УДК 512.53

ON THE SEMIGROUP OF NON-INJECTIVE MONOID ENDOMORPHISMS OF THE SEMIGROUP $B_\omega^{\mathscr{F}}$ WITH A TWO-ELEMENT FAMILY \mathscr{F} OF INDUCTIVE NONEMPTY SUBSETS OF ω

Oleg GUTIK, Inna POZDNIAKOVA

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE e-mails: oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com

We study the semigroup of non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω . We describe the structure of elements of the semigroup $\boldsymbol{End}_{0}^{*}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that its subsemigroup $\boldsymbol{End}^{*}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of non-injective non-annihilating monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the direct product of the two-element left-zero semigroup and the multiplicative semigroup of positive integers and describe Green's relations on $\boldsymbol{End}^{*}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$.

Key words: bicyclic monoid, inverse semigroup, bicyclic extension, monoid endomorphism, non-injective, Green's relations, left-zero semigroup, direct product.

We shall follow the terminology of [1, 2, 9]. By ω we denote the set of all non-negative integers, by $\mathbb N$ the set of all positive integers, and by $\mathbb Z$ the set of all integers.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω . For any $F \in \mathscr{P}(\omega)$ and $n \in \mathbb{Z}$ we put $n+F=\{n+k\colon k\in F\}$ if $F\neq\varnothing$ and $n+\varnothing=\varnothing$. A subfamily $\mathscr{F}\subseteq\mathscr{P}(\omega)$ is called ω -closed if $F_1\cap (-n+F_2)\in\mathscr{F}$ for all $n\in\omega$ and $F_1,F_2\in\mathscr{F}$. For any $a\in\omega$ we denote $[a)=\{x\in\omega\colon x\geqslant a\}$.

A subset A of ω is said to be *inductive*, if $i \in A$ implies $i + 1 \in A$. Obviously, \emptyset is an inductive subset of ω .

Remark 1 ([5]). (1) By Lemma 6 from [4] a nonempty subset $F \subseteq \omega$ is inductive in ω if and only $(-1+F) \cap F = F$.

²⁰²⁰ Mathematics Subject Classification: 20M10, 20M12, 20M15, 20M18. 20M20. © Gutik, O., Pozdniakova, I., 2023

- (2) Since the set ω with the usual order is well-ordered, for any nonempty inductive subset F in ω there exists a nonnegative integer $n_F \in \omega$ such that $[n_F) = F$.
- (3) Statement (2) implies that the intersection of an arbitrary finite family of nonempty inductive subsets in ω is a nonempty inductive subset of ω .

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse* of $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band of S). Then the semigroup operation on S determines the following partial order \preccurlyeq on E(S): $e \preccurlyeq f$ if and only if ef = fe = e. This order is called the natural partial order on E(S). A semilattice is a commutative semigroup of idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \leq on S: $s \leq t$ if and only if there exists $e \in E(S)$ such that s = te. This order is called the *natural partial order* on S [12].

If S is a semigroup, then we shall denote the Green relations on S by \mathcal{R} , \mathcal{L} , \mathcal{J} , \mathcal{D} and \mathcal{H} (see [1, Section 2.1]):

$$a\mathcal{R}b$$
 if and only if $aS^1 = bS^1$;
 $a\mathcal{L}b$ if and only if $S^1a = S^1b$;
 $a\mathcal{J}b$ if and only if $S^1aS^1 = S^1bS^1$;
 $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$;
 $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$.

The \mathcal{L} -class [\mathcal{R} -class, \mathcal{H} -class, \mathcal{D} -class, \mathcal{J} -class] of the semigroup S containing the element $a \in S$ will be denoted by \mathbf{L}_a [\mathbf{R}_a , \mathbf{H}_a , \mathbf{D}_a , \mathbf{J}_a].

The bicyclic monoid $\mathcal{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathcal{C}(p,q)$ is determined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = q^{k+m-\min\{l,m\}}p^{l+n-\min\{l,m\}}.$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence [1].

On the set $\mathbf{B}_{\omega} = \omega \times \omega$ we define the semigroup operation "·" in the following way

(1)
$$(i_1, j_1) \cdot (i_2, j_2) = \begin{cases} (i_1 - j_1 + i_2, j_2), & \text{if } j_1 \leqslant i_2; \\ (i_1, j_1 - i_2 + j_2), & \text{if } j_1 \geqslant i_2. \end{cases}$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is isomorphic to the semigroup \mathbf{B}_{ω} by the mapping $\mathfrak{h} \colon \mathscr{C}(p,q) \to \mathbf{B}_{\omega}, \ q^k p^l \mapsto (k,l), \ k,l \in \omega$ (see: [1, Section 1.12] or [11, Exercise IV.1.11(ii)]). Later we identify the bicyclic monoid $\mathscr{C}(p,q)$ with the semigroup \mathbf{B}_{ω} by the mapping \mathfrak{h} .

Next we shall describe the construction which is introduced in [4].

Let B_{ω} be the bicyclic monoid and \mathscr{F} be an ω -closed subfamily of $\mathscr{P}(\omega)$. On the set $B_{\omega} \times \mathscr{F}$ we define the semigroup operation "·" in the following way

$$(2) (i_1, j_1, F_1) \cdot (i_2, j_2, F_2) = \begin{cases} (i_1 - j_1 + i_2, j_2, (j_1 - i_2 + F_1) \cap F_2), & \text{if } j_1 \leq i_2; \\ (i_1, j_1 - i_2 + j_2, F_1 \cap (i_2 - j_1 + F_2)), & \text{if } j_1 \geq i_2. \end{cases}$$

In [4] is proved that if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω -closed then $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$ is a semigroup. Moreover, if an ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\mathbf{I} = \{(i, j, \varnothing) : i, j \in \omega\}$ is an ideal of the semigroup $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$. For any ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$\boldsymbol{B}_{\omega}^{\mathscr{F}} = \left\{ \begin{array}{ll} (\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot) / \boldsymbol{I}, & \text{if } \varnothing \in \mathscr{F}; \\ (\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot), & \text{if } \varnothing \notin \mathscr{F} \end{array} \right.$$

is defined in [4]. The semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [4] that $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a combinatorial inverse semigroup and Green's relations, the natural partial order on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. Here, the criteria when the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is simple, 0-simple, bisimple, 0-bisimple, or it has the identity, are given. In particularly in [4] it is proved that the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigroup of $\omega \times \omega$ -matrix units if and only if \mathscr{F} consists of a singleton set and the empty set, and $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic monoid if and only if \mathscr{F} consists of a non-empty inductive subset of ω .

