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1. Introduction, motivation and main definitions

We shall follow the terminology of [1, 2, 13]. By ω we denote the set of all non-
negative integers and by N the set of all positive integers.

Let P(ω) be the family of all subsets of ω. For any F ∈ P(ω) and any integer n
we put n + F = {n + k : k ∈ F} if F 6= ∅ and n + ∅ = ∅. A subfamily F ⊆ P(ω) is
called ω-closed if F1 ∩ (−n + F2) ∈ F for all n ∈ ω and F1, F2 ∈ F . For any a ∈ ω we
denote [a) = {x ∈ ω : x > a}.

A subset A of ω is said to be inductive, if i ∈ A implies i+ 1 ∈ A. Obvious, that ∅
is an inductive subset of ω.

Remark 1 ([5]). (1) By Lemma 6 from [4] nonempty subset F ⊆ ω is inductive in ω
if and only (−1 + F ) ∩ F = F .

(2) Since the set ω with the usual order is well-ordered, for any nonempty inductive
subset F in ω there exists nonnegative integer nF ∈ ω such that [nF ) = F .
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(3) Statement (2) implies that the intersection of an arbitrary �nite family of
nonempty inductive subsets in ω is a nonempty inductive subset of ω.

For an arbitrary semigroup S any homomorphism α : S → S is called an endomorphi-

sm of S. If the semigroup has the identity element 1S then the endomorphism α of S such
that (1S)α = 1S is said to be a monoid endomorphism of S. A bijective endomorphism
of S is called an automorphism.

A semigroup S is called inverse if for any element x ∈ S there exists a unique
x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse
of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns to
every element x of S its inverse element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order 4 on E(S): e 4 f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order 4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te.
This order is called the natural partial order on S [17].

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a
group congruence [1].

On the set Bω = ω × ω we de�ne the semigroup operation �·� in the following way

(1) (i1, j1) · (i2, j2) =
{

(i1 − j1 + i2, j2), if j1 6 i2;
(i1, j1 − i2 + j2), if j1 > i2.

It is well known that the bicyclic monoid C (p, q) is isomorphic to the semigroup Bω

by the mapping h : C (p, q) → Bω, q
kpl 7→ (k, l) (see: [1, Section 1.12] or [15, Exercise

IV.1.11(ii)]).

Next we shall describe the construction which is introduced in [4].

Let F be an ω-closed subfamily of P(ω). On the setBω×F we de�ne the semigroup
operation �·� in the following way

(2) (i1, j1, F1) · (i2, j2, F2) =

{
(i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2), if j1 6 i2;
(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)), if j1 > i2.

In [4] is proved that if the family F ⊆P(ω) is ω-closed then (Bω×F , ·) is a semigroup.
Moreover, if an ω-closed family F ⊆ P(ω) contains the empty set ∅ then the set
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I = {(i, j,∅) : i, j ∈ ω} is an ideal of the semigroup (Bω×F , ·). For any ω-closed family
F ⊆P(ω) the following semigroup

BF
ω =

{
(Bω ×F , ·)/I, if ∅ ∈ F ;
(Bω ×F , ·), if ∅ /∈ F

is de�ned in [4]. The semigroup BF
ω generalizes the bicyclic monoid and the countable

semigroup of matrix units. In [4] it is proven thatBF
ω is a combinatorial inverse semigroup

and Green's relations, the natural partial order on BF
ω and its set of idempotents are

described. Also, in [4] the criteria when the semigroup BF
ω is simple, 0-simple, bisimple,

0-bisimple, or it has the identity, are given. In particularly in [4] it is proven that the

semigroup BF
ω is isomorphic to the semigrpoup of ω×ω-matrix units if and only if F

consists of a singleton set and the empty set, andBF
ω is isomorphic to the bicyclic monoid

if and only if F consists of a non-empty inductive subset of ω.

Group congruences on the semigroup BF
ω and its homomorphic retracts in the case

when an ω-closed family F consists of inductive non-empty subsets of ω are studied
in [5]. It is proven that a congruence C on BF

ω is a group congruence if and only if its

restriction on a subsemigroup ofBF
ω , which is isomorphic to the bicyclic semigroup, is not

the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms

of the semigroup BF
ω are described. In [6] it is proven that an injective endomorphism ε

of the semigroup BF
ω is the indentity transformation if and only if ε has three distinct

�xed points, which is equivalent to existence non-idempotent element (i, j, [p)) ∈ BF
ω

such that (i, j, [p))ε = (i, j, [p)).

In [3, 14] the algebraic structure of the semigroup BF
ω is established in the case

when ω-closed family F consists of atomic subsets of ω. The structure of the semigroup
BFn

ω , for the family Fn which is generated by the initial interval {0, 1, . . . , n} of ω, is
studied in [8]. The semigroup of endomorphisms of BFn

ω is described in [7, 16].

