ON THE SEMIGROUP OF NON-INJECTIVE MONOID ENDOMORPHISMS OF THE SEMIGROUP $B_{\omega}^{\mathscr{F}}$ WITH A TWO-ELEMENT FAMILY \mathscr{F} OF INDUCTIVE NONEMPTY SUBSETS OF ω

Oleg GUTIK, Inna POZDNIAKOVA
Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE
e-mails: oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com

Abstract

We study the semigroup of non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω. We describe the structure of elements of the semigroup $\operatorname{End}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ of non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that its subsemigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ of non-injective non-annihilating monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the direct product of the two-element left-zero semigroup and the multiplicative semigroup of positive integers and describe Green's relations on $\boldsymbol{E n d} \boldsymbol{d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Key words: bicyclic monoid, inverse semigroup, bicyclic extension, monoid endomorphism, non-injective, Green's relations, left-zero semigroup, direct product.

We shall follow the terminology of $[1,2,9]$. By ω we denote the set of all non-negative integers, by \mathbb{N} the set of all positive integers, and by \mathbb{Z} the set of all integers.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω. For any $F \in \mathscr{P}(\omega)$ and $n \in \mathbb{Z}$ we put $n+F=\{n+k: k \in F\}$ if $F \neq \varnothing$ and $n+\varnothing=\varnothing$. A subfamily $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is called ω-closed if $F_{1} \cap\left(-n+F_{2}\right) \in \mathscr{F}$ for all $n \in \omega$ and $F_{1}, F_{2} \in \mathscr{F}$. For any $a \in \omega$ we denote $[a)=\{x \in \omega: x \geqslant a\}$.

A subset A of ω is said to be inductive, if $i \in A$ implies $i+1 \in A$. Obviously, \varnothing is an inductive subset of ω.

Remark 1 ([5]). (1) By Lemma 6 from [4] a nonempty subset $F \subseteq \omega$ is inductive in ω if and only $(-1+F) \cap F=F$.

[^0](2) Since the set ω with the usual order is well-ordered, for any nonempty inductive subset F in ω there exists a nonnegative integer $n_{F} \in \omega$ such that $\left[n_{F}\right)=F$.
(3) Statement (2) implies that the intersection of an arbitrary finite family of nonempty inductive subsets in ω is a nonempty inductive subset of ω.
A semigroup S is called inverse if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. The element x^{-1} is called the inverse of $x \in S$. If S is an inverse semigroup, then the function inv: $S \rightarrow S$ which assigns to every element x of S its inverse element x^{-1} is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by $E(S)$. If S is an inverse semigroup, then $E(S)$ is closed under multiplication and we shall refer to $E(S)$ as a band (or the band of S). Then the semigroup operation on S determines the following partial order \preccurlyeq on $E(S): e \preccurlyeq f$ if and only if $e f=f e=e$. This order is called the natural partial order on $E(S)$. A semilattice is a commutative semigroup of idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \preccurlyeq on S : $s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that $s=t e$. This order is called the natural partial order on S [12].

If S is a semigroup, then we shall denote the Green relations on S by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} (see [1, Section 2.1]):

$$
\begin{aligned}
& a \mathscr{R} b \text { if and only if } a S^{1}=b S^{1} ; \\
& a \mathscr{L} b \text { if and only if } S^{1} a=S^{1} b ; \\
& a \mathscr{J} b \text { if and only if } S^{1} a S^{1}=S^{1} b S^{1} ; \\
& \mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L} ; \\
& \mathscr{H}=\mathscr{L} \cap \mathscr{R} .
\end{aligned}
$$

The \mathscr{L}-class [\mathscr{R}-class, \mathscr{H}-class, \mathscr{D}-class, \mathscr{J}-class] of the semigroup S containing the element $a \in S$ will be denoted by $\boldsymbol{L}_{a}\left[\boldsymbol{R}_{a}, \boldsymbol{H}_{a}, \boldsymbol{D}_{a}, \boldsymbol{J}_{a}\right]$.

The bicyclic monoid $\mathscr{C}(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition $p q=1$. The semigroup operation on $\mathscr{C}(p, q)$ is determined as follows:

$$
q^{k} p^{l} \cdot q^{m} p^{n}=q^{k+m-\min \{l, m\}} p^{l+n-\min \{l, m\}}
$$

It is well known that the bicyclic monoid $\mathscr{C}(p, q)$ is a bisimple (and hence simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p, q)$ is a group congruence [1].

On the set $\boldsymbol{B}_{\omega}=\omega \times \omega$ we define the semigroup operation "." in the following way

$$
\left(i_{1}, j_{1}\right) \cdot\left(i_{2}, j_{2}\right)= \begin{cases}\left(i_{1}-j_{1}+i_{2}, j_{2}\right), & \text { if } j_{1} \leqslant i_{2} \tag{1}\\ \left(i_{1}, j_{1}-i_{2}+j_{2}\right), & \text { if } j_{1} \geqslant i_{2}\end{cases}
$$

It is well known that the bicyclic monoid $\mathscr{C}(p, q)$ is isomorphic to the semigroup \boldsymbol{B}_{ω} by the mapping $\mathfrak{h}: \mathscr{C}(p, q) \rightarrow \boldsymbol{B}_{\omega}, q^{k} p^{l} \mapsto(k, l), k, l \in \omega$ (see: [1, Section 1.12] or [11, Exercise IV.1.11(ii)]). Later we identify the bicyclic monoid $\mathscr{C}(p, q)$ with the semigroup \boldsymbol{B}_{ω} by the mapping \mathfrak{h}.

Next we shall describe the construction which is introduced in [4].
Let \boldsymbol{B}_{ω} be the bicyclic monoid and \mathscr{F} be an ω-closed subfamily of $\mathscr{P}(\omega)$. On the set $\boldsymbol{B}_{\omega} \times \mathscr{F}$ we define the semigroup operation "." in the following way

$$
\left(i_{1}, j_{1}, F_{1}\right) \cdot\left(i_{2}, j_{2}, F_{2}\right)= \begin{cases}\left(i_{1}-j_{1}+i_{2}, j_{2},\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right), & \text { if } j_{1} \leqslant i_{2} \tag{2}\\ \left(i_{1}, j_{1}-i_{2}+j_{2}, F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right), & \text { if } j_{1} \geqslant i_{2}\end{cases}
$$

In [4] is proved that if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω-closed then $\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right)$ is a semigroup. Moreover, if an ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\boldsymbol{I}=\{(i, j, \varnothing): i, j \in \omega\}$ is an ideal of the semigroup $\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right)$. For any ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$
\boldsymbol{B}_{\omega}^{\mathscr{F}}= \begin{cases}\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right) / \boldsymbol{I}, & \text { if } \varnothing \in \mathscr{F} ; \\ \left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right), & \text { if } \varnothing \notin \mathscr{F}\end{cases}
$$

is defined in [4]. The semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [4] that $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a combinatorial inverse semigroup and Green's relations, the natural partial order on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. Here, the criteria when the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is simple, 0 -simple, bisimple, 0 bisimple, or it has the identity, are given. In particularly in [4] it is proved that the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigrpoup of $\omega \times \omega$-matrix units if and only if \mathscr{F} consists of a singleton set and the empty set, and $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic monoid if and only if \mathscr{F} consists of a non-empty inductive subset of ω.