Group congruences on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its homomorphic retracts in the case when an ω -closed family \mathscr{F} consists of inductive non-empty subsets of ω are studied in [5]. It is proven that a congruence \mathfrak{C} on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a group congruence if and only if its restriction on a subsemigroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, which is isomorphic to the bicyclic semigroup, is not the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are described. In [6] it is proved that an injective endomorphism ε of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is the indentity transformation if and only if ε has three distinct fixed points, which is equivalent to existence non-idempotent element $(i,j,[p)) \in \boldsymbol{B}_{\omega}^{\mathscr{F}}$ such that $(i,j,[p))\varepsilon=(i,j,[p))$.

In [3, 10] the algebraic structure of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is established in the case when ω -closed family \mathscr{F} consists of atomic subsets of ω .

It is well-known that every automorphism of the bicyclic monoid \boldsymbol{B}_{ω} is the identity self-map of \boldsymbol{B}_{ω} [1], and hence the group $\operatorname{Aut}(\boldsymbol{B}_{\omega})$ of automorphisms of \boldsymbol{B}_{ω} is trivial. In [8] it is proved that the semigroup $\operatorname{End}(\boldsymbol{B}_{\omega})$ of all endomorphisms of the bicyclic semigroup \boldsymbol{B}_{ω} is isomorphic to the semidirect products $(\omega, +) \rtimes_{\varphi} (\omega, *)$, where + and * are the usual addition and the usual multiplication on ω .

In the paper [7] we study injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω . We describe the elements of the semigroup $\boldsymbol{End}_*^1(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of all injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that every element of the semigroup $\boldsymbol{End}_*^1(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ has a form either

 $\alpha_{k,p}$ or $\beta_{k,p}$, where the endomorphism $\alpha_{k,p}$ is defined by the formulae

$$(i, j, [0))\alpha_{k,p} = (ki, kj, [0)),$$

 $(i, j, [1))\alpha_{k,p} = (p + ki, p + kj, [1)),$

for an arbitrary positive integer k and any $p \in \{0, ..., k-1\}$, and the endomorphism $\beta_{k,p}$ is defined by the formulae

$$(i, j, [0))\beta_{k,p} = (ki, kj, [0)),$$

 $(i, j, [1))\beta_{k,p} = (p + ki, p + kj, [0)),$

an arbitrary positive integer $k \ge 2$ and any $p \in \{1, ..., k-1\}$. In [7] we describe the product of elements of the semigroup $\mathbf{End}^1_*(\mathbf{B}^{\mathscr{F}}_{\omega})$:

$$\begin{split} &\alpha_{k_1,p_1}\alpha_{k_2,p_2} = \alpha_{k_1k_2,p_2+k_2p_1};\\ &\alpha_{k_1,p_1}\beta_{k_2,p_2} = \beta_{k_1k_2,p_2+k_2p_1};\\ &\beta_{k_1,p_1}\beta_{k_2,p_2} = \beta_{k_1k_2,k_2p_1};\\ &\beta_{k_1,p_1}\alpha_{k_2,p_2} = \beta_{k_1k_2,k_2p_1}. \end{split}$$

Also, here we prove that Green's relations $\mathscr{R}, \mathscr{L}, \mathscr{H}, \mathscr{D}$, and \mathscr{J} on $\operatorname{End}^1_*(B_\omega^{\mathscr{F}})$ coincide with the equality relation.

Later we assume that an ω -closed family $\mathscr F$ consists of two nonempty inductive nonempty subsets of ω .

This paper is a continuation of [7]. We study non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. We describe the structure of elements of the semigroup $\boldsymbol{End}_{0}^{*}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of all non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that its subsemigroup $\boldsymbol{End}^{*}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of all non-injective non-annihilating monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the direct product the two-element left-zero semigroup and the multiplicative semigroup of positive integers and describe Green's relations on $\boldsymbol{End}^{*}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$.

Remark 2. By Proposition 1 of [5] for any ω -closed family \mathscr{F} of inductive subsets in $\mathscr{P}(\omega)$ there exists an ω -closed family \mathscr{F}^* of inductive subsets in $\mathscr{P}(\omega)$ such that $[0) \in \mathscr{F}^*$ and the semigroups $B_{\omega}^{\mathscr{F}}$ and $B_{\omega}^{\mathscr{F}^*}$ are isomorphic. Hence without loss of generality we may assume that the family \mathscr{F} contains the set [0).

If $\mathscr F$ is an arbitrary ω -closed family $\mathscr F$ of inductive subsets in $\mathscr P(\omega)$ and $[s)\in\mathscr F$ for some $s\in\omega$ then

$$\boldsymbol{B}_{\omega}^{\{[s)\}} = \{(i,j,[s)) \colon i,j \in \omega\}$$

is a subsemigroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}[5]$ and by Proposition 3 of [4] the semigroup $\boldsymbol{B}_{\omega}^{\{[s)\}}$ is isomorphic to the bicyclic semigroup.

Lemma 1. Let $\mathscr{F} = \{[0), [1)\}$ and let \mathfrak{e} be a monoid endomorphism of the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$. If $(i_1, j_1, F)\mathfrak{e} = (i_2, j_2, F)\mathfrak{e}$ for distinct two elements $(i_1, j_1, F), (i_2, j_2, F)$ of $\mathbf{B}_{\omega}^{\mathscr{F}}$ for some $F \in \mathscr{F}$ then \mathfrak{e} is the annihilating endomorphism of $\mathbf{B}_{\omega}^{\mathscr{F}}$.

Proof. By Theorem 1 of [5] the image $(\boldsymbol{B}_{\omega}^{\mathscr{F}})\mathfrak{e}$ is a subgroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. By Theorem 4(iii) of [4] every \mathscr{H} -class in $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a singleton, and hence \mathfrak{e} is the annihilating monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.

Lemma 2. Let $\mathscr{F} = \{[0), [1)\}$. Then $(\mathbf{B}_{\omega}^{\mathscr{F}})\mathfrak{e} \subseteq \mathbf{B}_{\omega}^{\{[0)\}}$ for any non-injective monoid endomorphism \mathfrak{e} of $\mathbf{B}_{\omega}^{\mathscr{F}}$.

