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We describe injective monoid endomorphisms of the semigroup BZ ® with
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that the monoid End. (B;,gs) of all injective endomorphisms of the semigroup
BZ s isomorphic to the multiplicative semigroup of positive integers.
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1. INTRODUCTION, MOTIVATION AND MAIN DEFINITIONS

We shall follow the terminology of [1, 2, 13]. By w we denote the set of all non-
negative integers and by N the set of all positive integers.

Let #(w) be the family of all subsets of w. For any F € #(w) and any integer n
weputn+ F={n+k: ke F}if F# @ and n+ @ = @. A subfamily % C Z(w) is
called w-closed if F1 N (—n+ Fy) € & for all n € w and Fy, F» € %. For any a € w we
denote [a) = {x € w: x > a}.

A subset A of w is said to be inductive, if i € A implies i + 1 € A. Obvious, that @
is an inductive subset of w.

Remark 1 ([5]). (1) By Lemma 6 from [4] nonempty subset F' C w is inductive in w
if and only (-1+ F)NF =F.
(2) Since the set w with the usual order is well-ordered, for any nonempty inductive
subset F' in w there exists nonnegative integer np € w such that [np) = F.
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(3) Statement (2) implies that the intersection of an arbitrary finite family of
nonempty inductive subsets in w is a nonempty inductive subset of w.

For an arbitrary semigroup S any homomorphism «: S — S'is called an endomorphi-
sm of S. If the semigroup has the identity element 1g then the endomorphism « of S such
that (1g)a = 1g is said to be a monoid endomorphism of S. A bijective endomorphism
of S is called an automorphism.

A semigroup S is called inverse if for any element z € S there exists a unique
z~! € Ssuch that o'z = z and  'zx~! = 2~ !. The element ! is called the inverse
of x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to
every element x of § its inverse element x~! is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then F(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order < on E(S): e < f if and ounly if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order < on S: s < t if and only if there exists e € E(S) such that s = te.
This order is called the natural partial order on S [17].

The bicyclic monoid € (p, q) is the semigroup with the identity 1 generated by two
elements p and ¢ subjected only to the condition pg = 1. The semigroup operation on
€ (p,q) is determined as follows:

qk:pl . anpn — qk-‘rm—min{l,?n}pl—i-n—min{l,m}'
It is well known that the bicyclic monoid € (p, ¢) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on %(p,q) is a
group congruence [1].

“n

On the set B, = w X w we define the semigroup operation

. .. (il -1+ ig,jg), if j1 < i9;
1 i1, - (22, = o . . o .
( ) ( 1 Jl) ( 2 32) { (117]1 — g +]2)’ if j1 > io.

in the following way

It is well known that the bicyclic monoid % (p, ¢) is isomorphic to the semigroup B,
by the mapping b: € (p,q) — B, ¢"p' + (k,1) (see: [1, Section 1.12] or [15, Exercise
IV.1.11(id)]).
Next we shall describe the construction which is introduced in [4].
Let .# be an w-closed subfamily of & (w). On the set B, x.# we define the semigroup
operation “-” in the following way
. o i1 — J1 4 i2,j2, (J1 — i2 + F1) N Fy), if j1 < ig;
D) (i B (o Fy) = | (09 TG —ia t B) OB, i S
@ (@, B (i, Jo, Fo) { (i1, 71 — 2 + j2, F1 0 (ig — j1 + F2)), if j1 > ia.

In [4] is proved that if the family .# C & (w) is w-closed then (B, x %, -) is a semigroup.
Moreover, if an w-closed family % C £?(w) contains the empty set & then the set
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I={(j,9):1i,j €w}is an ideal of the semigroup (B, X #,-). For any w-closed family
F C P(w) the following semigroup

7 _ | (BuxZ. I, ifoe7,
© T\ BuxZF.), o¢F

is defined in [4]. The semigroup Bij generalizes the bicyclic monoid and the countable
semigroup of matrix units. In [4] it is proven that Bf is a combinatorial inverse semigroup
and Green’s relations, the natural partial order on Bf and its set of idempotents are
described. Also, in [4] the criteria when the semigroup Bf is simple, 0-simple, bisimple,
O-bisimple, or it has the identity, are given. In particularly in [4] it is proven that the
semigroup sz is isomorphic to the semigrpoup of wxw-matrix units if and only if .#
consists of a singleton set and the empty set, and Bf is isomorphic to the bicyclic monoid
if and only if .% consists of a non-empty inductive subset of w.

