup topology and gave in
[27] sufficient conditions on a commutative semigroup to have a non-discrete semigroup
topology. In [14] it is proved that each T;-topology with continuous shifts on ¥ is discrete.

The bicyclic monoid admits only the discrete semigroup Hausdorff topology [11].
Bertman and West in [5] extended this result for the case of Hausdorff semitopological
semigroups. If a Hausdorff (semi)topological semigroup 7' contains the bicyclic monoid
% (p,q) as a dense proper semigroup then T\ €(p,q) is a closed ideal of T' [11, 13].
Moreover, the closure of €(p,q) in a locally compact topological inverse semigroup can
be obtained (up to isomorphism) from €(p, q) by adjoining the additive group of integers
in a suitable way [11].
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Stable and I'-compact topological semigroups do not contain the bicyclic monoid [1,
19, 20]. The problem of embedding the bicyclic monoid into compact-like topological
semigroups was studied in [2, 3, 4, 16].

In this paper we construct two non-discrete inverse semigroup 7;i-topologies and
a compact inverse shift-continuous T3-topologe on the bicyclic monoid % (p, ¢). Also we
give conditions on a Tj-topology 7 on €' (p, q) to be discrete. In particular, we show that
if 7 is an inverse semigroup 7Tj-topology on € (p,q) which satisfies one of the following
conditions: 7 is baire, 7 is quasi-regular or 7 is semiregular, then 7 is discrete.

2. EXAMPLES OF SEMIGROUP NON-DISCRETE 7}-TOPOLOGIES ON THE
BICYCLIC MONOID

In the following two examples we construct non-discrete 7Tj-semigroup inverse
topologies on the bicyclic monoid.

Example 1. We construct the topology 71 on %(p,q) in the following way. For any
q'p’ € €(p,q) and n € w we denote

Unlg'?’) ={d'P}u{¢p': s,t =n}.
Let %1 (q'p’) = {Un(¢'p’): n € w} be the system of open neighbourhoods at the point
q'p’ € €(p,q). It is obvious that the family %, = U %, (q'p?) satisfies the properties
1,jEw
(BP1)—(BP3) of [12], and hence it generates a topology on % (p, q).
Proposition 1. (¢ (p,q),m1) is a T1-topological inverse semigroup.

Proof. Tt is obvious that 7 is a Tj-topology on € (p, q).

Fix arbitrary ¢ip’t,¢2p’2 € €(p,q) and n € w. The definition of the semigroup
operation on the bicyclic semigroup €'(p, q) and routine calculations imply that

Un(g"p"*) - Un(q™p™) C Upn(g"p’* - 4"2p™)
and o . o
(Un(g"p™)) = (Un(g”p™)),
for m = max {2n, i1, j1, 42, jo }. This completes the proof of the proposition. O

For the natural partial order < on the bicyclic semigroup € (p,q) and any ¢'p’ €
% (p, q) we denote

t<a'Y ={’p' €C(p,9): ¢’V < ¢°
b<a'? ={a’p' €€ (p,q): ¢°p' <
I<d'Y = 1<4'P’ Uld'p;
124" = 1<d'P \{d'P"} .
The following statement describes the natural partial order < on the bicyclic semi-
group € (p,q) and it follows from Lemma 1 of [15].

Lemma 1. Let ¢'p’ and ¢°p' be arbitrary elements of the bicyclic semigroup € (p,q).
Then the following statements are equivalent:
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(i) ¢'P < ¢°p';
) 1=>2sand1— ) =s—1t;
(i) i > s and i —j = s 1
1) j=>tandi—j=s—t.
(#it) j >t andi—j t
The semigroup operation on the bicyclic semigroup % (p, ¢) and Lemma 1 imply the
following lemma.

Lemma 2. If ¢'p’ and ¢°p' are arbitrary elements of the bicyclic semigroup € (p,q),
then

I<d'p - I<apt = I<q T
Example 2. We construct the topology 7 on % (p,q) in the following way. For any
q'p’ € €(p,q) and any non-negahtive integer n we denote
On(g'p’) = {¢'P } Ulq .
Let %2(q'p’) = {On(¢'p’): n € w} be the system of open neighbourhoods at the point

q'p’ € €(p,q). Tt is obvious that the family %, = U By (q'p?) satisfies the properties
i,JEw
(BP1)—(BP3) of [12], and hence it generates a topology on % (p, q).