Group congruences on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its homomorphic retracts in the case when an ω-closed family \mathscr{F} consists of inductive non-empty subsets of ω are studied in [5]. It is proven that a congruence \mathfrak{C} on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a group congruence if and only if its restriction on a subsemigroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, which is isomorphic to the bicyclic semigroup, is not the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are described. In [6] it is proved that an injective endomorphism ε of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is the indentity transformation if and only if ε has three distinct fixed points, which is equivalent to existence non-idempotent element $(i, j,[p)) \in \boldsymbol{B}_{\omega}^{\mathscr{F}}$ such that $(i, j,[p)) \varepsilon=(i, j,[p))$.

In $[3,10]$ the algebraic structure of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is established in the case when ω-closed family \mathscr{F} consists of atomic subsets of ω.

It is well-known that every automorphism of the bicyclic monoid \boldsymbol{B}_{ω} is the identity self-map of \boldsymbol{B}_{ω} [1], and hence the group $\operatorname{Aut}\left(\boldsymbol{B}_{\omega}\right)$ of automorphisms of \boldsymbol{B}_{ω} is trivial. In [8] it is proved that the semigroup $\operatorname{End}\left(\boldsymbol{B}_{\omega}\right)$ of all endomorphisms of the bicyclic semigroup \boldsymbol{B}_{ω} is isomorphic to the semidirect products $(\omega,+) \rtimes_{\varphi}(\omega, *)$, where + and $*$ are the usual addition and the usual multiplication on ω.

In the paper [7] we study injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω. We describe the elements of the semigroup $\boldsymbol{E n d}_{*}^{1}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ of all injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that every element of the semigroup $\boldsymbol{E n d}_{*}^{1}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ has a form either
$\alpha_{k, p}$ or $\beta_{k, p}$, where the endomorphism $\alpha_{k, p}$ is defined by the formulae

$$
\begin{aligned}
(i, j,[0)) \alpha_{k, p} & =(k i, k j,[0)) \\
(i, j,[1)) \alpha_{k, p} & =(p+k i, p+k j,[1))
\end{aligned}
$$

for an arbitrary positive integer k and any $p \in\{0, \ldots, k-1\}$, and the endomorphism $\beta_{k, p}$ is defined by the formulae

$$
\begin{aligned}
(i, j,[0)) \beta_{k, p} & =(k i, k j,[0)) \\
(i, j,[1)) \beta_{k, p} & =(p+k i, p+k j,[0))
\end{aligned}
$$

an arbitrary positive integer $k \geqslant 2$ and any $p \in\{1, \ldots, k-1\}$. In [7] we describe the product of elements of the semigroup $\operatorname{End}_{*}^{1}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$:

$$
\begin{aligned}
\alpha_{k_{1}, p_{1}} \alpha_{k_{2}, p_{2}} & =\alpha_{k_{1} k_{2}, p_{2}+k_{2} p_{1}} \\
\alpha_{k_{1}, p_{1}} \beta_{k_{2}, p_{2}} & =\beta_{k_{1} k_{2}, p_{2}+k_{2} p_{1}} \\
\beta_{k_{1}, p_{1}} \beta_{k_{2}, p_{2}} & =\beta_{k_{1} k_{2}, k_{2} p_{1}} \\
\beta_{k_{1}, p_{1}} \alpha_{k_{2}, p_{2}} & =\beta_{k_{1} k_{2}, k_{2} p_{1}}
\end{aligned}
$$

Also, here we prove that Green's relations $\mathscr{R}, \mathscr{L}, \mathscr{H}, \mathscr{D}$, and \mathscr{J} on $\boldsymbol{E n d} \boldsymbol{d}_{*}^{1}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ coincide with the equality relation.

Later we assume that an ω-closed family \mathscr{F} consists of two nonempty inductive nonempty subsets of ω.

This paper is a continuation of [7]. We study non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. We describe the structure of elements of the semigroup $\boldsymbol{E n d} \boldsymbol{d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ of all non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that its subsemigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ of all non-injective non-annihilating monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the direct product the two-element left-zero semigroup and the multiplicative semigroup of positive integers and describe Green's relations on $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Remark 2. By Proposition 1 of [5] for any ω-closed family \mathscr{F} of inductive subsets in $\mathscr{P}(\omega)$ there exists an ω-closed family \mathscr{F}^{*} of inductive subsets in $\mathscr{P}(\omega)$ such that $[0) \in \mathscr{F}^{*}$ and the semigroups $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and $\boldsymbol{B}_{\omega}^{\mathscr{F} *}$ are isomorphic. Hence without loss of generality we may assume that the family \mathscr{F} contains the set [0).

If \mathscr{F} is an arbitrary ω-closed family \mathscr{F} of inductive subsets in $\mathscr{P}(\omega)$ and $[s) \in \mathscr{F}$ for some $s \in \omega$ then

$$
\boldsymbol{B}_{\omega}^{\{[s)\}}=\{(i, j,[s)): i, j \in \omega\}
$$

is a subsemigroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ [5] and by Proposition 3 of [4] the semigroup $\boldsymbol{B}_{\omega}^{\{[s)\}}$ is isomorphic to the bicyclic semigroup.
Lemma 1. Let $\mathscr{F}=\{[0),[1)\}$ and let \mathfrak{e} be a monoid endomorphism of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. If $\left(i_{1}, j_{1}, F\right) \mathfrak{e}=\left(i_{2}, j_{2}, F\right) \mathfrak{e}$ for distinct two elements $\left(i_{1}, j_{1}, F\right),\left(i_{2}, j_{2}, F\right)$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for some $F \in \mathscr{F}$ then \mathfrak{e} is the annihilating endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.