Group congruences on the semigroup ij and its homomorphic retracts in the case
when an w-closed family .# consists of inductive non-empty subsets of w are studied
in [5]. It is proven that a congruence € on sz is a group congruence if and only if its
restriction on a subsemigroup of Bf, which is isomorphic to the bicyclic semigroup, is not
the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms
of the semigroup B‘f are described. In [6] it is proven that an injective endomorphism &
of the semigroup Bf is the indentity transformation if and only if € has three distinct
fixed points, which is equivalent to existence non-idempotent element (i,7, [p)) € B2
such that (i, 7, [p))e = (4,7, [p))-

In [3, 14] the algebraic structure of the semigroup sz is established in the case
when w-closed family .# consists of atomic subsets of w. The structure of the semigroup
B7" | for the family .%, which is generated by the initial interval {0,1,...,n} of w, is
studied in [8]. The semigroup of endomorphisms of BZ" is described in [7, 16].

In |12] it is proven that the semigroup End(B,) of the endomorphisms of the
bicyclic semigroup B,, is isomorphic to the semidirect products (w,+) X, (w, %), where
+ and * are the usual addition and the usual multiplication on the set of non-negative
integers w.

In the paper [9] injective endomorphisms of the semigroup Bi} with the two-
elements family .Z of inductive nonempty subsets of w are studies. Also, in [9] the authors
describe the elements of the semigroup End. (Bf) of all injective monoid endomorphi-
sms of the monoid Bf, and show that Green’s relations %, £, ¢, 2, and _# on

End!(B7) coincide with the relation of equality. In [10, 11] the semigroup End'(B7)
of all monoid endomorphisms of the monoid B is studied.

Later we assume that %3 is a family of inductive nonempty subsets of w which
consists of three sets. By Proposition 1 of [5] for any w-closed family % of inductive
subsets in & (w) there exists an w-closed family .#* of inductive subsets in &?(w) such
that [0) € .#* and the semigroups Bf and Bf* are isomorphic. Hence without loss of
generality we may assume that the family .% contains the set [0), i.e., #3 = {[0),[1),[2)}.
Later in the paper we denote %1 = {[0),[1)} and F#1 2 = {[1),[2)} as subfamilies of
F3.
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In this paper we describe injective monoid endomorphisms of the semigroup B;j}S.

Also, we show that the monoid End.(B7) of all injective monoid endomorphisms of
the semigroup Bf is isomorphic to the multiplicative semigroup of positive integers.

3
2. INJECTIVE ENDOMORPHISMS OF THE MONOID sz ARE EXTENSIONS OF
INJECTIVE ENDOMORPHISMS OF ITS SUBMONOID Bfo’l

If Z is an arbitrary w-closed family .# of inductive subsets in #(w) and [s) € .F
for some s € w then
B = {(4,4,[5)): i,j € w}
is a subsemigroup of Bf and by Proposition 3 of [4] the semigroup Bi[s)} is isomorphic
to the bicyclic semigroup.
Later we need the following theorem from [6].
Theorem 1 ([6, Theorem 2]). Let % be an w-closed family of inductive nonempty subsets

of w, which contains at least two sets. Then for an injective monoid endomorphism ¢ of
Bf the following conditions are equivalent:

(i) € is the identity map;
(i) there exists a nonidempotent element (i,7,[p)) € B2 such that (i,],[p))e =

(7;’ j? [Z)))f

(ii7) the map € has at least three fized points.
Let #2 = {[0),[1)}. For an arbitrary positive integer k and any p € {0,...,k — 1}

we define the transformation «y , of the semigroup BfQ in the following way
(i,4,10)) ok p = (i, k3, [0)),
(i, 4, [1)arp = (p + ki, p + kj, [1)),
for all 4,j € w. Also, for an arbitrary positive integer k¥ > 2 and any p € {1,...,k — 1}
we define the transformation fy , of the semigroup Biﬂ in the following way
(i,4,10))Br.p = (ki, k3, [0)),
(i, 5, [1))Brp = (p + ki, p + k3, [0)),
for all 4,7 € w.

The following theorem is proved in [9].