In [12] it is proven that the semigroup End(Bω) of the endomorphisms of the
bicyclic semigroup Bω is isomorphic to the semidirect products (ω,+) oϕ (ω, ∗), where
+ and ∗ are the usual addition and the usual multiplication on the set of non-negative
integers ω.

In the paper [9] injective endomorphisms of the semigroup BF
ω with the two-

elements family F of inductive nonempty subsets of ω are studies. Also, in [9] the authors

describe the elements of the semigroup End1
∗(B

F
ω ) of all injective monoid endomorphi-

sms of the monoid BF
ω , and show that Green's relations R, L , H , D , and J on

End1
∗(B

F
ω ) coincide with the relation of equality. In [10, 11] the semigroup End1(BF

ω )

of all monoid endomorphisms of the monoid BF
ω is studied.

Later we assume that F 3 is a family of inductive nonempty subsets of ω which
consists of three sets. By Proposition 1 of [5] for any ω-closed family F of inductive
subsets in P(ω) there exists an ω-closed family F ∗ of inductive subsets in P(ω) such

that [0) ∈ F ∗ and the semigroups BF
ω and BF∗

ω are isomorphic. Hence without loss of
generality we may assume that the family F contains the set [0), i.e., F 3 = {[0), [1), [2)}.
Later in the paper we denote F0,1 = {[0), [1)} and F1,2 = {[1), [2)} as subfamilies of
F 3.
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In this paper we describe injective monoid endomorphisms of the semigroup BF3

ω .

Also, we show that the monoid End1
∗(B

F
ω ) of all injective monoid endomorphisms of

the semigroup BF
ω is isomorphic to the multiplicative semigroup of positive integers.

2. Injective endomorphisms of the monoid BF3

ω are extensions of

injective endomorphisms of its submonoid BF0,1
ω

If F is an arbitrary ω-closed family F of inductive subsets in P(ω) and [s) ∈ F
for some s ∈ ω then

B{[s)}ω = {(i, j, [s)) : i, j ∈ ω}
is a subsemigroup of BF

ω and by Proposition 3 of [4] the semigroup B{[s)}ω is isomorphic
to the bicyclic semigroup.

Later we need the following theorem from [6].

Theorem 1 ([6, Theorem 2]). Let F be an ω-closed family of inductive nonempty subsets

of ω, which contains at least two sets. Then for an injective monoid endomorphism ε of

BF
ω the following conditions are equivalent:

(i) ε is the identity map;

(ii) there exists a nonidempotent element (i, j, [p)) ∈ BF
ω such that (i, j, [p))ε =

(i, j, [p));
(iii) the map ε has at least three �xed points.

Let F 2 = {[0), [1)}. For an arbitrary positive integer k and any p ∈ {0, . . . , k − 1}
we de�ne the transformation αk,p of the semigroup BF2

ω in the following way

(i, j, [0))αk,p = (ki, kj, [0)),

(i, j, [1))αk,p = (p+ ki, p+ kj, [1)),

for all i, j ∈ ω. Also, for an arbitrary positive integer k > 2 and any p ∈ {1, . . . , k − 1}
we de�ne the transformation βk,p of the semigroup BF2

ω in the following way

(i, j, [0))βk,p = (ki, kj, [0)),

(i, j, [1))βk,p = (p+ ki, p+ kj, [0)),

for all i, j ∈ ω.
The following theorem is proved in [9].

Theorem 2 ([9, Theorem 1]). Let F 2 = {[0), [1)} and ε be an injective monoid

endomorphism of BF2

ω . Then either there exist a positive integer k and p ∈ {0, . . . , k−1}
such that ε = αk,p or there exist a positive integer k > 2 and p ∈ {1, . . . , k− 1} such that

ε = βk,p.

Example 1. Let F 3 = {[0), [1), [2)}. Fix an arbitrary positive integer k. We de�ne the

transformation α[k] of the semigroup BF3

ω in the following way

(i, j, [p))α[k] =

{
(ki, kj, [p)), if p ∈ {0, 1};
(k(i+ 1)− 1, k(j + 1)− 1, [2)), if p = 2,

for all i, j ∈ ω. It is obvious that α[k] is an injective transformation of the monoid BF3

ω .
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Lemma 1. For an arbitrary positive integer k the transformation α[k] : B
F3

ω → BF3

ω is

an injective monoid endomorphism of the semigroup BF3

ω .

Proof. It is obvious that in the case when k = 1 the map α[k] is the identity transformati-

on of the monoid BF3

ω , i.e., α[k] is an automorphism of BF3

ω , and hence later without
loss of generality we may assume that k > 2.

By Lemma 2 of [9] the restrictions of the map α[k] onto the subsemigroups BF0,1
ω

and BF1,2
ω of BF3

ω are injective monoid endomorphism of BF0,1
ω and BF1,2

ω , respectively.
Hence it is complete to show that the map α[k] preserves the semigroup operation in the
following two cases

(i0, j0, [0)) · (i2, j2, [2)) and (i2, j2, [2)) · (i0, j0, [0)).