Proof. By Theorem 1 of [5] the image $\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right) \mathfrak{e}$ is a subgroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. By Theorem $4(i i i)$ of [4] every \mathscr{H}-class in $\boldsymbol{B}_{\omega}^{\mathscr{Y}}$ is a singleton, and hence \mathfrak{e} is the annihilating monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.
Lemma 2. Let $\mathscr{F}=\{[0),[1)\}$. Then $\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right) \mathfrak{e} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}$ for any non-injective monoid endomorphism \mathfrak{e} of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.
Proof. By Proposition 3 of [4] the subsemigroup $\boldsymbol{B}_{\omega}^{\{[0)\}}$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic semigroup and hence by Corollary 1.32 of [1] the image $\left(\boldsymbol{B}_{\omega}^{\{[0)\}}\right) \mathfrak{e}$ either is isomorphic to the bicyclic semigroup or is a cyclic subgroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Since $(0,0,[0)) \mathfrak{e}=$ $(0,0,[0))$, Proposition 4 from [5] implies that $\left(\boldsymbol{B}_{\omega}^{\{[0)\}}\right) \mathfrak{e} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}$ in the case when the image $\left(\boldsymbol{B}_{\omega}^{\{[0)\}}\right) \mathfrak{e}$ is isomorphic to the bicyclic semigroup. In the other case we have that the equality $(0,0,[0)) \mathfrak{e}=(0,0,[0))$ implies that

$$
\left(\boldsymbol{B}_{\omega}^{\{[0)\}}\right) \mathfrak{e} \subseteq\{(0,0,[0))\} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}
$$

because by Theorem $4($ iiii $)$ of [4] every \mathscr{H}-class in $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a singleton.
Next, by Proposition 3 of [4] the subsemigroup $\boldsymbol{B}_{\omega}^{\{[1)\}}$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic semigroup and hence by Corollary 1.32 of [1] the image $\left(\boldsymbol{B}_{\omega}^{\{[1)\}}\right) \mathfrak{e}$ either is isomorphic to the bicyclic semigroup or is a cyclic subgroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Suppose that the image $\left(\boldsymbol{B}_{\omega}^{\{11)\}}\right) \mathfrak{e}$ is isomorphic to the bicyclic semigroup and $\left(\boldsymbol{B}_{\omega}^{\{[1)\}}\right) \mathfrak{e} \subseteq \boldsymbol{B}_{\omega}^{\{[1)\}}$. Then monoid endomorphism \mathfrak{e} of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is injective. Indeed, injectivity of the restriction ${ }^{\mathfrak{e}}{\underset{\boldsymbol{B}}{\omega}}_{\{[1)\}} \boldsymbol{B}_{\omega}^{\{[1)\}} \rightarrow \boldsymbol{B}_{\omega}^{\{[1)\}}$, Proposition 4 of [5], Corollary 1.32 of [1], Theorem 4(iii) of [4], and the equality $(0,0,[0)) \mathfrak{e}=(0,0,[0))$ imply that either the restriction $\mathfrak{e}]_{\boldsymbol{B}_{\omega}\{[0)\}} \boldsymbol{B}_{\omega}^{\{[0)\}} \rightarrow$ $\boldsymbol{B}_{\omega}^{\{[0)\}}$ is an injective mapping or is an annihilating endomorphism. In the case when the restriction $\left.\mathfrak{e}\right|_{\left.\boldsymbol{B}_{\omega}\{00)\right\}} \boldsymbol{B}_{\omega}^{\{[0)\}} \rightarrow \boldsymbol{B}_{\omega}^{\{[0)\}}$ is an injective mapping we get that the endomorphism \mathfrak{e} is injective. If the image $\left(\boldsymbol{B}_{\omega}^{\{[0)\}}\right) \mathfrak{e}$ is a singleton then by Lemma 1 we have that \mathfrak{e} is the annihilating monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In the both cases we obtain that $\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right) \mathfrak{e} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}$.
Example 1. Let $\mathscr{F}=\{[0),[1)\}$ and k be an arbitrary non-negative integer. We define a map $\gamma_{k}: \boldsymbol{B}_{\omega}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ by the formulae

$$
(i, j,[0)) \gamma_{k}=(i, j,[1)) \gamma_{k}=(k i, k j,[0))
$$

for all $i, j \in \omega$.
We claim that $\gamma_{k}: \boldsymbol{B}_{\omega}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ is an endomorphism. Example 2 and Proposition 5 from [5] imply that the map $\gamma_{1}: \boldsymbol{B}_{\omega}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a homomorphic retraction of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, and hence it is a monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. By Lemma 2 of [8] every monoid endomorphism \mathfrak{h} of the semigroup \boldsymbol{B}_{ω} has the following form

$$
(i, j) \mathfrak{h}=(k i, k j), \quad \text { for some } \quad k \in \omega
$$

This implies that the map γ_{k} is a monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.
Example 2. Let $\mathscr{F}=\{[0),[1)\}$ and k be an arbitrary non-negative integer. We define a map $\delta_{k}: \boldsymbol{B}_{\omega}^{\mathscr{F}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ by the formulae

$$
(i, j,[0)) \delta_{k}=(k i, k j,[0)) \quad \text { and } \quad(i, j,[1)) \delta_{k}=(k(i+1), k(j+1),[0))
$$

for all $i, j \in \omega$.
Proposition 1. Let $\mathscr{F}=\{[0),[1)\}$. Then for any $k \in \omega$ the map δ_{k} is an endomorphism of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.

Proof. Since by Proposition 3 of [4] the subsemigroups $\boldsymbol{B}_{\omega}^{\{[0)\}}$ and $\boldsymbol{B}_{\omega}^{\{[1)\}}$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are isomorphic to the bicyclic semigroup, by Lemma 2 of [8] the restrictions $\left.\delta_{k}\right\rceil_{\boldsymbol{B}_{\omega}\{[0)\}}: \boldsymbol{B}_{\omega}^{\{[0)\}}$ $\rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ and $\left.\delta_{k}\right\rceil_{\boldsymbol{B}_{\omega}^{(1)}}: \boldsymbol{B}_{\omega}^{\{[1)\}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ of δ_{k} are homomorphisms. Hence it sufficient to show that the following equalities

$$
\begin{aligned}
& \left(i_{1}, j_{1},[0)\right) \delta_{k} \cdot\left(i_{2}, j_{2},[1)\right) \delta_{k}=\left(\left(i_{1}, j_{1},[0)\right) \cdot\left(i_{2}, j_{2},[1)\right)\right) \delta_{k} ; \\
& \left(i_{1}, j_{1},[1)\right) \delta_{k} \cdot\left(i_{2}, j_{2},[0)\right) \delta_{k}=\left(\left(i_{1}, j_{1},[1)\right) \cdot\left(i_{2}, j_{2},[0)\right)\right) \delta_{k},
\end{aligned}
$$

hold for any $i_{1}, j_{1}, i_{2}, j_{2} \in \omega$.
We observe that the above equalities are trivial in the case when $k=0$. Hence later we assume that k is a positive integer.