Theorem 2 ([9, Theorem 1]). Let #2? = {[0),[1)} and ¢ be an injective monoid

endomorphism of BiQ. Then either there exist a positive integer k and p € {0,..., k—1}
such that € = ay,,, or there exist a positive integer k > 2 and p € {1,...,k—1} such that

g = ﬁkﬁp-
Example 1. Let .3 = {[0),[1),[2)}. Fix an arbitrary positive integer k. We define the
3

transformation o) of the semigroup pr in the following way

o (ki Kj, [p)), if p e {0,1};
(43, [p»a[k]—{ (k(if1§)_1,k(j+1)—1,[z)), ifzzz,

3
for all 7, j € w. It is obvious that ay; is an injective transformation of the monoid Bf .
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Lemma 1. For an arbitrary positive integer k the transformation o : st — Bf3 18
an injective monoid endomorphism of the semigroup Bf3

Proof. 1t is obvious that in the case when k = 1 the map oy is the identity transformati-

7 and hence later without

w

on of the monoid Bw , 1.e., ap is an automorphism of B7
loss of generality we may assume that k& > 2.

By Lemma 2 of [9] the restrictions of the map aj; onto the subsemigroups B7on

and Bf 1.2 of Bf * are injective monoid endomorphism of Bf %1 and ij 12 respectively.
Hence it is complete to show that the map o) preserves the semigroup operation in the
following two cases

(i07j03 [0)) ’ (i23j2’ [2)) and (iQan’ [2)) ’ (io,jo, [O))
We get that
((1’07‘7‘07 [0)) : (i27j2a [2)))a[k] =

(G0 — Jo + 2, j2, (Jo — 32 +[0)) N [2)) oy, if jo < ia;

— (ZOaJQa [ ) [2))a[k]7 if Jo = i2;
(G0, Jo — 32 + j2,[0) N (=1 + [2))) (e if jo =iz +1;
(7’07 Jo _Z2 +.72;[0) ( 22 _30+[2)))a[k]a lfJO >ZZ+2
(i — Jo + i2, 2, [2))apy, if jo <2

_ (i0, j2, [2 ))Oé[k]’ if jo = ia;
(i0, J2 + 1, [1)) g if jo=1i2+1;
(i0, jo — 12 + j2,[0))apy, if jo = dp + 2
(k(io — jo +ig +1) = 1, k(j2 + 1) = 1,[2)), if jo < iy;

_ ) (k(io+1) -1 k(]2+1)*1 2)), if jo = ia;

) (kio, k(52 + 1), [1))), if jo =iz + 1;
(kio, k(jo — 2 + j2),[0)), if jo > iz + 2,

(i0,J0, [0))aqw) - (i2, J2, [2))ar) = (Kio, kjo, [0)) - (k(iz + 1) — 1, k(j2 + 1) — 1,[2))
(Kio — kjo + k(i + 1) — 1, k(j2 + 1) — 1, (kjo — (k(i2 + 1) — 1) +[0)) N [2)),
if k‘jo < k‘(lg—l—l) 1;
=9 (kig,k(j2 +1) —1,[0) N [2)), if kjo = k(ia+1)—1;
(Kio, kjo — (k(i2 +1) = 1) + k(j2 + 1) — 1,[0) N (k(i2 + 1) — 1 — kjo + [2 );)

if kjo > k(ia+1)—1
(k(io — jo +i2 +1) = 1, k(j2 + 1) — 1,[2)), if jo < ig+1-1/k;
= ( Zka(j2+1) 717[2))7 lf]O :124’171/]{:7
(Kio, k(jo — iz + ja2), [0) N (k(i2 + 1) — 1 — kjo + [2))), if jo > i2+1-1/k;
(k(lo—jo—FZQ—f—l) 1,]€(j2+1)—1,[2)), lf]Q <i2;
— (k(ZO+ )_1 k(]2+1)_1a[2))a 1f]0:Z27
(k Zo,k(Jo—ZQ +J2)7[0))7 if jo > i2 + 2,

because k > 2 and the equality jo =iy + 1 — 1/k is impossible; and
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(i2 = ja + 0, jo, (2 —i0 +[2)) N [0))aqy, if jo < io;
((iQaj% [2)) ’ (io,jm [0)))0‘[16] = (227.]0’ [ ) [0)) QK] if jo = io;
(i2,J2 — 10 + jo,[2) N (i0 — j2 +[0))) ok, if jo > o
(i2 — Ja + 0, jo, [0)) vy, if J2 + 2 <io;
_ ) G2+ 1, jo, (1), if jo + 1 = dp;
(i2, Jo, [2)) (), if jo = do;
(i2,j2 — io + jo, [2))aqr), if j2 > o
(k(i2 — j2 + o), kjo, [0)), if jo + 2 <do;
_ ) (k(iz+1),kjo, [1)), if jo2 + 1 = io;
) (k(i2+1) = Lk(jo +1) — 1,[2)), if jo = do;
(k(2+1) 12, (]2*@0+]0+1) ]., [2)), if jQ > io,