Proposition 2. (¥ (p,q), 1) is a T1-topological inverse locally compact semigroup.

Proof. 1t is obvious that 75 is a Tj-topology on %(p, ¢). Also, simple verifications show
that for each ¢‘p’ € €¢(p,q) and any open basic neighbourhood O,,(¢'p’) of ¢'p’ we have
that the set $<q'p’ \ O, (¢'p?) is finite and

L (p.q),m) (On(d'P")) = 1<4a'P’.

This implies that the space J<¢'p’ is compact and hence (¢ (p, q), 72) is locally compact.
Fix arbitrary ¢“1p’t,¢2p’2 € €(p,q) and n € w. The definition of the semigroup
operation on the bicyclic semigroup % (p, ¢) and routine calculations imply that
Om (" P"") - O (¢2p") C On(q"p’* - ¢"2p)

and o o

(Onlg"p™)) = (On(d™p™)),
for m = max {2n, i1, j1, 2, j2 }, which completes the proof of the proposition. O

The following example shows that the bicyclic semigroup %(p,q) admits inverse
shift-continuous compact 73 -topology.

Example 3. We construct the topology 7. on €(p,q) in the following way. For any
non-negahtive integer n we denote
Cn={d'p’ €€(p,q):i.j <n}.

Be(q'?) = {Wn(d'?) ={d'P } U€(p,q) \ Crr: n € w}
be the system of open neighbourhoods at the point ¢'p’ € €(p,q). It is obvious that
the family %, = U B.(q'p’) satisfies the properties (BP1)—(BP3) of [12], and hence it

1, Ew
generates the topology 7. on €(p, q).
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Proposition 3. 7. is an inverse shift-continuous compact Ty -topology on € (p,q).

Proof. Tt is obvious that 7. is a Tj-topology on %(p,q). Since any basic open set is
co-finite in (€' (p, q), 7<), the space (¢(p,q), 7c) is compact.

Since (I/I/'n(qipj))f1 = W,(¢’p"), the inversion is continuous in (¢'(p, q), 7c).

Fix arbitrary ¢'p’, ¢"*p! € €(p,q). Let m > max {i, j, k,1}. By the definition of the
semigroup operation in € (p, q) we get that the following equalities hold

g Itspt, if0<j<s<mandt>m;
gy - ¢*pt =< ¢pP st ifj>s,0<s<mandt>m;
¢ Itspt, ifs>mandtew
and
¢pt~I, if0< mandt>m;
s=iip if 0 <t <iand s >m;
pt=i i, ift >iand s > m,
which imply that
'’ Wam(¢*p') € Wi (a'p” - ¢*p')
and
Worn(4"p') - 4’0" C Win(d"p" - ¢'p"),
respectively, and hence 7. is a shift-continuous T}-topology on €(p, q). O

3. WHEN A T1-TOPOLOGY ON THE BICYCLIC MONOID IS DISCRETE?

Next we shall study topological properties & such that if a Ti-topological space
(€¢(p,q), ) has property & and 7 is a shift-continuous (semigroup, inverse semigroup)
topology on €(p, q), then 7 is discrete. The first such #-property is the property to be
a Baire space.

We recall that a topological space X is said to be Baire if for each sequence
o0

A, Ay, ..., A;, ... of dense open subsets of X the intersection m A; is a dense subset of
i=1

X [17].

Remark 1. The topological space (¢(p,q),72) is not Baire, because (¢ (p, q),72) has no
an isolated point in itself (see Proposition 1.30 in [17]). But (€(p,q),2) is a locally
compact space. Indeed, the set J<¢'p’ is compact for any ¢'p’ € €(p,q), because the
set $<qlp3 \ O, (¢'p?) is finite for all On(_qi_pj) € A (qlp7) Moreover, for any O,,(¢'p?) €
PBa(q'p’) we have that cli(p.q),7)(On(q'D’)) = I<d'?.

Theorem 1. Every shift-continuous Baire T -topology T on the bicyclic monoid € (p, q)
1s discrete.