Proof. By Proposition 3 of [4] the subsemigroup $\boldsymbol{B}_{\omega}^{\{[0)\}}$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic semigroup and hence by Corollary 1.32 of [1] the image $(\boldsymbol{B}_{\omega}^{\{[0)\}})\mathfrak{e}$ either is isomorphic to the bicyclic semigroup or is a cyclic subgroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Since $(0,0,[0))\mathfrak{e}=(0,0,[0))$, Proposition 4 from [5] implies that $(\boldsymbol{B}_{\omega}^{\{[0)\}})\mathfrak{e}\subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}$ in the case when the image $(\boldsymbol{B}_{\omega}^{\{[0)\}})\mathfrak{e}$ is isomorphic to the bicyclic semigroup. In the other case we have that the equality $(0,0,[0))\mathfrak{e}=(0,0,[0))$ implies that

$$(\boldsymbol{B}_{\omega}^{\{[0)\}})\mathfrak{e} \subseteq \{(0,0,[0))\} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}},$$

because by Theorem 4(iii) of [4] every \mathscr{H} -class in $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a singleton.

Example 1. Let $\mathscr{F} = \{[0), [1)\}$ and k be an arbitrary non-negative integer. We define a map $\gamma_k \colon \mathcal{B}_{\omega}^{\mathscr{F}} \to \mathcal{B}_{\omega}^{\mathscr{F}}$ by the formulae

$$(i, j, [0))\gamma_k = (i, j, [1))\gamma_k = (ki, kj, [0))$$

for all $i, j \in \omega$.

We claim that $\gamma_k \colon \boldsymbol{B}_{\omega}^{\mathscr{F}} \to \boldsymbol{B}_{\omega}^{\mathscr{F}}$ is an endomorphism. Example 2 and Proposition 5 from [5] imply that the map $\gamma_1 \colon \boldsymbol{B}_{\omega}^{\mathscr{F}} \to \boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a homomorphic retraction of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, and hence it is a monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. By Lemma 2 of [8] every monoid endomorphism \mathfrak{h} of the semigroup \boldsymbol{B}_{ω} has the following form

$$(i,j)\mathfrak{h} = (ki,kj),$$
 for some $k \in \omega$.

This implies that the map γ_k is a monoid endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.

Example 2. Let $\mathscr{F} = \{[0), [1)\}$ and k be an arbitrary non-negative integer. We define a map $\delta_k \colon \mathcal{B}_{\omega}^{\mathscr{F}} \to \mathcal{B}_{\omega}^{\mathscr{F}}$ by the formulae

$$(i, j, [0))\delta_k = (ki, kj, [0))$$
 and $(i, j, [1))\delta_k = (k(i+1), k(j+1), [0))$

for all $i, j \in \omega$.

Proposition 1. Let $\mathscr{F} = \{[0), [1)\}$. Then for any $k \in \omega$ the map δ_k is an endomorphism of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$.

Proof. Since by Proposition 3 of [4] the subsemigroups $\boldsymbol{B}_{\omega}^{\{[0)\}}$ and $\boldsymbol{B}_{\omega}^{\{[1)\}}$ of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are isomorphic to the bicyclic semigroup, by Lemma 2 of [8] the restrictions $\delta_{k} \upharpoonright_{\boldsymbol{B}_{\omega}^{\{[0)\}}} : \boldsymbol{B}_{\omega}^{\{[0)\}} : \boldsymbol{B}_{\omega}^{\{[0)\}$

$$(i_1, j_1, [0))\delta_k \cdot (i_2, j_2, [1))\delta_k = ((i_1, j_1, [0)) \cdot (i_2, j_2, [1)))\delta_k;$$

$$(i_1, j_1, [1))\delta_k \cdot (i_2, j_2, [0))\delta_k = ((i_1, j_1, [1)) \cdot (i_2, j_2, [0)))\delta_k,$$

hold for any $i_1, j_1, i_2, j_2 \in \omega$.

We observe that the above equalities are trivial in the case when k=0. Hence later we assume that k is a positive integer.

Then we have that

$$(i_{1},j_{1},[0))\delta_{k} \cdot (i_{2},j_{2},[1))\delta_{k} = (ki_{1},kj_{1},[0)) \cdot (k(i_{2}+1),k(j_{2}+1),[0)) =$$

$$= \begin{cases} (ki_{1}+k(i_{2}+1)-kj_{1},k(j_{2}+1),(kj_{1}-k(i_{2}+1)+[0))\cap[0)), & \text{if } kj_{1} < k(i_{2}+1); \\ (ki_{1},k(j_{2}+1),[0)\cap[0)), & \text{if } kj_{1} = k(i_{2}+1); \\ (ki_{1},kj_{1}+k(j_{2}+1)-k(i_{2}+1),[0)\cap(k(i_{2}+1)-kj_{1}+[0))), & \text{if } kj_{1} > k(i_{2}+1); \\ (ki_{1},k(j_{2}+1),[0)), & \text{if } j_{1} < i_{2} + 1; \\ (ki_{1},k(j_{2}+1),[0)), & \text{if } j_{1} < i_{2} + 1; \\ (ki_{1},k(j_{1}+j_{2}-i_{2}),[0)), & \text{if } j_{1} < i_{2}; \\ (k(i_{1}+i_{2}+1-j_{1}),k(j_{2}+1),[0)), & \text{if } j_{1} < i_{2}; \\ (ki_{1},k(j_{1}+j_{2}-i_{2}),[0)), & \text{if } j_{1} < i_{2}; \\ (ki_{1},k(j_{1}+j_{2}-i_{2}),[0)), & \text{if } j_{1} < i_{2}; \\ (k(i_{1}+i_{2}+1-j_{1}),k(j_{2}+1),[0)), & \text{if } j_{1} = i_{2} + 1; \\ (ki_{1},k(j_{1}+j_{2}-i_{2}),[0)), & \text{if } j_{1} < i_{2} + 1, \end{cases}$$