(12,42, [2)) k) - (G0, Jo, [0))ap) = (k(iz + 1) — 1,k(j2 + 1) — 1,[2)) - (Kio, kjo, [0))

(k(ia +1) — 1 — (k(jo + 1) — 1) + kio, kjo, (k(j2 + 1) — 1 — kio + [2)) N [0)),

if k(jo+1)—1 < kio;

=< (k(ia +1) = 1,kjo, [2) N [0)), if k(ja+1)—1 = kio;
(k(iz +1) — 1,k(j2 + 1) — 1 — kio + kjo, [2) N (kio — (k(j2 + 1) — 1) +[0))),

if k(jo+1)—1 > kig

(k‘(ZQ —Ja+ ’Lo) kjo, (k‘(]Q + 1) —1—kig + [2))), if jo+1<ig+ l/k,
=4 (k(i2 +1) — 1,kjo, [2)), if jo+1 =i+ 1/k;
(k(12+1)—1 k( 2-10+]0+1)—1,[2)), ifj2+1>’i0+1/k
(k(i2 — j2 + o), kjo, [0)), if jo + 2 < dg;
_ ) (k(i2 +1),kjo, (k(j2 + 1) = 1 — kig + [2))), if j2 +1 = io;
] (klia+1) = 1,k(jo +1) — 1,[2)), if j2 = io;
(ki + )—12,k( 2—Z(J+]o+1) 1,[2)), if j2 > o,

because k > 2 and the equality js + 1 = ip + 1/k is impossible. This completes the proof
of the lemma. O

Remark 2. Proposition 1 implies that for any positive integer k the endomorphism aj,

3 . . . . . ,
of BZ" is a extension of the endomorphism ay, o of its subsemigroup B! .

Proposition 1. Let ¢ be an injective monoid endomorphism of sz3 such that
(0,0,[0))e = (0,0,0)),  (0,0,[1))e = (0,0,[1)),  and  (0,0,[2))e € BI?".
Then there ewists a positive integer k such that € = a,.
Proof. 1f (0,0, [2))e = (0,0,[2)) then by Theorem 1 we get that ¢ is the identity map of
Bg , and hence € = ap) for k = 1.
Later we assume that (0,0,[2))e # (0,0, [2)). By Lemma 2 of [9] the restrictions of

3
the map ¢ onto the subsemigroup BZ°* of B is an injective monoid endomorphism of
sz‘“. The above arguments, the assumptions of the proposition, and Theorem 2 imply
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that there exists a positive integer k£ such that

(i,4,[0)e = (ki, k3, [0)),

(,4,[1))e = (ki, kj, [1)),
for all 4,5 € w. Hence the restrictions of the endomorphisn ¢ onto the subsemigroup
Bf“ of Biﬁ coincides with injective monoid endomorphism ay o of sz"*l. Again, by
Lemma 2 of [9] the restrictions of the map € onto the subsemigroup Bf“ of Bfg is an

injective monoid endomorphism of Bf1=2. This, the above arguments, and Theorem 2
imply that there exists a positive integer s € {1,...,k — 1} such that

(1,7,]2))e = (ki + s,kj + s,[1)),
for all 4,7 € w.
We claim that s = k — 1. Indeed, the semigroup operation of Bfg implies that
= (L, L,[0)Nn (1)) =

= (1,1,[1)).
Since ¢ is an endomorphism of Bf 3, we get that
(k,k,[1)) = (1,1,1))e
=((1,1,[0)) - (0,0,[2)))e =
= (1,1,[0))e - (0,0,[2))e =
= (k,k,10)) - (s,5,[2)) =
=(kk—s+s[0)N(s—k+[2)) =

= (k,k,[0)N[s — k + 2)),
which implies that max{0,s —k+2} = 1. Then s —k+2 =1, and hence s=k —1. O

Proposition 2. Let € be an injective monoid endomorphism of the semigroup st
If (0,0,[0))e = (0,0,[0)) and (0,0,[1))e = (0,0,[1)), then ¢ = ap for some positive
integer k.