Proof. By Proposition 1.30 of [17] the space (¢(p, q), 7) has an isolated point ¢'p’. Then
for an arbitrary point ¢™p™ in (¥(p,q),T) the separate continuity of the semigroup
operation in (%(p,q),7) implies that there exists an open neighbourhood U(¢™p") of
qmp™ in (¥ (p,q),7) such that

ap™-U(d"™p") - q"p’ € {q'P"}.
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By Lemma I.1 of [11] the equations A- X = B and X - C' = D have only finite sets of
solutions in %'(p,q), and hence the set U(¢™p™) is finite. Since 7 is a Ti-topology, the
point ¢™p" is isolated in (%(p, ¢), 7). This completes the proof of the theorem. O

Lemma 3. Let 7 be a shift-continuous Ty -topology on the bicyclic monoid € (p,q) such
that the maps € (p,q) — E(€(p,q)), * — zz~* and €(p,q) — E(€(p,q)), v — z ta
are continuous. If for some idempotent ¢'p' € € (p,q), i € w, there exists an open nei-
ghbourhood U(q'p) of ¢'p* in (€ (p,q), ) such that the set U(q'p") N E(€(p,q)) is finite,
then T s discrete.

Proof. Since 7 is a Tij-topology on &(p,q), without loss of generality we may assume
that U(q'p®) N E(€(p,q)) = {qipi}. By Lemma I.1 of [11] the equations A - X = B and
X - C = D have only finite sets of solutions in € (p, q), and hence the separate continuity
of the semigroup operation in (4 (p, q), 7) implies that for any idempotent ¢/p’ € € (p, q),
j € w, there exists an open neighbourhood V (¢7p’) of ¢'p’ in (¢'(p,q),7) such that

ap - V(dp) - ¢p' CU(d'p).

Also, by the definition of the semigroup operation on % (p, q) we get that the set U(¢7p’)N
E(%(p,q)) is finite, as well. Hence without loss of generality we may assume that every
idempotent ¢'p’ € €(p,q), 7 € w has an open neighbourhood W (¢’p’) in (¢ (p,q), )
such that W(¢’p’) N E(€(p,q)) = {¢’p" }-

Since the maps € (p,q) — E(€(p,q)), © — zx~! and €(p,q) — E(€(p,q)), © —
x 'z are continuous, for any point ¢™p™ € €(p,q), m.n € w, there exists an open
neighbourhood O(¢™p™) of the point ¢"p" in (¥ (p, q),7) such that

1

g™ (g™ ™) T = g™Mp™ C {gM ™)
and
(¢™p™) "t ™M™ = ¢ p™ C {¢"p"},

for all g™1p™ € O(¢™p™). The last two inclusions imply that the neighbourhood O(¢™p™)
is a singleton, i.e., O(¢™p™) = {¢™p"™}. This implies the statement of the lemma. O

Let X be a topological space and Y be a subspace of X. We shall say that the space
Y is quasi-regular at a point x € Y if for any open neighbourhood U(z) of z in Y there
exists an open nonempty subset V in Y such that cly (V) C U(x).

Lemma 4. Let 7 be a shift-continuous Ty-topology on € (p,q). If there exists a point
q'p’ € €(p,q) such that L<q'p’ is quasi-regular at ¢'p?, then for any point ¢"p" € € (p, q)
the space J4q™p" is quasi-regular at ¢"p™.

Proof. First we observe that for any ¢'p’ € %€(p,q) the set |<q'p’ is open in J<q¢'p’
because the 7 is a T1-topology on %(p, q).

We define the mapping fgj;ljn : €(p,q) = €(p,q) by the formula fg;ljn () = ¢'p™ -
x - q"p?, for any i,j,m,n € w. Then by Lemma 1 we have that ¢™**p"+k ¢ | ¢'p’ and



Adriana CHORNENKA, Oleg GUTIK
52 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2023. Bumyck 95

the semigroup operation in €'(p, q) implies that

m,n

lelj) ( m+kpn+k) _ qipm . qm+kpn+k . qnp] —
—_ qi(pm,qm+k)(pn+kqn)pj _
=¢'q¢" "y =
— githpith
for any k € w. Hence, the restrictions
m_n . i .
P I N R T/ N G B i N e S/

are mutually inverse mappings and by the separate continuity of the semigroup operation
in (¢ (p,q), ) they are homeomorphisms. Since the set |<¢*p’ is open in J<¢*p’ for any
s,t € w, the above arguments imply the statement of the lemma. O

Proposition 4. Let 7 be an inverse semigroup T1-topology on € (p, q). If there exists an
idempotent q'p' € € (p,q) such that the space E(€¢(p,q)) is quasi-regular at ¢'p’, then T
is discrete.