$$((i_1, j_1, [0)) \cdot (i_2, j_2, [1))) \delta_k = \begin{cases} (i_1 + i_2 - j_1, j_2, (j_1 - i_2 + [0)) \cap [1)) \delta_k, & \text{if } j_1 < i_2; \\ (i_1, j_2, [0) \cap [1)) \delta_k, & \text{if } j_1 = i_2; \\ (i_1, j_1 + j_2 - i_2, [0) \cap (i_2 - j_1 + [1))) \delta_k, & \text{if } j_1 > i_2 \end{cases}$$

$$= \begin{cases} (i_1 + i_2 - j_1, j_2, [1)) \delta_k, & \text{if } j_1 < i_2; \\ (i_1, j_2, [1)) \delta_k, & \text{if } j_1 = i_2; \\ (i_1, j_1 + j_2 - i_2, [0)) \delta_k, & \text{if } j_1 > i_2 \end{cases}$$

$$= \begin{cases} (k(i_1 + i_2 - j_1 + 1), k(j_2 + 1), [0)), & \text{if } j_1 < i_2; \\ (k(i_1 + 1), k(j_2 + 1), [0)), & \text{if } j_1 = i_2; \\ (ki_1, k(j_1 + j_2 - i_2), [0)), & \text{if } j_1 > i_2 \end{cases}$$

$$= \begin{cases} (k(i_1+i_2-j_1+1), k(j_2+1), [0)), & \text{if } j_1 < i_2; \\ (k(i_1+1), k(j_2+1), [0)), & \text{if } j_1 = i_2; \\ (ki_1, k(j_1+j_2-i_2), [0)), & \text{if } j_1 = i_2 + 1; \\ (ki_1, k(j_1+j_2-i_2), [0)), & \text{if } j_1 > i_2 + 1 \end{cases}$$

$$= \begin{cases} (k(i_1+i_2+1-j_1), k(j_2+1), [0)), & \text{if } j_1 < i_2; \\ (k(i_1+1), k(j_2+1), [0)), & \text{if } j_1 = i_2; \\ (ki_1, k(j_2+1), [0)), & \text{if } j_1 = i_2 + 1; \\ (ki_1, k(j_1+j_2-i_2), [0)), & \text{if } j_1 > i_2 + 1, \end{cases}$$

and

$$\begin{aligned} &(i_1,j_1,[1))\delta_k\cdot(i_2,j_2,[0))\delta_k = (k(i_1+1),k(j_1+1),[0))\cdot(ki_2,kj_2,[0)) = \\ &= \begin{cases} &(k(i_1+1)+ki_2-k(j_1+1),kj_2,(k(j_1+1)-ki_2+[0))\cap[0)), & \text{if } k(j_1+1) < ki_2;\\ &(k(i_1+1),k(j_1+1)+kj_2-ki_2,[0)\cap(ki_2-k(j_1+1)+[0))), & \text{if } k(j_1+1) < ki_2;\\ &(k(i_1+1),k(j_1+1)+kj_2-ki_2,[0)\cap(ki_2-k(j_1+1)+[0))), & \text{if } k(j_1+1) > ki_2 \end{cases} \\ &= \begin{cases} &(k(i_1+i_2-j_1),kj_2,[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_1+1+j_2-i_2),[0)), & \text{if } j_1+1 > i_2 \end{cases} \\ &(k(i_1+j),k(j_1+1+j_2-i_2),[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_1+1+j_2-i_2),[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_1+1+j_2-i_2),[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_1+1+j_2-i_2),[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_2+1),[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_2+1),[0)), & \text{if } j_1+1 < i_2;\\ &(k(i_1+1),k(j_2+1),[0)), & \text{if } j_1 > i_2;\\ &(k(i_1+1),k(j_1+j_2-i_2+1),[0)), & \text{if } j_1 > i_2;\\ &(k(i_1+1),k(j_1+j_2-i_2,[1))\cap(i_2-j_1+[0)))\delta_k, & \text{if } j_1 < i_2;\\ &(i_1,j_2,[1))\delta_k, & \text{if } j_1 > i_2;\\ &(i_1,j_2,[1))\delta_k, & \text{if } j_1 > i_2;\\ &(k(i_1+j_2-j_1),kj_2,[0)), & \text{if } j_1 + i_2;\\ &(k(i_1+j_2-j_1),kj_2,[0)), & \text{if } j_1 + i_2;\\ &(k(i_1+j_2-j_1),kj_2,[0)), & \text{if } j_1 > i_2;\\ &(k(i_1+1),k(j_1+j_2-i_2+1),[0)), & \text{if } j_1 + i_2;\\ &(k(i_1+1),k(j_2+1),[0)), & \text{if } j_1 + i_2;\\ &(k(i_1+1)$$

This completes the proof of the statement of the proposition.

Remark 3. It obvious that if \mathfrak{e} is the annihilating endomorphism of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ then $\mathfrak{e} = \gamma_0 = \delta_0$.

By $\operatorname{\boldsymbol{End}}_0^*(\operatorname{\boldsymbol{B}}_\omega^{\mathscr{F}})$ we denote the semigroup of all non-injective monoid endomorphisms of the monoid $\operatorname{\boldsymbol{B}}_\omega^{\mathscr{F}}$ for the family $\mathscr{F}=\{[0),[1)\}.$

Theorems 1 and 2 describe the algebraic structure of the semigroup $End_0^*(B_{\omega}^{\mathscr{F}})$.

Theorem 1. If $\mathscr{F} = \{[0), [1)\}$, then for any non-injective monoid endomorphism \mathfrak{e} of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ only one of the following conditions holds:

- (1) \mathfrak{e} is the annihilating endomorphism, i.e., $\mathfrak{e} = \gamma_0 = \delta_0$;
- (2) $\mathfrak{e} = \gamma_k$ for some positive integer k;
- (3) $\mathfrak{e} = \delta_k$ for some positive integer k.

Proof. Fix an arbitrary non-injective monoid endomorphism \mathfrak{e} of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$. If \mathfrak{e} is the annihilating endomorphism then statement (1) holds. Hence, later we assume that the endomorphism \mathfrak{e} is not annihilating.