Then we have that

$$
\begin{aligned}
& \left(i_{1}, j_{1},[0)\right) \delta_{k} \cdot\left(i_{2}, j_{2},[1)\right) \delta_{k}=\left(k i_{1}, k j_{1},[0)\right) \cdot\left(k\left(i_{2}+1\right), k\left(j_{2}+1\right),[0)\right)= \\
& \quad= \begin{cases}\left(k i_{1}+k\left(i_{2}+1\right)-k j_{1}, k\left(j_{2}+1\right),\left(k j_{1}-k\left(i_{2}+1\right)+[0)\right) \cap[0)\right), & \text { if } k j_{1}<k\left(i_{2}+1\right) ; \\
\left(k i_{1}, k\left(j_{2}+1\right),[0) \cap[0)\right), & \text { if } k j_{1}=k\left(i_{2}+1\right) ; \\
\left(k i_{1}, k j_{1}+k\left(j_{2}+1\right)-k\left(i_{2}+1\right),[0) \cap\left(k\left(i_{2}+1\right)-k j_{1}+[0)\right)\right), & \text { if } k j_{1}>k\left(i_{2}+1\right)\end{cases} \\
& \quad= \begin{cases}\left(k\left(i_{1}+i_{2}+1-j_{1}\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}<i_{2}+1 ; \\
\left(k i_{1}, k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2}+1 ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}>i_{2}+1\end{cases} \\
& \quad= \begin{cases}\left(k\left(i_{1}+i_{2}+1-j_{1}\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}<i_{2} ; \\
\left(k\left(i_{1}+i_{2}+1-j_{1}\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k i_{1}, k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2}+1 ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}>i_{2}+1\end{cases} \\
& \quad= \begin{cases}\left(k\left(i_{1}+i_{2}+1-j_{1}\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}<i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k i_{1}, k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2}+1 ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}>i_{2}+1,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\left(\left(i_{1}, j_{1},[0)\right) \cdot\left(i_{2}, j_{2},[1)\right)\right) \delta_{k} & = \begin{cases}\left(i_{1}+i_{2}-j_{1}, j_{2},\left(j_{1}-i_{2}+[0)\right) \cap[1)\right) \delta_{k}, & \text { if } j_{1}<i_{2} ; \\
\left(i_{1}, j_{2},[0) \cap[1)\right) \delta_{k}, & \text { if } j_{1}=i_{2} ; \\
\left(i_{1}, j_{1}+j_{2}-i_{2},[0) \cap\left(i_{2}-j_{1}+[1)\right)\right) \delta_{k}, & \text { if } j_{1}>i_{2}\end{cases} \\
& = \begin{cases}\left(i_{1}+i_{2}-j_{1}, j_{2},[1)\right) \delta_{k}, & \text { if } j_{1}<i_{2} ; \\
\left(i_{1}, j_{2},[1)\right) \delta_{k}, & \text { if } j_{1}=i_{2} ; \\
\left(i_{1}, j_{1}+j_{2}-i_{2},[0)\right) \delta_{k}, & \text { if } j_{1}>i_{2}\end{cases} \\
& = \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}<i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}>i_{2}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}<i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}=i_{2}+1 ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}>i_{2}+1\end{cases} \\
& = \begin{cases}\left(k\left(i_{1}+i_{2}+1-j_{1}\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}<i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k i_{1}, k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2}+1 ; \\
\left(k i_{1}, k\left(j_{1}+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}>i_{2}+1,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(i_{1}, j_{1},[1)\right) \delta_{k} \cdot\left(i_{2}, j_{2},[0)\right) \delta_{k}=\left(k\left(i_{1}+1\right), k\left(j_{1}+1\right),[0)\right) \cdot\left(k i_{2}, k j_{2},[0)\right)= \\
& \quad= \begin{cases}\left(k\left(i_{1}+1\right)+k i_{2}-k\left(j_{1}+1\right), k j_{2},\left(k\left(j_{1}+1\right)-k i_{2}+[0)\right) \cap[0)\right), & \text { if } k\left(j_{1}+1\right)<k i_{2} ; \\
\left(k\left(i_{1}+1\right), k j_{2},[0) \cap[0)\right), & \text { if } k\left(j_{1}+1\right)=k i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{1}+1\right)+k j_{2}-k i_{2},[0) \cap\left(k i_{2}-k\left(j_{1}+1\right)+[0)\right)\right), & \text { if } k\left(j_{1}+1\right)>k i_{2}\end{cases} \\
& \quad= \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}\right), k j_{2},[0)\right), & \text { if } j_{1}+1<i_{2} ; \\
\left(k\left(i_{1}+1\right), k j_{2},[0)\right), & \text { if } j_{1}+1=i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{1}+1+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}+1>i_{2}\end{cases} \\
& \quad= \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}\right), k j_{2},[0)\right), & \text { if } j_{1}+1<i_{2} ; \\
\left(k\left(i_{1}+1\right), k j_{2},[0)\right), & \text { if } j_{1}+1=i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{1}+1+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{1}+1+j_{2}-i_{2}\right),[0)\right), & \text { if } j_{1}+1>i_{2}\end{cases} \\
& \quad= \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}\right), k j_{2},[0)\right), & \text { if } j_{1}+1<i_{2} ; \\
\left(k\left(i_{1}+1\right), k j_{2},[0)\right), & \text { if } j_{1}+1=i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\
\left(k\left(i_{1}+1\right), k\left(j_{1}+j_{2}-i_{2}+1\right),[0)\right), & \text { if } j_{1}>i_{2},\end{cases}
\end{aligned}
$$

$$
\left(\left(i_{1}, j_{1},[1)\right) \cdot\left(i_{2}, j_{2},[0)\right)\right) \delta_{k}= \begin{cases}\left(i_{1}+i_{2}-j_{1}, j_{2},\left(j_{1}-i_{2}+[1)\right) \cap[0)\right) \delta_{k}, & \text { if } j_{1}<i_{2} \\ \left(i_{1}, j_{2},[1) \cap[0)\right) \delta_{k}, & \text { if } j_{1}=i_{2} \\ \left(i_{1}, j_{1}+j_{2}-i_{2},[1) \cap\left(i_{2}-j_{1}+[0)\right)\right) \delta_{k}, & \text { if } j_{1}>i_{2}\end{cases}
$$

$$
= \begin{cases}\left(i_{1}+i_{2}-j_{1}, j_{2},[0)\right) \delta_{k}, & \text { if } j_{1}<i_{2} \\ \left(i_{1}, j_{2},[1)\right) \delta_{k}, & \text { if } j_{1}=i_{2} \\ \left(i_{1}, j_{1}+j_{2}-i_{2},[1)\right) \delta_{k}, & \text { if } j_{1}>i_{2}\end{cases}
$$

$$
= \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}\right), k j_{2},[0)\right), & \text { if } j_{1}+1<i_{2} \\ \left(k\left(i_{1}+i_{2}-j_{1}\right), k j_{2},[0)\right), & \text { if } j_{1}+1=i_{2} \\ \left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\ \left(k\left(i_{1}+1\right), k\left(j_{1}+j_{2}-i_{2}+1\right),[0)\right), & \text { if } j_{1}>i_{2}\end{cases}
$$

$$
= \begin{cases}\left(k\left(i_{1}+i_{2}-j_{1}\right), k j_{2},[0)\right), & \text { if } j_{1}+1<i_{2} \\ \left(k\left(i_{1}+1\right), k j_{2},[0)\right), & \text { if } j_{1}+1=i_{2} \\ \left(k\left(i_{1}+1\right), k\left(j_{2}+1\right),[0)\right), & \text { if } j_{1}=i_{2} ; \\ \left(k\left(i_{1}+1\right), k\left(j_{1}+j_{2}-i_{2}+1\right),[0)\right), & \text { if } j_{1}>i_{2}\end{cases}
$$

This completes the proof of the statement of the proposition.