We get that

((i0, j0, [0)) · (i2, j2, [2)))α[k] =

=


(i0 − j0 + i2, j2, (j0 − i2 + [0)) ∩ [2))α[k], if j0 < i2;
(i0, j2, [0) ∩ [2))α[k], if j0 = i2;
(i0, j0 − i2 + j2, [0) ∩ (−1 + [2)))α[k], if j0 = i2 + 1;
(i0, j0 − i2 + j2, [0) ∩ (i2 − j0 + [2)))α[k], if j0 > i2 + 2

=


(i0 − j0 + i2, j2, [2))α[k], if j0 < i2;
(i0, j2, [2))α[k], if j0 = i2;
(i0, j2 + 1, [1))α[k], if j0 = i2 + 1;
(i0, j0 − i2 + j2, [0))α[k], if j0 > i2 + 2

=


(k(i0 − j0 + i2 + 1)− 1, k(j2 + 1)− 1, [2)), if j0 < i2;
(k(i0 + 1)− 1, k(j2 + 1)− 1, [2)), if j0 = i2;
(ki0, k(j2 + 1), [1))), if j0 = i2 + 1;
(ki0, k(j0 − i2 + j2), [0)), if j0 > i2 + 2,

(i0,j0, [0))α[k] · (i2, j2, [2))α[k] = (ki0, kj0, [0)) · (k(i2 + 1)− 1, k(j2 + 1)− 1, [2))

=


(ki0 − kj0 + k(i2 + 1)− 1, k(j2 + 1)− 1, (kj0 − (k(i2 + 1)− 1) + [0)) ∩ [2)),

if kj0 < k(i2+1)−1;
(ki0, k(j2 + 1)− 1, [0) ∩ [2)), if kj0 = k(i2+1)−1;
(ki0, kj0 − (k(i2 + 1)− 1) + k(j2 + 1)− 1, [0) ∩ (k(i2 + 1)− 1− kj0 + [2))),

if kj0 > k(i2+1)−1

=

 (k(i0 − j0 + i2 + 1)− 1, k(j2 + 1)− 1, [2)), if j0 < i2+1−1/k;
(ki0, k(j2 + 1)− 1, [2)), if j0 = i2+1−1/k;
(ki0, k(j0 − i2 + j2), [0) ∩ (k(i2 + 1)− 1− kj0 + [2))), if j0 > i2+1−1/k;

=


(k(i0 − j0 + i2 + 1)− 1, k(j2 + 1)− 1, [2)), if j0 < i2;
(k(i0 + 1)− 1, k(j2 + 1)− 1, [2)), if j0 = i2;
(ki0, k(j2 + 1), [1))), if j0 = i2 + 1;
(ki0, k(j0 − i2 + j2), [0)), if j0 > i2 + 2,

because k > 2 and the equality j0 = i2 + 1− 1/k is impossible; and
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((i2, j2, [2)) · (i0, j0, [0)))α[k] =

 (i2 − j2 + i0, j0, (j2 − i0 + [2)) ∩ [0))α[k], if j2 < i0;
(i2, j0, [2) ∩ [0))α[k], if j2 = i0;
(i2, j2 − i0 + j0, [2) ∩ (i0 − j2 + [0)))α[k], if j2 > i0

=


(i2 − j2 + i0, j0, [0))α[k], if j2 + 2 6 i0;
(i2 + 1, j0, [1))α[k], if j2 + 1 = i0;
(i2, j0, [2))α[k], if j2 = i0;
(i2, j2 − i0 + j0, [2))α[k], if j2 > i0

=


(k(i2 − j2 + i0), kj0, [0)), if j2 + 2 6 i0;
(k(i2 + 1), kj0, [1)), if j2 + 1 = i0;
(k(i2 + 1)− 1, k(j0 + 1)− 1, [2)), if j2 = i0;
(k(i+1)−12, k(j2−i0+j0+1)−1, [2)), if j2 > i0,

(i2,j2, [2))α[k] · (i0, j0, [0))α[k] = (k(i2 + 1)− 1, k(j2 + 1)− 1, [2)) · (ki0, kj0, [0))

=


(k(i2 + 1)− 1− (k(j2 + 1)− 1) + ki0, kj0, (k(j2 + 1)− 1− ki0 + [2)) ∩ [0)),

if k(j2+1)−1 < ki0;
(k(i2 + 1)− 1, kj0, [2) ∩ [0)), if k(j2+1)−1 = ki0;
(k(i2 + 1)− 1, k(j2 + 1)− 1− ki0 + kj0, [2) ∩ (ki0 − (k(j2 + 1)− 1) + [0))),

if k(j2+1)−1 > ki0

=

 (k(i2 − j2 + i0), kj0, (k(j2 + 1)− 1− ki0 + [2))), if j2 + 1 < i0 + 1/k;
(k(i2 + 1)− 1, kj0, [2)), if j2 + 1 = i0 + 1/k;
(k(i2 + 1)− 1, k(j2 − i0 + j0 + 1)− 1, [2)), if j2 + 1 > i0 + 1/k