By Lemma 1 the restriction $\mathfrak{e}_{B_{\omega}^{\{[0)\}}} B_{\omega}^{\{[0)\}} \to B_{\omega}^{\mathscr{F}}$ of the endomorphism \mathfrak{e} is an injective mapping. Since by Proposition 3 of [4] the subsemigroup $B_{\omega}^{\{[0)\}}$ of $B_{\omega}^{\mathscr{F}}$ are isomorphic to the bicyclic semigroup, the injectivity of the restriction $\mathfrak{e}_{B_{\omega}^{\{[0)\}}}$ of the endomorphism \mathfrak{e} , Proposition 4 of [5], and Lemma 2 of [8] imply that there exists a positive integer k such that

(3)
$$(i, j, [0))e = (ki, kj, [0)),$$

for all $i, j \in \omega$.

By Lemma 1 the restriction $\mathfrak{e}|_{\boldsymbol{B}_{\omega}^{\{[1)\}}} \boldsymbol{B}_{\omega}^{\{[1)\}} \to \boldsymbol{B}_{\omega}^{\mathscr{F}}$ of the endomorphism \mathfrak{e} is an injective mapping, and by Lemma 2 we have that $(\boldsymbol{B}_{\omega}^{\{[1)\}})\mathfrak{e} \subseteq \boldsymbol{B}_{\omega}^{\{[0)\}}$. By Proposition 1.4.21(6) of [9] a homomorphism of inverse semigroups preserves the natural partial order, and hence the following inequalities

$$(1,1,[0)) \preceq (0,0,[1)) \preceq (0,0,[0)),$$

Lemma 2, and Propositions 2 of [5] imply that

$$(k, k, [0)) = (1, 1, [0))\mathfrak{e} \preccurlyeq (s, s, [0)) =$$

= $(0, 0, [1))\mathfrak{e} \preccurlyeq$
 $\preccurlyeq (0, 0, [0)) =$
= $(0, 0, [0))\mathfrak{e}$

for some $s \in \{0, 1, ..., k\}$. Again by Proposition 1.4.21(6) of [9] and by Lemma 2 we get that

$$(1,1,[1))\mathfrak{e} = (s+p,s+p,[0))$$

for some non-negative integer p. If p = 0 then $(1, 1, [1))\mathfrak{e} = (0, 0, [1))\mathfrak{e}$. By Lemma 1 the endomorphism \mathfrak{e} is annihilating. Hence we assume that p is a positive integer.

Let $(0,1,[1))\mathfrak{e}=(x,y,[0))$ for some $x,y\in\omega$. By Proposition 1.4.21(1) of [9] and Lemma 4 of [4] we have that

$$(1,0,[1))\mathfrak{e} = ((0,1,[1))^{-1})\mathfrak{e} =$$

$$= ((0,1,[1))\mathfrak{e})^{-1} =$$

$$= (x,y,[0))^{-1} =$$

$$= (y,x,[0)).$$

Since

$$(0,1,[1))\cdot (1,0,[1)) = (0,0,[1)) \quad \text{and} \quad (1,0,[1))\cdot (0,1,[1)) = (1,1,[1)),$$
 the equalities $(0,0,[1))\mathfrak{e} = (s,s,[0))$ and $(1,1,[1))\mathfrak{e} = (s+p,s+p,[0))$ imply that
$$(s,s,[0)) = (0,0,[1))\mathfrak{e} = \\ = ((0,1,[1))\cdot (1,0,[1))\mathfrak{e} = \\ = (0,1,[1))\mathfrak{e}\cdot (1,0,[1))\mathfrak{e} = \\ = (x,y,[0))\cdot (y,x,[0)) = \\ = (x,x,[0))$$

and

$$\begin{split} (s+p,s+p,[0)) &= (1,1,[1))\mathfrak{e} = \\ &= ((1,0,[1)) \cdot (0,1,[1)))\mathfrak{e} = \\ &= (1,0,[1))\mathfrak{e} \cdot (0,1,[1))\mathfrak{e} = \\ &= (y,x,[0)) \cdot (x,y,[0)) = \\ &= (y,y,[0)). \end{split}$$

This and the definition of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ imply that

$$(0,1,[1))\mathfrak{e} = (s,s+p,[0))$$
 and $(1,0,[1))\mathfrak{e} = (s+p,s,[0)).$

Then for any positive integers n_1 and n_2 by usual calculations we get that

$$(0, n_{1}, [1))\mathfrak{e} = (\underbrace{(0, 1, [1)) \cdot \ldots \cdot (0, 1, [1))}_{n_{1} \cdot \text{times}})\mathfrak{e} =$$

$$= \underbrace{(0, 1, [1))\mathfrak{e} \cdot \ldots \cdot (0, 1, [1))\mathfrak{e}}_{n_{1} \cdot \text{times}} =$$

$$= (s, s + p, [0))^{n_{1}} =$$

$$= (s, s + n_{1}p, [0))$$

and

$$(n_2, 0, [1))\mathfrak{e} = (\underbrace{(1, 0, [1)) \cdot \ldots \cdot (1, 0, [1))}_{n_2 \cdot \text{times}})\mathfrak{e} = \underbrace{(1, 0, [1))\mathfrak{e} \cdot \ldots \cdot (1, 0, [1))\mathfrak{e}}_{n_2 \cdot \text{times}} =$$

$$= (s + p, s, [0))^{n_2} =$$

= $(s + n_2 p, s, [0)),$

and hence

(4)
$$(n_1, n_2, [1))\mathfrak{e} = (s + n_1 p, s + n_2 p, [0)).$$

The definition of the natural partial order on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ (see Proposition 4 of [5]) imply that for any positive integer m we have that

$$(m+1, m+1, [0)) \leq (m, m, [1)) \leq (m, m, [0)).$$

Then by equalities (3), (4), and Proposition 1.4.21(6) of [9] we obtain that

$$(k(m+1), k(m+1), [0)) = (m+1, m+1, [0))\mathfrak{e} \le$$
 $\le (s+pm, s+pm, [0)) =$
 $= (m, m, [1))\mathfrak{e} \le$
 $\le (m, m, [0))\mathfrak{e} =$
 $= (km, km, [0)).$

The above inequalities and the definition of the natural partial order on the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ (see Proposition 4 of [5]) imply that $km \leq s + pm \leq k(m+1)$ for any positive integer m. This implies that

$$k \leqslant \frac{s}{m} + p \leqslant k + \frac{1}{m},$$

and since p is a positive integer we get that p = k. Hence by (4) we get that

(5)
$$(n_1, n_2, [1))\mathfrak{e} = (s + n_1 k, s + n_2 k, [0)),$$

for all $n_1, n_2 \in \omega$.