Proof. Suppose that (0,0,[2))e € BV}, Since (0,0,[0))e = (0,0,[0)) and (0,0,[1))e =
(0,0,[1)), Theorem 2 implies that there exists a positive integer k such that (i, j,[0))e =
(ki, kj,[0)) and (i, 7, [1))e = (ki, kj,[1)) for all 4, j € w. Since (0,0, [2)) is an idempotent of
Bfg, Proposition 1.4.21(2) of [13] implies so is (0,0, [2))e. By Lemma 2 of |4] there exists
s € w such that (0,0, [2))e = (s, s,[1)). The inequalities (1,1,[1)) < (0,0,[2)) < (0,0,[1))
and Proposition 1.4.21(6) of [13] imply that

(k’ k, [1)) =
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Since the endomorphism ¢ is an injective map, Lemma 5 of [4] implies that 0 < s < k.
3
The semigroup operation of BZ, implies that

(1,1,[0)) - (0,0,[2)) = (1,1,[0) N (-1 +[2))) =
~ (LL,0)N (1) =
= 1’17[1))7
and hence we get that
(k,k,[1)) = (1,1,[1))e =
= ((1,1,0)) - (0,0, [2)))e =
= (1,1,[0))e - (0,0,[2))e =
= (s,5,[1)) - (k, k,[0)) =
=(s—s+kk,(s—k+[1)N]0)) =
= (k7k’ [0))3

because s < k. The obtained contradiction implies that (0,0, [2))e ¢ B},

Suppose that (0,0,[2))e € BI?}. Since (0,0, [2)) is an idempotent of Bfg, Proposi-
tion 1.4.21(2) of [13] and Lemma 2 of [4] imply that there exists ¢ € w such that
(0,0,[2))e = (t,t,]0)). The semigroup operation of st implies that

(1,1,[0)) - (0,0,[2)) = (1,1,[0) N (=1 + [2))) =
=(1,1,[0)n([1))) =
= (1717 [1))7

and by Theorem 2 we get that there exist a positive integer k such that (4, 7,[0))e =
(ki, kj,[0)) and (4,7, [1))e = (ki, kj,[1)) for all 4, j € w. Then we have that

a contradiction. Hence (0,0,[2))e ¢ B0}

The above arguments imply that (0,0, [2))e € BU{J[Q)}. Next we apply Propositi-
on 1. O

Proposition 3. For an arbitrary injective monoid endomorphism € of the semigroup
3
Bf there exist no a positive integers k and p € {1,...,k — 1} such that the restri-
3
ction €LB§‘0,1 of the map € onto the subsemigroup Bf"’l of Bf coincides with the

endomorphism oy, of Bf“*l.



Oleg GUTIK, Marko SERIVKA
36 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2023. Bumyck 95

Proof. Suppose to the contrary that exist a positive integer k and p € {1,...,k—1} such
that ELB.QOJ = agp. Then we have that

(i,4,(0))e = (ki, k5, 10)),
(i, 4,[1))e = (p + ki, p + k3, [1)),
for all 7,j € w.

Suppose that (0,0, [2))e € B{??}. By the choice of the integer p and by the descri-

ption of the natural partial order on E(Bf3) (see Lemma 5 of [4] or Proposition 3 in
[5]) we get that there exists a positive integer ¢ such that (0,0,[2))e = (¢,¢,[2)). The

semigroup operation of ij ’ implies that
(17 1, [0)) : (0707 [2)) = (1’ L, [1))7
and hence we have that
(kv kv [O)) : (t,tv [2)) = (1a ]-7 [0))5 : (0707 [2))5 =
=(1,1,[1))e =
= (p+k,p+Fk,[1)).

g3

The structure of the natural partial order on E(B;]

that

) (see Proposition 3 in [5]) implies

(1,1,[1)) < (0,0,[2)) < (0,0,[1)).
Hence by Proposition 1.4.21(6) of [13] we have that

The above arguments and Lemma 5 of [4] imply that p < ¢ < k + p. Then the equalities

(p+k,p+k[1)=(kFk[0)-(t1[2) =
| @,1,]2), if k<t
Tl (B EO)N(E—-k+1]2)), k>t
imply that ¢t — k = —1 and k = k 4 p. The last equality contradicts the assumption.