=


(k(i2 − j2 + i0), kj0, [0)), if j2 + 2 6 i0;
(k(i2 + 1), kj0, (k(j2 + 1)− 1− ki0 + [2))), if j2 + 1 = i0;
(k(i2 + 1)− 1, k(j0 + 1)− 1, [2)), if j2 = i0;
(k(i+ 1)− 12, k(j2 − i0 + j0 + 1)− 1, [2)), if j2 > i0,

because k > 2 and the equality j2 +1 = i0 +1/k is impossible. This completes the proof
of the lemma. �

Remark 2. Proposition 1 implies that for any positive integer k the endomorphism α[k]

of BF3

ω is a extension of the endomorphism αk,0 of its subsemigroup BF0,1
ω .

Proposition 1. Let ε be an injective monoid endomorphism of BF3

ω such that

(0, 0, [0))ε = (0, 0, [0)), (0, 0, [1))ε = (0, 0, [1)), and (0, 0, [2))ε ∈ B{[2)}ω .

Then there exists a positive integer k such that ε = α[k].

Proof. If (0, 0, [2))ε = (0, 0, [2)) then by Theorem 1 we get that ε is the identity map of

BF3

ω , and hence ε = α[k] for k = 1.

Later we assume that (0, 0, [2))ε 6= (0, 0, [2)). By Lemma 2 of [9] the restrictions of

the map ε onto the subsemigroup BF0,1
ω of BF3

ω is an injective monoid endomorphism of

BF0,1
ω . The above arguments, the assumptions of the proposition, and Theorem 2 imply
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that there exists a positive integer k such that

(i, j, [0))ε = (ki, kj, [0)),

(i, j, [1))ε = (ki, kj, [1)),

for all i, j ∈ ω. Hence the restrictions of the endomorphisn ε onto the subsemigroup

BF0,1
ω of BF3

ω coincides with injective monoid endomorphism αk,0 of BF0,1
ω . Again, by

Lemma 2 of [9] the restrictions of the map ε onto the subsemigroup BF1,2
ω of BF3

ω is an

injective monoid endomorphism of BF1,2
ω . This, the above arguments, and Theorem 2

imply that there exists a positive integer s ∈ {1, . . . , k − 1} such that

(i, j, [2))ε = (ki+ s, kj + s, [1)),

for all i, j ∈ ω.
We claim that s = k − 1. Indeed, the semigroup operation of BF3

ω implies that

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [0) ∩ (−1 + [2))) =

= (1, 1, [0) ∩ ([1))) =

= (1, 1, [1)).

Since ε is an endomorphism of BF3

ω , we get that

(k, k, [1)) = (1, 1, [1))ε =

= ((1, 1, [0)) · (0, 0, [2)))ε =
= (1, 1, [0))ε · (0, 0, [2))ε =
= (k, k, [0)) · (s, s, [2)) =
= (k, k − s+ s, [0) ∩ (s− k + [2))) =

= (k, k, [0) ∩ [s− k + 2)),

which implies that max{0, s− k + 2} = 1. Then s− k + 2 = 1, and hence s = k − 1. �

Proposition 2. Let ε be an injective monoid endomorphism of the semigroup BF3

ω .

If (0, 0, [0))ε = (0, 0, [0)) and (0, 0, [1))ε = (0, 0, [1)), then ε = α[k] for some positive

integer k.

Proof. Suppose that (0, 0, [2))ε ∈ B{[1)}ω . Since (0, 0, [0))ε = (0, 0, [0)) and (0, 0, [1))ε =
(0, 0, [1)), Theorem 2 implies that there exists a positive integer k such that (i, j, [0))ε =
(ki, kj, [0)) and (i, j, [1))ε = (ki, kj, [1)) for all i, j ∈ ω. Since (0, 0, [2)) is an idempotent of

BF3

ω , Proposition 1.4.21(2) of [13] implies so is (0, 0, [2))ε. By Lemma 2 of [4] there exists
s ∈ ω such that (0, 0, [2))ε = (s, s, [1)). The inequalities (1, 1, [1)) 4 (0, 0, [2)) 4 (0, 0, [1))
and Proposition 1.4.21(6) of [13] imply that

(k, k, [1)) = (1, 1, [1))ε 4

4 (0, 0, [2))ε =

= (s, s, [1)) 4

4 (0, 0, [1)) =

= (0, 0, [1))ε.
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Since the endomorphism ε is an injective map, Lemma 5 of [4] implies that 0 < s < k.