It is obvious that if $s \in \{1, \ldots, k-1\}$ then \mathfrak{e} is an injective monoid endomorphism of the semigroup. Hence we have that either s=0 or s=k, Simple verifications show that

$$\mathfrak{e} = \left\{ \begin{array}{ll} \gamma_k, & \text{if } s = 0; \\ \delta_k, & \text{if } s = k. \end{array} \right.$$

This completes the proof of the theorem.

Theorem 2. Let $\mathscr{F} = \{[0), [1)\}$. Then for all positive integers k_1 and k_2 the following conditions hold:

- $(1) \ \gamma_{k_1} \gamma_{k_2} = \gamma_{k_1 k_2};$
- (2) $\gamma_{k_1} \delta_{k_2} = \gamma_{k_1 k_2};$ (3) $\delta_{k_1} \gamma_{k_2} = \delta_{k_1 k_2};$ (4) $\delta_{k_1} \delta_{k_2} = \delta_{k_1 k_2}.$

Proof. (1) For any $i, j \in \omega$ we have that

$$(i, j, [0))\gamma_{k_1}\gamma_{k_2} = (k_1i, k_1j, [0))\gamma_{k_2} = (k_1k_2i, k_1k_2j, [0)),$$

and $(i, j, [1))\gamma_{k_1} = (i, j, [0))\gamma_{k_1}$. This implies that $\gamma_{k_1}\gamma_{k_2} = \gamma_{k_1k_2}$.

(2) Since

$$(i, j, [0))\gamma_{k_1}\delta_{k_2} = (k_1i, k_1j, [0))\delta_{k_2} =$$

= $(k_1k_2i, k_1k_2j, [0)),$

and $(i,j,[1))\gamma_{k_1}=(i,j,[0))\gamma_{k_1}$ for all $i,j\in\omega$, we get that $\gamma_{k_1}\delta_{k_2}=\gamma_{k_1k_2}$.

(3) For any $i, j \in \omega$ we have that

$$(i, j, [0))\delta_{k_1}\gamma_{k_2} = (k_1i, k_1j, [0))\gamma_{k_2} =$$

= $(k_1k_2i, k_1k_2j, [0)),$

and

$$(i, j, [1))\delta_{k_1}\gamma_{k_2} = (k_1(i+1), k_1(j+1), [0))\gamma_{k_2} =$$

= $(k_1k_2(i+1), k_1k_2(j+1), [0)),$

and hence $\delta_{k_1} \gamma_{k_2} = \delta_{k_1 k_2}$.

(4) For any $i, j \in \omega$ we have that

$$(i, j, [0))\delta_{k_1}\delta_{k_2} = (k_1i, k_1j, [0))\delta_{k_2} =$$

= $(k_1k_2i, k_1k_2j, [0)),$

and

$$(i, j, [1))\delta_{k_1}\delta_{k_2} = (k_1(i+1), k_1(j+1), [0))\delta_{k_2} =$$

= $(k_1k_2(i+1), k_1k_2(j+1), [0)),$

and hence $\delta_{k_1}\delta_{k_2}=\delta_{k_1k_2}$.

By $\mathfrak{e}_{\mathbf{0}}$ we denote the annihilating monoid endomorphism of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F} = \{[0), [1)\}$, i.e., $(i, j, [p))\mathfrak{e}_{\mathbf{0}} = (0, 0, [0))$ for all $i, j \in \omega$ and p = 0, 1. We put $\boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}}) = \boldsymbol{End}_0^*(\boldsymbol{B}_{\omega}^{\mathscr{F}}) \setminus \{\mathfrak{e}_{\mathbf{0}}\}$. Theorem 2 implies that $\boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ is a subsemigroup of $\boldsymbol{End}_0^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$.

Theorem 2 implies the following corollary.

Corollary 1. If $\mathscr{F} = \{[0), [1)\}$, then the elements γ_1 and δ_1 are unique idempotents of the semigroup $End^*(B_{\omega}^{\mathscr{F}})$.

Next, by $\mathfrak{L}\mathfrak{Z}_2$ we denote the left zero semigroup with two elements and by \mathbb{N}_u the multiplicative semigroup of positive integers.

Proposition 2. Let $\mathscr{F} = \{[0), [1)\}$. Then the semigroup $End^*(B_{\omega}^{\mathscr{F}})$ is isomorphic to the direct product $\mathfrak{L}\mathfrak{Z}_2 \times \mathbb{N}_u$.

Proof. Put $LZ_2=\{c,d\}$. We define a map $\mathfrak{I}\colon \boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})\to\mathfrak{L}\mathfrak{Z}_2\times\mathbb{N}_u$ by the formula

$$(\mathfrak{e})\mathfrak{I} = \left\{ \begin{array}{ll} (c,k), & \text{if } \mathfrak{e} = \gamma_k; \\ (d,k), & \text{if } \mathfrak{e} = \delta_k. \end{array} \right.$$

It is obvious that such defined map \Im is bijective, and by Theorem 2 it is a homomorphism.

Theorem 3 describes Green's relations on the semigroup $End^*(B_{\omega}^{\mathscr{F}})$. Later by $End^*(B_{\omega}^{\mathscr{F}})^1$ we denote the semigroup $End^*(B_{\omega}^{\mathscr{F}})$ with adjoined identity element.

Theorem 3. Let $\mathscr{F} = \{[0), [1)\}$. Then the following statements hold:

- (1) $\gamma_{k_1} \mathscr{R} \gamma_{k_2}$ in $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$ if and only if $k_1 = k_2$;
- (2) $\gamma_{k_1} \mathscr{R} \delta_{k_2}$ does not hold in $\operatorname{End}^*(B_\omega^{\mathscr{F}})$ for any $\gamma_{k_1}, \delta_{k_2}$;
- (3) $\delta_{k_1} \mathscr{R} \delta_{k_2}$ in $\mathbf{End}^*(\mathbf{B}_{\omega}^{\mathscr{F}})$ if and only if $k_1 = k_2$;