Suppose that (0,0,[2))e € Bﬂl)}. Then by the choice of the integer p and by the

structure of the natural partial order on £ (Bfg) (see Lemma 5 of [4] or Proposition 3
in |5]) we obtain that there exists a positive integer ¢ such that (0,0, [2))e = (¢,¢,[1)).
Since

(1,1,[1)) 5 (0,0,[2)) =< (0,0, [1)).
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by Proposition 1.4.21(6) of [13] we have that

(p+k,p+k[1)=(11,[1)e =<
< (.t [1) =
=(0,0,[2))e <

<(0,0,[1))e =
= (p,p-[1))-

The above arguments and Lemma 5 of [4] imply that p < t < k + p. These inequalities
and the injectivity of the map ¢ imply that p < t < k + p. Then the equality

(1,1,10)) - (0,0, [2)) = (1,1, 1)),
imply that
(p +k,p+k, [1)) = (ka k, [0) ’
[

)
_ [ &), k<t
T (kK [0), if k>t
and hence t = k 4 p, a contradiction.

Suppose that (0,0,[2))e € Bgo)}. Then by the choice of the integer p and the

description of the natural partial order on E(st) (see Lemma 5 of [4] or Proposition 3
in |5]) we get that there exists a positive integer ¢ such that (0,0, [2))e = (¢,¢,[0)). Since

(1,1,[1)) < (0,0,[2)) < (0,0,[1)).
by Proposition 1.4.21(6) of [13] we have that
(p+kp+k[1)=

The above arguments and Lemma 5 of [4] imply that p < ¢ < k + p. Since
(17 1, [0)) : (0707 [ )) = (17 1, [1))3
we obtain that
(p +k,pt+k, [1)) = (k7 k, [O)) : (t7t7 [O)) =
= (max{k,t}, max{k,t},[0)),
a contradiction.
The obtained contradictions imply the statement of the proposition. O

Proposition 4. For any injective monoid endomorphism € of the semigroup st there
exist no a positive integers k = 2 and p € {1,...,k — 1} such that the restriction 6[390&

of the map € onto the subsemigroup Bf:"‘l of BfS coincides with the endomorphism By, ,,
of BZo.
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Proof. Suppose to the contrary that exist a positive integer k and p € {1,...,k—1} such
that ELB.QOJ = Bi,p- Then we have that

(ivjv [O))€ = (kZ, k]v [O)),
(i,5,[1))e = (p + ki, p + kj,[0)),
for all 7,5 € w.

Suppose that (0,0,[2))e € B2}, Then by the choice of the integer p and the

description of the natural partial order on E(BZ 3) (see Lemma 5 of [4] or Proposition 3
in [5]) we obtain that there exists a positive integer ¢ such that (0,0,[2))e = (¢,t,[2)).
Since

(1,1,[1)) < (0,0,[2)) < (0,0, [1)).
by Proposition 1.4.21(6) of [13] we have that

(p+k,p+k (1) =

The above arguments and Lemma 5 of [4] imply that p < ¢ < k 4+ p. The semigroup
3
operation of BZ  implies that

(la 1, [0)) : (0707 [2)) = (17 L [1))a

and hence we have that

(k’ k, [0)) ) (tvt’ [2)) = (la 1, [0))5 (0707 [2))5 =
=(1,1,[1))e =
= (p+k,p+k,[0))
Then the equalities
(p+k,p+k,[0) = (k k[0) (t¢[2) =
t,t,[2)), if k<t

(
(k,k,[O)N(t—k+[2)), ifk>t
imply that k = k + p, and hence p = 0. A contradiction.

Suppose that (0,0,[2))e € B{M}. The choice of the integer p and the structure of

the natural partial order on E(Bfa) (see Lemma 5 of [4] or Proposition 3 in [5]) imply
that there exists a positive integer ¢ such that (0,0,[2))e = (¢,¢,[1)). Similar as in the
previous case we get that p < ¢ < k + p. Then the equality

(la 1, [0)) : (0707 [2)) = (17 L, [1))a
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implies that

(k, k,[0) - (£,8,[1)) = (1,1,[0))e - (0,0, [2))e =
=(1,1,[1))e =
- (p+k7p+k7 [0))7

and hence the equalities
(p+k,p+k,[0) = (kK [0) - (,1,[1)) =

) -
_{ (t,t,[1), ifk<t
=1 kK, [0), ifk>t

imply that k = k + p, and hence p = 0. A contradiction.