The semigroup operation of BF3

ω implies that

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [0) ∩ (−1 + [2))) =

= (1, 1, [0) ∩ ([1))) =

= (1, 1, [1)),

and hence we get that

(k, k, [1)) = (1, 1, [1))ε =

= ((1, 1, [0)) · (0, 0, [2)))ε =
= (1, 1, [0))ε · (0, 0, [2))ε =
= (s, s, [1)) · (k, k, [0)) =
= (s− s+ k, k, (s− k + [1)) ∩ [0)) =

= (k, k, [0)),

because s < k. The obtained contradiction implies that (0, 0, [2))ε /∈ B{[1)}ω .

Suppose that (0, 0, [2))ε ∈ B{[0)}ω . Since (0, 0, [2)) is an idempotent of BF3

ω , Proposi-
tion 1.4.21(2) of [13] and Lemma 2 of [4] imply that there exists t ∈ ω such that

(0, 0, [2))ε = (t, t, [0)). The semigroup operation of BF3

ω implies that

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [0) ∩ (−1 + [2))) =

= (1, 1, [0) ∩ ([1))) =

= (1, 1, [1)),

and by Theorem 2 we get that there exist a positive integer k such that (i, j, [0))ε =
(ki, kj, [0)) and (i, j, [1))ε = (ki, kj, [1)) for all i, j ∈ ω. Then we have that

(k, k, [1)) = (1, 1, [1))ε =

= ((1, 1, [0)) · (0, 0, [2)))ε =
= (1, 1, [0))ε · (0, 0, [2))ε =
= (t, t, [0)) · (k, k, [0)) =

= (max{t, k},max{t, k}, [0)) ∈ B{[0)}ω ,

a contradiction. Hence (0, 0, [2))ε /∈ B{[0)}ω .

The above arguments imply that (0, 0, [2))ε ∈ B{[2)}ω . Next we apply Propositi-
on 1. �

Proposition 3. For an arbitrary injective monoid endomorphism ε of the semigroup

BF3

ω there exist no a positive integers k and p ∈ {1, . . . , k − 1} such that the restri-

ction ε�
B

F0,1
ω

of the map ε onto the subsemigroup BF0,1
ω of BF3

ω coincides with the

endomorphism αk,p of BF0,1
ω .
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Proof. Suppose to the contrary that exist a positive integer k and p ∈ {1, . . . , k−1} such
that ε�

B
F0,1
ω

= αk,p. Then we have that

(i, j, [0))ε = (ki, kj, [0)),

(i, j, [1))ε = (p+ ki, p+ kj, [1)),

for all i, j ∈ ω.
Suppose that (0, 0, [2))ε ∈ B{[2)}ω . By the choice of the integer p and by the descri-

ption of the natural partial order on E(BF3

ω ) (see Lemma 5 of [4] or Proposition 3 in
[5]) we get that there exists a positive integer t such that (0, 0, [2))ε = (t, t, [2)). The

semigroup operation of BF3

ω implies that

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)),

and hence we have that

(k, k, [0)) · (t, t, [2)) = (1, 1, [0))ε · (0, 0, [2))ε =
= (1, 1, [1))ε =

= (p+ k, p+ k, [1)).

The structure of the natural partial order on E(BF3

ω ) (see Proposition 3 in [5]) implies
that

(1, 1, [1)) 4 (0, 0, [2)) 4 (0, 0, [1)).

Hence by Proposition 1.4.21(6) of [13] we have that

(p+ k, p+ k, [1)) = (1, 1, [1))ε 4

4 (t, t, [2)) =

= (0, 0, [2))ε 4

4 (0, 0, [1))ε =

= (p, p.[1)).

The above arguments and Lemma 5 of [4] imply that p 6 t 6 k + p. Then the equalities

(p+ k, p+ k, [1)) = (k, k, [0)) · (t, t, [2)) =

=

{
(t, t, [2)), if k 6 t;
(k, k, [0) ∩ (t− k + [2))), if k > t

imply that t− k = −1 and k = k + p. The last equality contradicts the assumption.

Suppose that (0, 0, [2))ε ∈ B{[1)}ω . Then by the choice of the integer p and by the

structure of the natural partial order on E(BF3

ω ) (see Lemma 5 of [4] or Proposition 3
in [5]) we obtain that there exists a positive integer t such that (0, 0, [2))ε = (t, t, [1)).
Since

(1, 1, [1)) 4 (0, 0, [2)) 4 (0, 0, [1)).



ON THE SEMIGROUP OF INJECTIVE ENDOMORPHISMS OF BF3

ω

ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2023. Âèïóñê 95 37

by Proposition 1.4.21(6) of [13] we have that

(p+ k, p+ k, [1)) = (1, 1, [1))ε 4

4 (t, t, [1)) =

= (0, 0, [2))ε 4

4 (0, 0, [1))ε =

= (p, p.[1)).

The above arguments and Lemma 5 of [4] imply that p 6 t 6 k + p. These inequalities
and the injectivity of the map ε imply that p < t < k + p. Then the equality

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)),

imply that

(p+ k, p+ k, [1)) = (k, k, [0)) · (t, t, [1)) =

=

{
(t, t, [1)), if k 6 t;
(k, k, [0)), if k > t,

and hence t = k + p, a contradiction.