Proof. Let U(g'p’) be an open neighbourhood of the point ¢'p® in E(%(p,q)). Without
loss of generality we may assume that the set U(q'p?) is infinite, because otherwise by
Lemma 3 the topological space (¢'(p,q),7) is discrete. Since (¢'(p,q),7) is a Ti-space,
Vyipi = U(q'p") \ {¢'p'} is an open set in E(€(p,q)). Then there exists a nonempty open
subset qupi - tipi such that CIE(%(p’q))(qupi) - szlpl Hence

O(qipi) = U(qipi) \CIE(‘K(p,Q))(Wq"'pi)

is an open neighbourhood of the point ¢‘p® in E(%€ (p,q)). Without loss of generality we
may assume that the set W, is infinite, because otherwise there exists an idempotent in
(% (p, q), 7) which has a finite open neighbourhood, and hence by Lemma 3 the topological
space (€ (p,q), ) is discrete. The structure of the natural partial order < on the bicyclic
monoid % (p, ¢) implies that the set t5¢'p’ is finite, and hence there exists an idempotent
¢’p’ € Wyipi such that ¢/p? € |%¢'p’. Then ¢/p’ - ¢'p' = ¢/p’ and the continuity of
the semigroup operation in (%(p,q),7) implies that there exist open neighbourhoods
W1(¢'p") and Wi (¢’p’) of the points ¢‘p’ and ¢/p’ in (€' (p,q), 7), respectively, such that

(1) (Wi(¢’p’) N E(€(p,q))) - Wilqg'p") N E(E(p,q))) C Wiy,
Wi(q'p") N E(€(p,q)) € O(q'p"),
Wi(g’p") N E(€(p,q)) € Wyipi,
and the sets W1 (¢'p’) N E(€(p, q)) and Wy(¢’p?) N E(€(p, q)) are infinite. The last two
properties imply that for any
¢"p" € Wi(¢’p’) N E(€(p,q))
there exists
q¢'p' € Wi(g'p") N E(€(p,q))
such that

a"p*-d'p' =4 " =40,
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which contradicts condition (1). The obtained contradiction implies that at least one of
the sets Wy (g'p") N E(€(p,q)) or Wi(¢?p’) N E(€(p, q)) is finite. Then by Lemma 3 the
topology 7 is discrete. O

Lemma 4 and Proposition 4 imply the following theorem.

Theorem 2. Let T be an inverse semigroup Tt - topology on € (p, q). If there exists a point
q'p’ € €(p,q) such that the space [<q'p’ is quasi-reqular at q'p’, then T is discrete.

Let X be a topological space and Y be a subspace of X. We shall say that the
space Y is semiregular at point x € Y if there exists a basis %B(x) of the topology of the
space Y at & which consists of regular open subsets of Y, i.e., U = inty (cly (U)) for any
U e B(x).

The proof of the following lemma is similar to Lemma 4.

Lemma 5. Let 7 be a shift-continuous Ty-topology on € (p,q). If there exists a point
q'p’ € €(p,q) such that the space [<q'p’ is semiregular at ¢'p’, then for any point
qmp"™ € €(p, q) the space T<q™p™ is semiregular at ¢™p".

Proposition 5. Let 7 be a shift-continuous Tl—topology on the bicyclic monoid € (p,q)
such that the maps € (p,q) — E(€(p,q)), x — xx~! and €(p,q) — E(€(p,q)), * —
z~ 'z are continuous. If there exists an idempotent ¢'p' € €(p,q) such that the space

E(€(p,q)) is semiregular at q'p’, then T is discrete.

Proof. Suppose to the contrary that there exists an inverse semigroup non-discrete
Ty-topology on %(p,q) such that he space E(¢(p,q)) is semiregular at q'p* for some
idempotent ¢'p’ € €(p,q). We claim that clp(g(p,q)) (U( = J<¢'p’ for any regular
open neighbourhood U (¢'p’) in E(€(p,q)) of the pomt qip'.