Suppose that (0,0,[2))e € B{®}. The choice of the integer p and the structure of

the natural partial order on E(Bf3) (see Lemma 5 of [4] or Proposition 3 in [5]) imply
that there exists a positive integer ¢ such that (0,0,[2))e = (¢,¢,[0)). Similar as in the
previous case we get that p < ¢ < k + p. Then the equality

(17 1, [0)) : (0707 [2)) = (17 1, [1))7

implies that

Then we have that

(p+k,p+k[0) = (kK [0)- (¢t [)):
(t,4,0)), ifk<
{( k. [0)), 1fl<;>t

If k = k+p then p = 0, which contradicts the assumption of the proposition. If t = p+k
then

(1> 1, [1))5 = (p +k,p+k, [O)) = (0707 [2))5’
which contradicts the injectivity of the map .
The obtained contradictions imply the statement of the proposition. O

The following theorem summarises the main result of this section and it follows from
Lemma 1 and Propositions 1-4.

Theorem 3. Let 72 = {[0),[1),[2)} and € be an injective monoid endomorphism of the
SEmigroup Bfg. If the restriction ELBQM of the map £ onto the subsemigroup Bijﬂ'1 of

Bf is an injective monoid endomorphism of Bf‘“, then ¢ = ap) for some positive

integer k.

3

Theorem 4. Let 73 = {[0),[1),[2)}. Every injective monoid endomorphism of the semi-

3 . . . . . . . .
group Biz is an extension of injective endomorphisms of its submonoid B‘f“'l.
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Proof. Suppose to the contrary that there exists an injective monoid endomorphism ¢ of
the semigroup B ® such that the restriction 6[3%,1 of the map ¢ onto the subsemigroup

BZo1 of Bij is not a monoid endomorphism of BZ**. By Proposition 3 of [4], for any

n =0, 1,2 the semigroup Bﬂ")} is isomorphic to the bicyclic semigroup. By Proposition 4

of [5] we have that (i, 7, [0))e € BUP?} for all i,j € w, because ¢ is an injective monoid
3

endomorphism of the semigroup B> . Moreover, by Theorem 1 from [12] there exists a
positive integer k such that (i, 7,[0))e = (ki, kj,[0)) for all 4, j € w. Again, Proposition 4
of [5] implies that for any n € {1,2} there exists m,, € {0, 1,2} such that (i,7,[n))e €
Bﬂm")} for all 4,j € w. The above arguments and Theorem 2 imply that (4,7, [1))e €
B?} for all i,j € w.

We remark that the assumption that
(i,4,[2))e € BZo, for all 4,j € w,
contradicts the equality
(1,1,10)) - (0,0, [2)) = (1,1, [1)).

By Proposition 1.4.21(2) of [13], (0,0, [2))e is an idempotent of st. If (0,0,[2))e =
(t,t,[0)) for some t € w (see Lemma 2 in [4]), then we have that

(1,1, [1))e = ((1,1,10)) - (0,0, [2)))e =
= (1,1,[0))e-(0,0,[2))e =
= (k, k,[0)) - (£,£,10)) =

= (max{k, t}, max{k, t},[0)) € BUO}

This contradicts the condition that (i, 7,[1))e € BI?? for all i,j € w. If (0,0,[2))e =
(t,t,[1)) for some t € w (see Lemma 2 in [4]), then we obtain that
(1,1,[1))e = ((1,1,10)) - (0,0, [2)))e =

= (1,1,0))e - (0,0,[2))e =

= (k. K, [0)) - (¢,£,1)) =
_ ] &), ift=

(k,k,[0)), ift< k:

This contradicts the condition that (i, ,[1))e € BI#? for all i, j € w.

)

Suppose that (0,0,[2))e € BU?}. By Lemma 2 from [4] there exists ¢ € w such
that (0,0,[2))e = (¢,¢,[2)). Since (0,0,[2)) < (0,0,[1)), Proposition 1.4.21(6) of |13]
implies that (0, 7[ ))5 < (0,0,[1))e. If (0,0,[2))e =
(0,0,[0))e = (0,0,[0)) and

(0,0,[2)), then by the equality
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we obtain that (0,0,[1))e = (0,0,[1)). Theorem 1 implies that € is the identity map of
Bf 3, which contradicts the assumption. Hence we have that t # 0.