Suppose that (0, 0, [2))ε ∈ B{[0)}ω . Then by the choice of the integer p and the

description of the natural partial order on E(BF3

ω ) (see Lemma 5 of [4] or Proposition 3
in [5]) we get that there exists a positive integer t such that (0, 0, [2))ε = (t, t, [0)). Since

(1, 1, [1)) 4 (0, 0, [2)) 4 (0, 0, [1)).

by Proposition 1.4.21(6) of [13] we have that

(p+ k, p+ k, [1)) = (1, 1, [1))ε 4

4 (t, t, [0)) =

= (0, 0, [2))ε 4

4 (0, 0, [1))ε =

= (p, p.[1)).

The above arguments and Lemma 5 of [4] imply that p 6 t 6 k + p. Since

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)),

we obtain that

(p+ k, p+ k, [1)) = (k, k, [0)) · (t, t, [0)) =
= (max{k, t},max{k, t}, [0)),

a contradiction.

The obtained contradictions imply the statement of the proposition. �

Proposition 4. For any injective monoid endomorphism ε of the semigroup BF3

ω there

exist no a positive integers k > 2 and p ∈ {1, . . . , k− 1} such that the restriction ε�
B

F0,1
ω

of the map ε onto the subsemigroup BF0,1
ω of BF3

ω coincides with the endomorphism βk,p
of BF0,1

ω .
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Proof. Suppose to the contrary that exist a positive integer k and p ∈ {1, . . . , k−1} such
that ε�

B
F0,1
ω

= βk,p. Then we have that

(i, j, [0))ε = (ki, kj, [0)),

(i, j, [1))ε = (p+ ki, p+ kj, [0)),

for all i, j ∈ ω.
Suppose that (0, 0, [2))ε ∈ B{[2)}ω . Then by the choice of the integer p and the

description of the natural partial order on E(BF3

ω ) (see Lemma 5 of [4] or Proposition 3
in [5]) we obtain that there exists a positive integer t such that (0, 0, [2))ε = (t, t, [2)).
Since

(1, 1, [1)) 4 (0, 0, [2)) 4 (0, 0, [1)).

by Proposition 1.4.21(6) of [13] we have that

(p+ k, p+ k, [1)) = (1, 1, [1))ε 4

4 (t, t, [2)) =

= (0, 0, [2))ε 4

4 (0, 0, [1))ε =

= (p, p.[1)).

The above arguments and Lemma 5 of [4] imply that p 6 t 6 k + p. The semigroup

operation of BF3

ω implies that

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)),

and hence we have that

(k, k, [0)) · (t, t, [2)) = (1, 1, [0))ε · (0, 0, [2))ε =
= (1, 1, [1))ε =

= (p+ k, p+ k, [0)).

Then the equalities

(p+ k, p+ k, [0)) = (k, k, [0)) · (t, t, [2)) =

=

{
(t, t, [2)), if k 6 t;
(k, k, [0) ∩ (t− k + [2))), if k > t

imply that k = k + p, and hence p = 0. A contradiction.

Suppose that (0, 0, [2))ε ∈ B{[1)}ω . The choice of the integer p and the structure of

the natural partial order on E(BF3

ω ) (see Lemma 5 of [4] or Proposition 3 in [5]) imply
that there exists a positive integer t such that (0, 0, [2))ε = (t, t, [1)). Similar as in the
previous case we get that p 6 t 6 k + p. Then the equality

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)),
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implies that

(k, k, [0)) · (t, t, [1)) = (1, 1, [0))ε · (0, 0, [2))ε =
= (1, 1, [1))ε =

= (p+ k, p+ k, [0)),

and hence the equalities

(p+ k, p+ k, [0)) = (k, k, [0)) · (t, t, [1)) =

=

{
(t, t, [1)), if k 6 t;
(k, k, [0)), if k > t

imply that k = k + p, and hence p = 0. A contradiction.

Suppose that (0, 0, [2))ε ∈ B{[0)}ω . The choice of the integer p and the structure of

the natural partial order on E(BF3

ω ) (see Lemma 5 of [4] or Proposition 3 in [5]) imply
that there exists a positive integer t such that (0, 0, [2))ε = (t, t, [0)). Similar as in the
previous case we get that p 6 t 6 k + p. Then the equality

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)),

implies that

(k, k, [0)) · (t, t, [0)) = (1, 1, [0))ε · (0, 0, [2))ε =
= (1, 1, [1))ε =

= (p+ k, p+ k, [0)).

Then we have that

(p+ k, p+ k, [0)) = (k, k, [0)) · (t, t, [0)) =

=

{
(t, t, [0)), if k 6 t;
(k, k, [0)), if k > t.

If k = k+ p then p = 0, which contradicts the assumption of the proposition. If t = p+k
then

(1, 1, [1))ε = (p+ k, p+ k, [0)) = (0, 0, [2))ε,

which contradicts the injectivity of the map ε.