- (4) $\gamma_{k_1} \mathscr{L} \gamma_{k_2}$ in $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$ if and only if $k_1 = k_2$; (5) $\gamma_{k_1} \mathscr{L} \delta_{k_2}$ in $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$ if and only if $k_1 = k_2$; (6) $\delta_{k_1} \mathscr{L} \delta_{k_2}$ in $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$ if and only if $k_1 = k_2$;
- (7) \mathscr{H} is the identity relation on $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$;
- (8) $\mathfrak{e}_1 \mathscr{D} \mathfrak{e}_2$ in $End^*(B_{\omega}^{\mathscr{F}})$ if and only if $\mathfrak{e}_1 = \mathfrak{e}_2$ or there exists a positive integer ksuch that $\mathfrak{e}_1, \mathfrak{e}_2 \in \{\gamma_k, \delta_k\};$
- (9) $\mathscr{D} = \mathscr{J} \text{ in } \mathbf{End}^*(\mathbf{B}_{\omega}^{\mathscr{F}}).$

Proof. (1) (\Rightarrow) Suppose that $\gamma_{k_1} \mathscr{R} \gamma_{k_2}$ in $\operatorname{\boldsymbol{End}}^*(B_\omega^{\mathscr{F}})$. Then there exist $\mathfrak{e}_1, \mathfrak{e}_2 \in \operatorname{\boldsymbol{End}}^*(B_\omega^{\mathscr{F}})$. $End^*(B_{\omega}^{\mathscr{F}})^1$ such that $\gamma_{k_1} = \gamma_{k_2}\mathfrak{e}_1$ and $\gamma_{k_2} = \gamma_{k_1}\mathfrak{e}_2$. The equality $\gamma_{k_1} = \gamma_{k_2}\mathfrak{e}_1$ and Theorem 2 imply that there exists a positive integer p such that either $\mathfrak{e}_1 = \gamma_p$ or $\mathfrak{e}_1 = \delta_p$. In both above cases by Theorem 2 we have that

$$\gamma_{k_1} = \gamma_{k_2} \mathfrak{e}_1 = \gamma_{k_2} \gamma_p = \gamma_{k_2} \delta_p = \gamma_{k_2 p},$$

and hence $k_2|k_1$. The proof of the statement that $\gamma_{k_2} = \gamma_{k_1} \mathfrak{e}_2$ implies that $k_1|k_2$ is similar. Therefore we get that $k_1 = k_2$.

Implication (\Leftarrow) is trivial.

Statement (2) follows from Theorem 2(2).

The proof of statement (3) is similar to (1).

(4) (\Rightarrow) Suppose that $\gamma_{k_1} \mathscr{L} \gamma_{k_2}$ in $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$. Then there exist $\mathfrak{e}_1, \mathfrak{e}_2 \in \operatorname{End}^*(B_{\omega}^{\mathscr{F}})^1$ such that $\gamma_{k_1} = \mathfrak{e}_1 \gamma_{k_2}$ and $\gamma_{k_2} = \mathfrak{e}_2 \gamma_{k_1}$. The equality $\gamma_{k_1} = \mathfrak{e}_1 \gamma_{k_2}$ and Theorem 2 imply that there exists a positive integer p such that $\mathfrak{e}_1 = \gamma_p$. Then we have that

$$\gamma_{k_1} = \mathfrak{e}_1 \gamma_{k_2} = \gamma_p \gamma_{k_2} = \gamma_{pk_2},$$

and hence $k_2|k_1$. The proof of the statement that $\gamma_{k_2} = \mathfrak{e}_2\gamma_{k_1}$ implies that $k_1|k_2$ is similar. Therefore we get that $k_1 = k_2$.

Implication (\Leftarrow) is trivial.

(5) (\Rightarrow) Suppose that $\gamma_{k_1} \mathscr{L} \delta_{k_2}$ in $\operatorname{\boldsymbol{End}}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$. Then there exist $\mathfrak{e}_1, \mathfrak{e}_2 \in \operatorname{\boldsymbol{End}}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})^1$ such that $\gamma_{k_1} = \mathfrak{e}_1 \delta_{k_2}$ and $\delta_{k_2} = \mathfrak{e}_2 \gamma_{k_1}$. The equality $\gamma_{k_1} = \mathfrak{e}_1 \delta_{k_2}$ and Theorem 2 imply that there exists a positive integer p such that $\mathfrak{e}_1 = \gamma_p$. Then we have that

$$\gamma_{k_1} = \mathfrak{e}_1 \delta_{k_2} = \gamma_p \delta_{k_2} = \gamma_{pk_2},$$

and hence $k_2|k_1$. The equality $\delta_{k_2}=\mathfrak{e}_2\gamma_{k_1}$ and Theorem 2 imply that there exists a positive integer q such that $\mathfrak{e}_1 = \delta_q$. Then we have that

$$\delta_{k_2} = \mathfrak{e}_2 \gamma_{k_1} = \delta_q \gamma_{k_1} = \gamma_{qk_1},$$

and hence $k_1|k_2$. Thus we get that $k_1 = k_2$.

Implication (\Leftarrow) is trivial.

(6) (\Rightarrow) Suppose that $\delta_{k_1} \mathscr{L} \delta_{k_2}$ in $\operatorname{\boldsymbol{End}}^*(B_{\omega}^{\mathscr{F}})$. Then there exist $\mathfrak{e}_1, \mathfrak{e}_2 \in \operatorname{\boldsymbol{End}}^*(B_{\omega}^{\mathscr{F}})^1$ such that $\delta_{k_1} = \mathfrak{e}_1 \delta_{k_2}$ and $\delta_{k_2} = \mathfrak{e}_2 \delta_{k_1}$. The equality $\delta_{k_1} = \mathfrak{e}_1 \delta_{k_2}$ and Theorem 2 imply that there exists a positive integer p such that $\mathfrak{e}_1 = \delta_p$. Then we have that

$$\delta_{k_1} = \mathfrak{e}_1 \delta_{k_2} = \delta_p \delta_{k_2} = \delta_{pk_2},$$

and hence $k_2|k_1$. The proof of the statement that $\delta_{k_2}=\mathfrak{e}_2\delta_{k_1}$ implies that $k_1|k_2$ is similar. Hence we get that $k_1=k_2$.

Implication (\Leftarrow) is trivial.

(7) By statements (1), (2), and (3), \mathscr{R} is the identity relation on the semigroup $End^*(\mathcal{B}_{\omega}^{\mathscr{F}})$. Then so is \mathscr{H} , because $\mathscr{H} \subseteq \mathscr{R}$.