Suppose to the contrary that there exists an idempotent ¢/p’ € € (p, q) such that

&P’ ¢ Apeema)(Udp)),

i.e., there exists an open neighbourhood U(¢’p’) of the point ¢’p’ in E(%€(p,q)) such that
U(¢p')NU(¢'p") = @. If the point ¢/p’ has a finite neighbourhood, then by Lemma 3
the topology T is discrete. Hence all open neighbourhoods of the point ¢/p’ are infinite
in E(€¢(p,q)). If j < i then ¢'p’ - ¢'p’ = ¢'p’. The separate continuity of the semigroup
operation in (% (p, q), 7) implies that for a regular open neighbourhood U (¢‘p*) of ¢'p® in
E(€(p,q)) there exists an open neighbourhood V (¢’p’) C U(¢’p?) of ¢/p’ in E(€(p,q))
such that
Vig'p’) - ¢'p" CU(¢'D").

By the definition of the bicyclic semigroup % (p, q) the neighbourhood V(¢’p?) contains
infinitely many idempotents ¢ kpk k€ w, such that ¢* p q Fph = ¢Fp". Since V(¢/p7) N
U(q'p') = @, this contradicts the inclusion V(¢/p?) - ¢‘'p* C U(q'p?). If j > i then ¢'p® -
¢’p’ = ¢?p?. The separate continuity of the semigroup operatlon in (¢(p,q), ) implies
that for an open neighbourhood U(¢p?) of ¢/p’ in E(%(p, q)) there exists a regular open
neighbourhood V (¢'p®) C U(g'p?) of ¢'p’ in E(€ (p, q)) such that V (¢'p?)-¢’p? C U(quj)
Again, by the definition of the bicyclic semigroup €(p,q) the nelghbourhood V(qgip?)
contains infinitely many idempotents ¢*p¥, k € w, such that ¢/p? - ¢*p* = ¢*p”. Similar
as in previous case we obtain a contradiction.
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The obtained contradictions imply that
e e (U@'P") = I<4'p’

for any regular open neighbourhood U(¢‘p?) in E(%(p, q)) of the point ¢’p’. This equality
contradicts the assumption that (¢'(p, q), 7) is a Ty -space. Hence 7 is the discrete topology
on the bicyclic monoid % (p, q). O

Lemma 5 and Proposition 5 imply the following theorem.

Theorem 3. Let 7 be a shift-continuous T1-topology on the bicyclic monoid € (p, q) such
that the maps € (p,q) — E(€(p,q)), * — xz~* and €(p,q) — E(€(p,q)), * — x~ 1z are
continuous. If there exists a point ¢'p’ € € (p,q) such that the space {<q'p’ is semiregular
at ¢'p?, then T is discrete.
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ITob6ymoBano aBi HemuckpeTHi iHBepCHI HAMBrpymosi 17-romosorii Ta Kom-
MAKTHY IHBEPCHY TPAHC/IAMINHO HemepepBHy 77-TOMOOriio Ha OiIUKIITHOMY
monoini € (p, q). Takox 3maiimeno ymoswm, 3a skux 1i-tononoria T Ha % (p, q)
€ JIMCKPETHOIO. 30KpeMa, JI0BOJMMO, KO0 T — IHBEpCHA HamiBrpyrosBa 17-
Tomo I0Tis Ha GimukIiarOMy MOHOIAL 6 (p, ), AKa 330BOTHHSE OJHY 3 YMOB: T
— GepiBCchKa, T — KBa3i-peryssipHa abo T — HAMIBPery/sipHA, TO T JUCKPETHA.

Karowo6t cao6a: OIMUKIIIYHI MOHOII, TOIIOJIOTIYHA HAMBIPYIIA, HAIIIBTOIIO-
JIOTiYHA HAIIBrpyIa, JUCKPETHU, 6ePIBCHKUI IPOCTIPp, KOMIIAKTHHUI, JIOKAJIb-
HO KOMITAKTHUI, KBa3i-peryIsapHNi, HAIIBPEryISpHMTIL.