Remark 3. It obvious that if \mathfrak{e} is the annihilating endomorphism of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ then $\mathfrak{e}=\gamma_{0}=\delta_{0}$.

By $\boldsymbol{E n d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ we denote the semigroup of all non-injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F}=\{[0),[1)\}$.

Theorems 1 and 2 describe the algebraic structure of the semigroup $\boldsymbol{E n d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.
Theorem 1. If $\mathscr{F}=\{[0),[1)\}$, then for any non-injective monoid endomorphism \mathfrak{e} of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ only one of the following conditions holds:
(1) \mathfrak{e} is the annihilating endomorphism, i.e., $\mathfrak{e}=\gamma_{0}=\delta_{0}$;
(2) $\mathfrak{e}=\gamma_{k}$ for some positive integer k;
(3) $\mathfrak{e}=\delta_{k}$ for some positive integer k.

Proof. Fix an arbitrary non-injective monoid endomorphism \mathfrak{e} of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. If \mathfrak{e} is the annihilating endomorphism then statement (1) holds. Hence, later we assume that the endomorphism \mathfrak{e} is not annihilating.

By Lemma 1 the restriction $\left.\mathfrak{e}\right|_{\boldsymbol{B}_{\omega}} ^{\{[0)\}} \boldsymbol{B}_{\omega}^{\{[0)\}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ of the endomorphism \mathfrak{e} is an injective mapping. Since by Proposition 3 of [4] the subsemigroup $\boldsymbol{B}_{\omega}^{\{[0)\}}$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are isomorphic to the bicyclic semigroup, the injectivity of the restriction $\mathfrak{e}\}_{\boldsymbol{B}_{\omega}\{[0)\}}$ of the endomorphism e, Proposition 4 of [5], and Lemma 2 of [8] imply that there exists a positive integer k such that

$$
\begin{equation*}
(i, j,[0)) \mathfrak{e}=(k i, k j,[0)), \tag{3}
\end{equation*}
$$

for all $i, j \in \omega$.
By Lemma 1 the restriction $\left.\mathfrak{e}\right|_{\boldsymbol{B}_{\omega}^{\{[1)\}}} \boldsymbol{B}_{\omega}^{\{[1)\}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}}$ of the endomorphism \mathfrak{e} is an injective mapping, and by Lemma 2 we have that $\left(\boldsymbol{B}_{\omega}^{\{[1)\}}\right) \mathfrak{e} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}$. By Proposition 1.4.21(6) of [9] a homomorphism of inverse semigroups preserves the natural partial order, and hence the following inequalities

$$
(1,1,[0)) \preccurlyeq(0,0,[1)) \preccurlyeq(0,0,[0)),
$$

Lemma 2, and Propositions 2 of [5] imply that

$$
\begin{aligned}
(k, k,[0)) & =(1,1,[0)) \mathfrak{e} \preccurlyeq \\
& \preccurlyeq(s, s,[0))= \\
& =(0,0,[1)) \mathfrak{e} \preccurlyeq \\
& \preccurlyeq(0,0,[0))= \\
& =(0,0,[0)) \mathfrak{e}
\end{aligned}
$$

for some $s \in\{0,1, \ldots, k\}$. Again by Proposition 1.4.21(6) of [9] and by Lemma 2 we get that

$$
(1,1,[1)) \mathfrak{e}=(s+p, s+p,[0))
$$

for some non-negative integer p. If $p=0$ then $(1,1,[1)) \mathfrak{e}=(0,0,[1)) \mathfrak{e}$. By Lemma 1 the endomorphism \mathfrak{e} is annihilating. Hence we assume that p is a positive integer.

Let $(0,1,[1)) \mathfrak{e}=(x, y,[0))$ for some $x, y \in \omega$. By Proposition 1.4.21(1) of [9] and Lemma 4 of [4] we have that

$$
\begin{aligned}
(1,0,[1)) \mathfrak{e} & =\left((0,1,[1))^{-1}\right) \mathfrak{e}= \\
& =((0,1,[1)) \mathfrak{e})^{-1}= \\
& =(x, y,[0))^{-1}= \\
& =(y, x,[0)) .
\end{aligned}
$$

Since

$$
(0,1,[1)) \cdot(1,0,[1))=(0,0,[1)) \quad \text { and } \quad(1,0,[1)) \cdot(0,1,[1))=(1,1,[1)) \text {, }
$$

the equalities $(0,0,[1)) \mathfrak{e}=(s, s,[0))$ and $(1,1,[1)) \mathfrak{e}=(s+p, s+p,[0))$ imply that

$$
\begin{aligned}
(s, s,[0)) & =(0,0,[1)) \mathfrak{e}= \\
& =((0,1,[1)) \cdot(1,0,[1))) \mathfrak{e}= \\
& =(0,1,[1)) \mathfrak{e} \cdot(1,0,[1)) \mathfrak{e}= \\
& =(x, y,[0)) \cdot(y, x,[0))= \\
& =(x, x,[0))
\end{aligned}
$$

and

$$
\begin{aligned}
(s+p, s+p,[0)) & =(1,1,[1)) \mathfrak{e}= \\
& =((1,0,[1)) \cdot(0,1,[1))) \mathfrak{e}= \\
& =(1,0,[1)) \mathfrak{e} \cdot(0,1,[1)) \mathfrak{e}= \\
& =(y, x,[0)) \cdot(x, y,[0))= \\
& =(y, y,[0)) .
\end{aligned}
$$

This and the definition of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ imply that

$$
(0,1,[1)) \mathfrak{e}=(s, s+p,[0)) \quad \text { and } \quad(1,0,[1)) \mathfrak{e}=(s+p, s,[0)) .
$$

Then for any positive integers n_{1} and n_{2} by usual calculations we get that

$$
\begin{aligned}
\left(0, n_{1},[1)\right) \mathfrak{e} & =(\underbrace{((0,1,[1)) \cdot \ldots \cdot(0,1,[1))}_{n_{1} \text {-times }}) \mathfrak{e}= \\
& =\underbrace{(0,1,[1)) \mathfrak{e} \cdot \ldots \cdot(0,1,[1)) \mathfrak{e}}_{n_{1} \text {-times }}= \\
& =(s, s+p,[0))^{n_{1}}= \\
& =\left(s, s+n_{1} p,[0)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(n_{2}, 0,[1)\right) \mathfrak{e} & =(\underbrace{((1,0,[1)) \cdot \ldots \cdot(1,0,[1))}_{n_{2} \text {-times }}) \mathfrak{e}= \\
& =\underbrace{(1,0,[1)) \mathfrak{e} \cdot \ldots \cdot(1,0,[1)) \mathfrak{e}}_{n_{2} \text {-times }}=
\end{aligned}
$$

$$
\begin{aligned}
& =(s+p, s,[0))^{n_{2}}= \\
& =\left(s+n_{2} p, s,[0)\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left(n_{1}, n_{2},[1)\right) \mathfrak{e}=\left(s+n_{1} p, s+n_{2} p,[0)\right) \tag{4}
\end{equation*}
$$