The obtained contradictions imply the statement of the proposition. �

The following theorem summarises the main result of this section and it follows from
Lemma 1 and Propositions 1�4.

Theorem 3. Let F 3 = {[0), [1), [2)} and ε be an injective monoid endomorphism of the

semigroup BF3

ω . If the restriction ε�
B

F0,1
ω

of the map ε onto the subsemigroup BF0,1
ω of

BF3

ω is an injective monoid endomorphism of BF0,1
ω , then ε = α[k] for some positive

integer k.

Theorem 4. Let F 3 = {[0), [1), [2)}. Every injective monoid endomorphism of the semi-

group BF3

ω is an extension of injective endomorphisms of its submonoid BF0,1
ω .
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Proof. Suppose to the contrary that there exists an injective monoid endomorphism ε of

the semigroup BF3

ω such that the restriction ε�
B

F0,1
ω

of the map ε onto the subsemigroup

BF0,1
ω of BF3

ω is not a monoid endomorphism of BF0,1
ω . By Proposition 3 of [4], for any

n = 0, 1, 2 the semigroupB{[n)}ω is isomorphic to the bicyclic semigroup. By Proposition 4

of [5] we have that (i, j, [0))ε ∈ B{[0)}ω for all i, j ∈ ω, because ε is an injective monoid

endomorphism of the semigroup BF3

ω . Moreover, by Theorem 1 from [12] there exists a
positive integer k such that (i, j, [0))ε = (ki, kj, [0)) for all i, j ∈ ω. Again, Proposition 4
of [5] implies that for any n ∈ {1, 2} there exists mm ∈ {0, 1, 2} such that (i, j, [n))ε ∈
B{[mn)}

ω for all i, j ∈ ω. The above arguments and Theorem 2 imply that (i, j, [1))ε ∈
B{[2)}ω for all i, j ∈ ω.

We remark that the assumption that

(i, j, [2))ε ∈ BF0,1
ω , for all i, j ∈ ω,

contradicts the equality

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)).

By Proposition 1.4.21(2) of [13], (0, 0, [2))ε is an idempotent of BF3

ω . If (0, 0, [2))ε =
(t, t, [0)) for some t ∈ ω (see Lemma 2 in [4]), then we have that

(1, 1, [1))ε = ((1, 1, [0)) · (0, 0, [2)))ε =
= (1, 1, [0))ε · (0, 0, [2))ε =
= (k, k, [0)) · (t, t, [0)) =

= (max{k, t},max{k, t}, [0)) ∈ B{[0)}ω .

This contradicts the condition that (i, j, [1))ε ∈ B{[2)}ω for all i, j ∈ ω. If (0, 0, [2))ε =
(t, t, [1)) for some t ∈ ω (see Lemma 2 in [4]), then we obtain that

(1, 1, [1))ε = ((1, 1, [0)) · (0, 0, [2)))ε =
= (1, 1, [0))ε · (0, 0, [2))ε =
= (k, k, [0)) · (t, t, [1)) =

=

{
(t, t, [1)), if t > k;
(k, k, [0)), if t < k.

This contradicts the condition that (i, j, [1))ε ∈ B{[2)}ω for all i, j ∈ ω.
Suppose that (0, 0, [2))ε ∈ B{[2)}ω . By Lemma 2 from [4] there exists t ∈ ω such

that (0, 0, [2))ε = (t, t, [2)). Since (0, 0, [2)) 4 (0, 0, [1)), Proposition 1.4.21(6) of [13]
implies that (0, 0, [2))ε 4 (0, 0, [1))ε. If (0, 0, [2))ε = (0, 0, [2)), then by the equality
(0, 0, [0))ε = (0, 0, [0)) and

(0, 0, [2)) = (0, 0, [2))ε 4

4 (0, 0, [1))ε 4

4 (0, 0, [0))ε =

= (0, 0, [0))
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we obtain that (0, 0, [1))ε = (0, 0, [1)). Theorem 1 implies that ε is the identity map of

BF3

ω , which contradicts the assumption. Hence we have that t 6= 0.

Suppose that (0, 0, [1))ε = (p, p, [2)) for some p ∈ ω. Since

(1, 0, [0)) · (0, 0, [1)) · (0, 1, [0)) = ((1, 0, [1)) · (0, 1, [0)) =
= (1, 1, [1)),

we have that

(1, 1, [1))ε = ((1, 0, [0)) · (0, 0, [1)) · (0, 1, [0)))ε =
= (1, 0, [0))ε · (0, 0, [1))ε · (0, 1, [0))ε =
= (k, 0, [0)) · (p, p, [2)) · (0, k, [0)) =
= (k + p, p, [2)) · (0, k, [0)) =
= (k + p, k + p, [2)).

Put (0, 1, [1))ε = (x, y, [2)). By Proposition 1.4.21 from [13] and Lemma 4 of [4] we get
that

(1, 0, [1))ε = ((0, 1, [1))−1)ε =

= ((0, 1, [1))ε)−1 =

= (x, y, [2))−1 =

= (y, x, [2)).