Suppose that (0,0,[1))e = (p,p, [2)) for some p € w. Since

(1v07 [O)) : (0,0, [1)) : (0’ 1, [0)) = ((1,0, [1)) ) (O’ L [O)) =
= (1717 [1))7

we have that

Put (0,1,[1))e = (z,y,[2)). By Proposition 1.4.21 from [13| and Lemma 4 of [4] we get
that

This implies that

and

Hence by the definition of the semigroup Bf we get that

(07 1, [1))5 = (pa k+ p, [2)) and (1’ 0, [1))5 = (k +D,D, [2))
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Then for any i, j € w we have that

(¢, 5,[1))e

((2,0,1)) - (0,5, [1)))e =

((1,0,[1))" (0,1, [1)))e =
((1,0,[1)e)" - ((0,1,[1))e)” =
= (k
=
= (

+p,0,12)" - (p.k+p,[2) =
ki+p,p,[2)) - (p,kj+p,[2) =
ki+p,kj+p,[2)).

Since (1,1,[0)) < (0,0,[1)) in E(BZ"), by Proposition 1.4.21(6) from [13] we have
that

(k;k,[0)) = (1, 1,[0))e < (0,0, [1))e = (p, p, [2))-
Then Lemma 5 of [4] implies that k& > 2. Also, the inequalities
(1,1,1)) 5 (0,0,[2)) < (0,0, [1))
in E(B‘fs) and Proposition 1.4.21(6) of [13] imply that
(k+pk+p,[2) =1, 1L[1)e <
< (0,0,[2))
= (t:1,[2))
)
)

€=
<
< (0,0,[1))e =
= (p,p. [2))-
By Lemma 5 of [4] we get that p < ¢ < k+p. Since ¢ is an injective monoid endomorphism
of the semigroup Bfg we conclude that p <t < k + p.

The equality

(1,1,10)) - (0,0, [2)) = (1,1, [1)).

implies that

(k+pk+p[2)=(11][1)e=
= ((1,1,[0)) - (0,0,[2)))e =
=(1,1,[0))e - (0,0,[2))e =
= (k,k,[0)) - (t,¢,[2)) =

Hence k <t and k + p = t. The last equality implies that
(1,1,[1))e = (k+p,k+p,[2)) = (0,0,[2))e,

which contradicts the injectivity of the map .

The obtained contradictions imply the statement of the theorem. O
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3. ON THE MONOID OF ALL INJECTIVE ENDOMORPHISMS OF THE
SEMIGROUP Bf

Theorems 3 and 4 imply the following theorem.
Theorem 5. Let 72 = {[0),[1),[2)} and € be an injective monoid endomorphism of the
Semigroup Bijg. Then € = ap) for some positive integer k.
By (N, ) we denote the multiplicative semigroup of positive integers.
Theorem 6. Let 73 = {[0),[1),[2)}. Then the monoid Endi(st) of all injective
3
endomorphisms of the semigroup Bff is isomorphic to (N, -).

Proof. Fix arbitrary injective endomorphisms ¢; and &3 of the semigroup Bf,}. By
Theorem 5 there exist positive integers k1 and kz such that €1 = ap,) and g2 = g,
Then we have that

((i7j7 [0))a[k1])a[k2] = (kliv kl.ja [0))a[k2] =
= (k2k1i, kak13,10))
= (iajv [0))a[k1~kz2];

(@5, D)y )ra) = (R, kag, (1)) gy
= (kak1i, kak1j,[1)) =
= (i, (1), ko5
and
=(ki(i+1) =L ki(j+1) —1[2)ap, =
= (ka(k1(t+1)—141) = Lko(ka(j+1)—14+1)—1,[2)) =
= (kok1(1 +1)— L kakn(+1) = 1,[2)) =
= (4, 7; [2)) i ko)
for any i, j € w. Hence we obtain that a,jQ[x,] = Q[k,.k,)- It is obvious that the mapping

((iv Js [2))a[k1])a[k2]

i: (N,-) — Endi(BffS), k — ajp, is an injective homomorphism and by Theorem 5 it
is surjective. O
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