The definition of the natural partial order on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ (see Proposition 4 of [5]) imply that for any positive integer m we have that

$$
(m+1, m+1,[0)) \preccurlyeq(m, m,[1)) \preccurlyeq(m, m,[0)) .
$$

Then by equalities (3), (4), and Proposition 1.4.21(6) of [9] we obtain that

$$
\begin{aligned}
(k(m+1), k(m+1),[0)) & =(m+1, m+1,[0)) \mathfrak{e} \preccurlyeq \\
& \preccurlyeq(s+p m, s+p m,[0))= \\
& =(m, m,[1)) \mathfrak{e} \preccurlyeq \\
& \preccurlyeq(m, m,[0)) \mathfrak{e}= \\
& =(k m, k m,[0)) .
\end{aligned}
$$

The above inequalities and the definition of the natural partial order on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ (see Proposition 4 of [5]) imply that $k m \leqslant s+p m \leqslant k(m+1)$ for any positive integer m. This implies that

$$
k \leqslant \frac{s}{m}+p \leqslant k+\frac{1}{m},
$$

and since p is a positive integer we get that $p=k$. Hence by (4) we get that

$$
\begin{equation*}
\left(n_{1}, n_{2},[1)\right) \mathfrak{e}=\left(s+n_{1} k, s+n_{2} k,[0)\right) \tag{5}
\end{equation*}
$$

for all $n_{1}, n_{2} \in \omega$.
It is obvious that if $s \in\{1, \ldots, k-1\}$ then \mathfrak{e} is an injective monoid endomorphism of the semigroup. Hence we have that either $s=0$ or $s=k$, Simple verifications show that

$$
\mathfrak{e}= \begin{cases}\gamma_{k}, & \text { if } s=0 \\ \delta_{k}, & \text { if } s=k\end{cases}
$$

This completes the proof of the theorem.
Theorem 2. Let $\mathscr{F}=\{[0),[1)\}$. Then for all positive integers k_{1} and k_{2} the following conditions hold:
(1) $\gamma_{k_{1}} \gamma_{k_{2}}=\gamma_{k_{1} k_{2}}$;
(2) $\gamma_{k_{1}} \delta_{k_{2}}=\gamma_{k_{1} k_{2}}$;
(3) $\delta_{k_{1}} \gamma_{k_{2}}=\delta_{k_{1} k_{2}}$;
(4) $\delta_{k_{1}} \delta_{k_{2}}=\delta_{k_{1} k_{2}}$.

Proof. (1) For any $i, j \in \omega$ we have that

$$
\begin{aligned}
(i, j,[0)) \gamma_{k_{1}} \gamma_{k_{2}} & =\left(k_{1} i, k_{1} j,[0)\right) \gamma_{k_{2}}= \\
& =\left(k_{1} k_{2} i, k_{1} k_{2} j,[0)\right),
\end{aligned}
$$

and $(i, j,[1)) \gamma_{k_{1}}=(i, j,[0)) \gamma_{k_{1}}$. This implies that $\gamma_{k_{1}} \gamma_{k_{2}}=\gamma_{k_{1} k_{2}}$.
(2) Since

$$
\begin{aligned}
(i, j,[0)) \gamma_{k_{1}} \delta_{k_{2}} & =\left(k_{1} i, k_{1} j,[0)\right) \delta_{k_{2}}= \\
& =\left(k_{1} k_{2} i, k_{1} k_{2} j,[0)\right),
\end{aligned}
$$

and $(i, j,[1)) \gamma_{k_{1}}=(i, j,[0)) \gamma_{k_{1}}$ for all $i, j \in \omega$, we get that $\gamma_{k_{1}} \delta_{k_{2}}=\gamma_{k_{1} k_{2}}$.
(3) For any $i, j \in \omega$ we have that

$$
\begin{aligned}
(i, j,[0)) \delta_{k_{1}} \gamma_{k_{2}} & =\left(k_{1} i, k_{1} j,[0)\right) \gamma_{k_{2}}= \\
& =\left(k_{1} k_{2} i, k_{1} k_{2} j,[0)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
(i, j,[1)) \delta_{k_{1}} \gamma_{k_{2}} & =\left(k_{1}(i+1), k_{1}(j+1),[0)\right) \gamma_{k_{2}}= \\
& =\left(k_{1} k_{2}(i+1), k_{1} k_{2}(j+1),[0)\right),
\end{aligned}
$$

and hence $\delta_{k_{1}} \gamma_{k_{2}}=\delta_{k_{1} k_{2}}$.
(4) For any $i, j \in \omega$ we have that

$$
\begin{aligned}
(i, j,[0)) \delta_{k_{1}} \delta_{k_{2}} & =\left(k_{1} i, k_{1} j,[0)\right) \delta_{k_{2}}= \\
& =\left(k_{1} k_{2} i, k_{1} k_{2} j,[0)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
(i, j,[1)) \delta_{k_{1}} \delta_{k_{2}} & =\left(k_{1}(i+1), k_{1}(j+1),[0)\right) \delta_{k_{2}}= \\
& =\left(k_{1} k_{2}(i+1), k_{1} k_{2}(j+1),[0)\right),
\end{aligned}
$$

and hence $\delta_{k_{1}} \delta_{k_{2}}=\delta_{k_{1} k_{2}}$.
By \mathfrak{e}_{0} we denote the annihilating monoid endomorphism of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F}=\{[0),[1)\}$, i.e., $(i, j,[p)) \mathfrak{e}_{\mathbf{0}}=(0,0,[0))$ for all $i, j \in \omega$ and $p=0,1$. We put $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)=\boldsymbol{E} \boldsymbol{n d} \boldsymbol{d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right) \backslash\left\{\mathfrak{e}_{0}\right\}$. Theorem 2 implies that $\boldsymbol{E} \boldsymbol{n d} \boldsymbol{d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ is a subsemigroup of $\boldsymbol{E n d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Theorem 2 implies the following corollary.
Corollary 1. If $\mathscr{F}=\{[0),[1)\}$, then the elements γ_{1} and δ_{1} are unique idempotents of the semigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Next, by $\mathfrak{L} \mathfrak{Z}_{2}$ we denote the left zero semigroup with two elements and by \mathbb{N}_{u} the multiplicative semigroup of positive integers.
Proposition 2. Let $\mathscr{F}=\{[0),[1)\}$. Then the semigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ is isomorphic to the direct product $\mathfrak{L J}_{2} \times \mathbb{N}_{u}$.
Proof. Put $L Z_{2}=\{c, d\}$. We define a map $\mathfrak{I}: \boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right) \rightarrow \mathfrak{L} \mathfrak{Z}_{2} \times \mathbb{N}_{u}$ by the formula

$$
(\mathfrak{e}) \mathfrak{I}= \begin{cases}(c, k), & \text { if } \mathfrak{e}=\gamma_{k} \\ (d, k), & \text { if } \mathfrak{e}=\delta_{k}\end{cases}
$$

It is obvious that such defined map \mathfrak{I} is bijective, and by Theorem 2 it is a homomorphism.