Statement (8) follows from statements (1)–(6).

(9) Suppose to the contrary that $\mathscr{D} \neq \mathscr{J}$ in $\operatorname{End}^*(B_\omega^{\mathscr{F}})$. Since $\mathscr{D} \subseteq \mathscr{J}$, statement (8) implies that there exist $\mathfrak{e}_1, \mathfrak{e}_2 \in \operatorname{End}^*(B_\omega^{\mathscr{F}})^1$ such that $\mathfrak{e}_1 \mathscr{J} \mathfrak{e}_2$ and $\mathfrak{e}_1, \mathfrak{e}_2 \notin \{\gamma_k, \delta_k\}$ for any positive integer k. Then there exist distinct positive integers k_1 and k_2 such that $\mathfrak{e}_1 \in \{\gamma_{k_1}, \delta_{k_1}\}$ and $\mathfrak{e}_2 \in \{\gamma_{k_2}, \delta_{k_2}\}$. Without loss of generality we may assume that $k_1 < k_2$. Since $\mathfrak{e}_1 \mathscr{J} \mathfrak{e}_2$ there exist $\mathfrak{e}_1', \mathfrak{e}_2', \mathfrak{e}_1'', \mathfrak{e}_2'' \in \operatorname{End}^*(B_\omega^{\mathscr{F}})^1$ such that $\mathfrak{e}_1 = \mathfrak{e}_1'\mathfrak{e}_2\mathfrak{e}_1''$ and $\mathfrak{e}_2 = \mathfrak{e}_2'\mathfrak{e}_2\mathfrak{e}_2''$. Since $\mathfrak{e}_1 \in \{\gamma_{k_1}, \delta_{k_1}\}$ and $\mathfrak{e}_2 \in \{\gamma_{k_2}, \delta_{k_2}\}$, the equality $\mathfrak{e}_1 = \mathfrak{e}_1'\mathfrak{e}_2\mathfrak{e}_1''$, Theorems 1 and 2 imply that $k_2|k_1$. This contradicts the inequality $k_1 < k_2$. The obtained contradiction implies the requested statement

Remark 4. Since \mathfrak{e}_0 is zero of the semigroup $End_0^*(B_\omega^{\mathscr{F}})$, the classes of equivalence of Green's relations of non-zero elements of $End_0^*(B_\omega^{\mathscr{F}})$ in the semigroup $End_0^*(B_\omega^{\mathscr{F}})$ coincide with their corresponding classes of equivalence in $End^*(B_\omega^{\mathscr{F}})$, and moreover we have that

$$oldsymbol{L}_{\mathfrak{e}_0} = oldsymbol{R}_{\mathfrak{e}_0} = oldsymbol{H}_{\mathfrak{e}_0} = oldsymbol{D}_{\mathfrak{e}_0} = oldsymbol{J}_{\mathfrak{e}_0} = \{\mathfrak{e}_0\}$$

in the semigroup $End_0^*(B_{\omega}^{\mathscr{F}})$.

ACKNOWLEDGEMENTS

The authors acknowledge the referee for his/her comments and suggestions.

REFERENCES

- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- 2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- O. Gutik and O. Lysetska, On the semigroup B_ω which is generated by the family F of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 34-50.
 DOI: 10.30970/vmm.2021.92.034-050
- O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5–19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
- O. Gutik and M. Mykhalenych, On group congruences on the semigroup B_ω^F and its homomorphic retracts in the case when the family F consists of inductive non-empty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 91 (2021), 5–27 (in Ukrainian).
 DOI: 10.30970/vmm.2021.91.005-027

- 6. O. Gutik and M. Mykhalenych, On automorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the case when the family \mathscr{F} consists of nonempty inductive subsets of ω , Visnyk Lviv. Univ. Ser. Mech.-Mat. 93 (2022), 54–65. (in Ukrainian). DOI: 10.30970/vmm.2022.93.054-065
- O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endomorphisms of the monoid B^F_ω with the two-elements family F of inductive nonempty subsets of ω, Visnyk L'viv. Univ. Ser. Mech.-Mat. 94 (2022), 32-55. DOI: 10.30970/vmm.2022.94.032-055
- 8. O. Gutik, O. Prokhorenkova, and D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L'viv. Univ., Ser. Mekh.-Mat. **92** (2021) 5–16 (in Ukrainian). DOI: 10.30970/vmm.2022.93.042-053
- M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
- 10. O. Lysetska, On feebly compact topologies on the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}_1}$, Visnyk Lviv. Univ. Ser. Mech.-Mat. **90** (2020), 48–56. DOI: 10.30970/vmm.2020.90.048-056
- 11. M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
- V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

Стаття: надійшла до редколегії 15.10.2022 доопрацьована 22.02.2023 прийнята до друку 10.05.2023

ПРО НАПІВГРУПУ НЕІН'ЄКТИВНИХ МОНОЇДАЛЬНИХ ЕНДОМОРФІЗМІВ НАПІВГРУПИ $B_{\omega}^{\mathscr{F}}$ З ДВОЕЛЕМЕНТНОЮ СІМ'ЄЮ \mathscr{F} ІНДУКТИВНИХ НЕПОРОЖНІХ ПІДМНОЖИН У ω

Олег ГУТІК, Інна ПОЗДНЯКОВА

Львівський національний університет імені Івана Франка, вул. Університетська 1, 79000, м. Львів e-mails: oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com

Вивчено напівгрупу неін'єктивних моноїдальних ендоморфізмів напівгрупи $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ з двоелементною сім'єю \mathscr{F} індуктивних непорожніх підмножин у ω . Описано елементи напівгрупи $\boldsymbol{End}_0^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ усіх неін'єктивних моноїдальних енодоморфізмів напівгрупи $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Зокрема, доведено, що її піднапівгрупа $\boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ усіх неін'єктивних неанулюючих моноїдальних ендоморфізмів напівгрупи $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ ізоморфна прямому добутку двоелементної напівгрупи з лівим нульовим множенням і мультиплікативної напівгрупи натуральних чисел. Також описанмо відношення Ґріна на напівгрупі $\boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$.

Ключові слова: біциклічні моноїд, інверсна напівгрупа, біциклічне розширення, моноїдальний ендоморфізм, неін'ктивний, відношення Ґріна, напівгрупа лівих нулів, прямий добуток.