This implies that

(p, p, [2)) = (0, 0, [1))ε =

= ((0, 1, [1)) · (1, 0, [1)))ε =
= (0, 1, [1))ε · (1, 0, [1))ε =
= (x, y, [2)) · (y, x, [2)) =
= (x, x, [2))

and

(k + p, k + p, [2)) = (1, 1, [1))ε =

= ((1, 0, [1)) · (0, 1, [1)))ε =
= (1, 0, [1))ε · (0, 1, [1))ε =
= (y, x, [2)) · (x, y, [2)) =
= (y, y, [2)).

Hence by the de�nition of the semigroup BF
ω we get that

(0, 1, [1))ε = (p, k + p, [2)) and (1, 0, [1))ε = (k + p, p, [2)).
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Then for any i, j ∈ ω we have that

(i, j, [1))ε = ((i, 0, [1)) · (0, j, [1)))ε =
= ((1, 0, [1))i · (0, 1, [1))j)ε =
= ((1, 0, [1))ε)i · ((0, 1, [1))ε)j =
= (k + p, p, [2))i · (p, k + p, [2))j =

= (ki+ p, p, [2)) · (p, kj + p, [2)) =

= (ki+ p, kj + p, [2)).

Since (1, 1, [0)) 4 (0, 0, [1)) in E
(
BF3

ω

)
, by Proposition 1.4.21(6) from [13] we have

that

(k, k, [0)) = (1, 1, [0))ε 4 (0, 0, [1))ε = (p, p, [2)).

Then Lemma 5 of [4] implies that k > 2. Also, the inequalities

(1, 1, [1)) 4 (0, 0, [2)) 4 (0, 0, [1))

in E
(
BF3

ω

)
and Proposition 1.4.21(6) of [13] imply that

(k + p, k + p, [2)) = (1, 1, [1))ε 4

4 (0, 0, [2))ε =

= (t, t, [2)) 4

4 (0, 0, [1))ε =

= (p, p, [2)).

By Lemma 5 of [4] we get that p 6 t 6 k+p. Since ε is an injective monoid endomorphism

of the semigroup BF3

ω we conclude that p < t < k + p.

The equality

(1, 1, [0)) · (0, 0, [2)) = (1, 1, [1)).

implies that

(k + p, k + p, [2)) = (1, 1, [1))ε =

= ((1, 1, [0)) · (0, 0, [2)))ε =
= (1, 1, [0))ε · (0, 0, [2))ε =
= (k, k, [0)) · (t, t, [2)) =

=

 (t, t, [2)), if k 6 t;
(k, k, [1)), if k = t+ 1;
(k, k, [0)), if k > t+ 2.

Hence k 6 t and k + p = t. The last equality implies that

(1, 1, [1))ε = (k + p, k + p, [2)) = (0, 0, [2))ε,

which contradicts the injectivity of the map ε.

The obtained contradictions imply the statement of the theorem. �
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3. On the monoid of all injective endomorphisms of the

semigroup BF3

ω

Theorems 3 and 4 imply the following theorem.

Theorem 5. Let F 3 = {[0), [1), [2)} and ε be an injective monoid endomorphism of the

semigroup BF3

ω . Then ε = α[k] for some positive integer k.

By (N, ·) we denote the multiplicative semigroup of positive integers.

Theorem 6. Let F 3 = {[0), [1), [2)}. Then the monoid End1
∗(B

F3

ω ) of all injective

endomorphisms of the semigroup BF3

ω is isomorphic to (N, ·).

Proof. Fix arbitrary injective endomorphisms ε1 and ε2 of the semigroup BF
ω . By

Theorem 5 there exist positive integers k1 and k2 such that ε1 = α[k1] and ε2 = α[k2].
Then we have that

((i, j, [0))α[k1])α[k2] = (k1i, k1j, [0))α[k2] =

= (k2k1i, k2k1j, [0)) =

= (i, j, [0))α[k1·k2];

((i, j, [1))α[k1])α[k2] = (k1i, k1j, [1))α[k2] =

= (k2k1i, k2k1j, [1)) =

= (i, j, [1))α[k1·k2];

and

((i, j, [2))α[k1])α[k2] = (k1(i+ 1)− 1, k1(j + 1)− 1, [2))α[k2] =

= (k2(k1(i+ 1)− 1 + 1)− 1, k2(k1(j + 1)− 1 + 1)− 1, [2)) =

= (k2k1(i+ 1)− 1, k2k1(j + 1)− 1, [2)) =

= (i, j, [2))α[k1·k2],

for any i, j ∈ ω. Hence we obtain that α[k1]α[k2] = α[k1·k2]. It is obvious that the mapping

i : (N, ·) → End1
∗(B

F3

ω ), k 7→ α[k], is an injective homomorphism and by Theorem 5 it
is surjective. �
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