Theorem 3 describes Green's relations on the semigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Later by $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ we denote the semigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ with adjoined identity element.

Theorem 3. Let $\mathscr{F}=\{[0),[1)\}$. Then the following statements hold:
(1) $\gamma_{k_{1}} \mathscr{R} \gamma_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ if and only if $k_{1}=k_{2}$;
(2) $\gamma_{k_{1}} \mathscr{R} \delta_{k_{2}}$ does not hold in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ for any $\gamma_{k_{1}}, \delta_{k_{2}}$;
(3) $\delta_{k_{1}} \mathscr{R} \delta_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ if and only if $k_{1}=k_{2}$;
(4) $\gamma_{k_{1}} \mathscr{L} \gamma_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ if and only if $k_{1}=k_{2}$;
(5) $\gamma_{k_{1}} \mathscr{L} \delta_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ if and only if $k_{1}=k_{2}$;
(6) $\delta_{k_{1}} \mathscr{L} \delta_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ if and only if $k_{1}=k_{2}$;
(7) \mathscr{H} is the identity relation on $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$;
(8) $\mathfrak{e}_{1} \mathscr{D} \mathfrak{e}_{2}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ if and only if $\mathfrak{e}_{1}=\mathfrak{e}_{2}$ or there exists a positive integer k such that $\mathfrak{e}_{1}, \mathfrak{e}_{2} \in\left\{\gamma_{k}, \delta_{k}\right\}$;
(9) $\mathscr{D}=\mathscr{J}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Proof. (1) (\Rightarrow) Suppose that $\gamma_{k_{1}} \mathscr{R} \gamma_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Then there exist $\mathfrak{e}_{1}, \mathfrak{e}_{2} \in$ $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ such that $\gamma_{k_{1}}=\gamma_{k_{2}} \mathfrak{e}_{1}$ and $\gamma_{k_{2}}=\gamma_{k_{1}} \mathfrak{e}_{2}$. The equality $\gamma_{k_{1}}=\gamma_{k_{2}} \mathfrak{e}_{1}$ and Theorem 2 imply that there exists a positive integer p such that either $\mathfrak{e}_{1}=\gamma_{p}$ or $\mathfrak{e}_{1}=\delta_{p}$. In both above cases by Theorem 2 we have that

$$
\gamma_{k_{1}}=\gamma_{k_{2}} \mathfrak{e}_{1}=\gamma_{k_{2}} \gamma_{p}=\gamma_{k_{2}} \delta_{p}=\gamma_{k_{2} p}
$$

and hence $k_{2} \mid k_{1}$. The proof of the statement that $\gamma_{k_{2}}=\gamma_{k_{1}} \mathfrak{e}_{2}$ implies that $k_{1} \mid k_{2}$ is similar. Therefore we get that $k_{1}=k_{2}$.

Implication (\Leftarrow) is trivial.
Statement (2) follows from Theorem 2(2).
The proof of statement (3) is similar to (1).
(4) (\Rightarrow) Suppose that $\gamma_{k_{1}} \mathscr{L} \gamma_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Then there exist $\mathfrak{e}_{1}, \mathfrak{e}_{2} \in \boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ such that $\gamma_{k_{1}}=\mathfrak{e}_{1} \gamma_{k_{2}}$ and $\gamma_{k_{2}}=\mathfrak{e}_{2} \gamma_{k_{1}}$. The equality $\gamma_{k_{1}}=\mathfrak{e}_{1} \gamma_{k_{2}}$ and Theorem 2 imply that there exists a positive integer p such that $\mathfrak{e}_{1}=\gamma_{p}$. Then we have that

$$
\gamma_{k_{1}}=\mathfrak{e}_{1} \gamma_{k_{2}}=\gamma_{p} \gamma_{k_{2}}=\gamma_{p k_{2}}
$$

and hence $k_{2} \mid k_{1}$. The proof of the statement that $\gamma_{k_{2}}=\mathfrak{e}_{2} \gamma_{k_{1}}$ implies that $k_{1} \mid k_{2}$ is similar. Therefore we get that $k_{1}=k_{2}$.

Implication (\Leftarrow) is trivial.
$(5)(\Rightarrow)$ Suppose that $\gamma_{k_{1}} \mathscr{L} \delta_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Then there exist $\mathfrak{e}_{1}, \mathfrak{e}_{2} \in \boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ such that $\gamma_{k_{1}}=\mathfrak{e}_{1} \delta_{k_{2}}$ and $\delta_{k_{2}}=\mathfrak{e}_{2} \gamma_{k_{1}}$. The equality $\gamma_{k_{1}}=\mathfrak{e}_{1} \delta_{k_{2}}$ and Theorem 2 imply that there exists a positive integer p such that $\mathfrak{e}_{1}=\gamma_{p}$. Then we have that

$$
\gamma_{k_{1}}=\mathfrak{e}_{1} \delta_{k_{2}}=\gamma_{p} \delta_{k_{2}}=\gamma_{p k_{2}}
$$

and hence $k_{2} \mid k_{1}$. The equality $\delta_{k_{2}}=\mathfrak{e}_{2} \gamma_{k_{1}}$ and Theorem 2 imply that there exists a positive integer q such that $\mathfrak{e}_{1}=\delta_{q}$. Then we have that

$$
\delta_{k_{2}}=\mathfrak{e}_{2} \gamma_{k_{1}}=\delta_{q} \gamma_{k_{1}}=\gamma_{q k_{1}}
$$

and hence $k_{1} \mid k_{2}$. Thus we get that $k_{1}=k_{2}$.
Implication (\Leftarrow) is trivial.
(6) (\Rightarrow) Suppose that $\delta_{k_{1}} \mathscr{L} \delta_{k_{2}}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Then there exist $\mathfrak{e}_{1}, \mathfrak{e}_{2} \in \boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ such that $\delta_{k_{1}}=\mathfrak{e}_{1} \delta_{k_{2}}$ and $\delta_{k_{2}}=\mathfrak{e}_{2} \delta_{k_{1}}$. The equality $\delta_{k_{1}}=\mathfrak{e}_{1} \delta_{k_{2}}$ and Theorem 2 imply that there exists a positive integer p such that $\mathfrak{e}_{1}=\delta_{p}$. Then we have that

$$
\delta_{k_{1}}=\mathfrak{e}_{1} \delta_{k_{2}}=\delta_{p} \delta_{k_{2}}=\delta_{p k_{2}},
$$

and hence $k_{2} \mid k_{1}$. The proof of the statement that $\delta_{k_{2}}=\mathfrak{e}_{2} \delta_{k_{1}}$ implies that $k_{1} \mid k_{2}$ is similar. Hence we get that $k_{1}=k_{2}$.

Implication (\Leftarrow) is trivial.
(7) By statements (1), (2), and (3), \mathscr{R} is the identity relation on the semigroup $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Then so is \mathscr{H}, because $\mathscr{H} \subseteq \mathscr{R}$.

Statement (8) follows from statements (1)-(6).
(9) Suppose to the contrary that $\mathscr{D} \neq \mathscr{J}$ in $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$. Since $\mathscr{D} \subseteq \mathscr{J}$, statement (8) implies that there exist $\mathfrak{e}_{1}, \mathfrak{e}_{2} \in \boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ such that $\mathfrak{e}_{1} \mathscr{J} \mathfrak{e}_{2}$ and $\mathfrak{e}_{1}, \mathfrak{e}_{2} \notin\left\{\gamma_{k}, \delta_{k}\right\}$ for any positive integer k. Then there exist distinct positive integers k_{1} and k_{2} such that $\mathfrak{e}_{1} \in\left\{\gamma_{k_{1}}, \delta_{k_{1}}\right\}$ and $\mathfrak{e}_{2} \in\left\{\gamma_{k_{2}}, \delta_{k_{2}}\right\}$. Without loss of generality we may assume that $k_{1}<k_{2}$. Since $\mathfrak{e}_{1} \mathscr{J}_{\mathfrak{e}_{2}}$ there exist $\mathfrak{e}_{1}^{\prime}, \mathfrak{e}_{2}^{\prime}, \mathfrak{e}_{1}^{\prime \prime}, \mathfrak{e}_{2}^{\prime \prime} \in \boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)^{1}$ such that $\mathfrak{e}_{1}=\mathfrak{e}_{1}^{\prime} \mathfrak{e}_{2} \mathfrak{e}_{1}^{\prime \prime}$ and $\mathfrak{e}_{2}=\mathfrak{e}_{2}^{\prime} \mathfrak{e}_{2} \mathfrak{e}_{2}^{\prime \prime}$. Since $\mathfrak{e}_{1} \in\left\{\gamma_{k_{1}}, \delta_{k_{1}}\right\}$ and $\mathfrak{e}_{2} \in\left\{\gamma_{k_{2}}, \delta_{k_{2}}\right\}$, the equality $\mathfrak{e}_{1}=\mathfrak{e}_{1}^{\prime} \mathfrak{e}_{2} \mathfrak{e}_{1}^{\prime \prime}$, Theorems 1 and 2 imply that $k_{2} \mid k_{1}$. This contradicts the inequality $k_{1}<k_{2}$. The obtained contradiction implies the requested statement

Remark 4. Since $\mathfrak{e}_{\mathbf{0}}$ is zero of the semigroup $\boldsymbol{E n d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$, the classes of equivalence of Green's relations of non-zero elements of $\boldsymbol{E n d} \boldsymbol{d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ in the semigroup $\boldsymbol{E n d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ coincide with their corresponding classes of equivalence in $\boldsymbol{E n d} \boldsymbol{d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$, and moreover we have that

$$
\boldsymbol{L}_{\mathfrak{c}_{0}}=\boldsymbol{R}_{\mathfrak{e}_{0}}=\boldsymbol{H}_{\mathfrak{e}_{0}}=\boldsymbol{D}_{\mathfrak{e}_{0}}=\boldsymbol{J}_{\mathfrak{e}_{0}}=\left\{\mathfrak{e}_{\mathbf{0}}\right\}
$$

in the semigroup $\boldsymbol{E n d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Acknowledgements

The authors acknowledge the referee for his/her comments and suggestions.

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
3. O. Gutik and O. Lysetska, On the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ which is generated by the family \mathscr{F} of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 34-50. DOI: 10.30970/vmm.2021.92.034-050
4. O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
5. O. Gutik and M. Mykhalenych, On group congruences on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its homomorphic retracts in the case when the family \mathscr{F} consists of inductive non-empty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 91 (2021), 5-27 (in Ukrainian).
DOI: 10.30970/vmm.2021.91.005-027
6. O. Gutik and M. Mykhalenych, On automorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the case when the family \mathscr{F} consists of nonempty inductive subsets of ω, Visnyk Lviv. Univ. Ser. Mech.Mat. 93 (2022), 54-65. (in Ukrainian). DOI: 10.30970/vmm.2022.93.054-065
7. O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω, Visnyk L'viv. Univ. Ser. Mech.-Mat. 94 (2022), 32-55. DOI: 10.30970/vmm.2022.94.032-055
8. O. Gutik, O. Prokhorenkova, and D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 5-16 (in Ukrainian). DOI: 10.30970/vmm.2022.93.042-053
9. M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
10. O. Lysetska, On feebly compact topologies on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{1}}$, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 48-56. DOI: $10.30970 / v m m .2020 .90 .048-056$
11. M. Petrich, Inverse semigroups, John Wiley \& Sons, New York, 1984.
12. V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

ПРО НАПІВГРУПУ НЕІН'ЄКТИВНИХ МОНОЇДАЛЬНИХ ЕНДОМОРФІЗМІВ НАПІВГРУПИ $B_{\omega}^{\mathscr{F}}$ З ДВОЕЛЕМЕНТНОЮ СІМ'ЄЮ Яُ ІНДУКТИВНИХ НЕПОРОЖНІХ ПІДМНОЖИН

 У ωОлег ГУТІК, Інна ПОЗДНЯКОВА
Лъвівсъкий націоналъний університет імені Івана Франка, вул. Університетська 1, 79000, м. Лъвів
e-mails: oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com

Вивчено напівгрупу неін'єктивних моноїдальних ендоморфізмів напівгрупи $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ з двоелементною сім'єю \mathscr{F} індуктивних непорожніх підмножин у ω. Описано елементи напівгрупи $\boldsymbol{E n d} \boldsymbol{d}_{0}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ усіх неін'єктивних моноїдальних енодоморфізмів напівгрупи $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Зокрема, доведено, що її піднапівгрупа $\boldsymbol{E n d} \boldsymbol{d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$ усіх неін'єктивних неанулюючих моноїдальних ендоморфізмів напівгрупи $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ ізоморфна прямому добутку двоелементної напівгрупи з лівим нульовим множенням і мультиплікативної напівгрупи натуральних чисел. Також описанмо відношення Гріна на напівгрупі $\boldsymbol{E n d}^{*}\left(\boldsymbol{B}_{\omega}^{\mathscr{F}}\right)$.

Ключові слова: біциклічнй моноїд, інверсна напівгрупа, біциклічне розширення, моноїдальний ендоморфізм, неін'ктивний, відношення Гріна, напівгрупа лівих нулів, прямий добуток.

[^0]: 2020 Mathematics Subject Classification: 20M10, 20M12, 20M15, 20M18. 20M20.
 (C) Gutik, O., Pozdniakova, I., 2023

