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We study the semigroup of non-injective monoid endomorphisms of the
semigroup B with the two-elements family .Z of inductive nonempty subsets
of w. We describe the structure of elements of the semigroup Endj(BZ)
of non-injective monoid endomorphisms of the semigroup BZ . In particular
we show that its subsemigroup End*(B7 ) of non-injective non-annihilating
monoid endomorphisms of the semigroup B is isomorphic to the direct
product of the two-element left-zero semigroup and the multiplicative semi-
group of positive integers and describe Green’s relations on End*(BZ).
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We shall follow the terminology of [1, 2, 9]. By w we denote the set of all non-negative
integers, by N the set of all positive integers, and by Z the set of all integers.

Let &(w) be the family of all subsets of w. For any F' € #(w) and n € Z we put
n+F={n+k:ke€ F}if F# & and n+ @ = @. A subfamily # C H(w) is called
w-closed if Fy N (—n+ Fy) € % for all n € w and F1, Fy € %. For any a € w we denote
[a) ={zr cw: z>a}.

A subset A of w is said to be inductive, if i € A implies i + 1 € A. Obviously, @ is
an inductive subset of w.

Remark 1 ([5]). (1) By Lemma 6 from [4] a nonempty subset F' C w is inductive in
wif and only (-1+ F)NF =F.
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(2) Since the set w with the usual order is well-ordered, for any nonempty inductive
subset F' in w there exists a nonnegative integer np € w such that [np) = F.

(3) Statement (2) implies that the intersection of an arbitrary finite family of
nonempty inductive subsets in w is a nonempty inductive subset of w.

A semigroup S is called inverse if for any element x € S there exists a unique
27! € Ssuch that z2~'x = z and 7 'zo~! = 2~ 1. The element 2~ is called the inverse
of x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to
every element x of § its inverse element z~! is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then F(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order < on E(S): e < f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order < on S: s < t if and only if there exists e € E(S) such that s = te.
This order is called the natural partial order on S [12].

If S is a semigroup, then we shall denote the Green relations on S by #, £, 7, 2
and S (see [1, Section 2.1]):

aZb if and only if aS* = bS*;

a. b if and only if S'a = S1b;
a_Zbif and only if Stast = S'bS1;
D=L oR=RoL;

H =L NXR.

The Z-class [#-class, J€-class, P-class, #-class| of the semigroup S containing the
element a € S will be denoted by L, [R,, H,, D,, J.].

The bicyclic monoid €'(p, q) is the semigroup with the identity 1 generated by two
elements p and ¢ subjected only to the condition pg = 1. The semigroup operation on
€ (p, q) is determined as follows:

qkpl .qmpn — qk+m—min{l,m}pl+n—min{l,m}.
It is well known that the bicyclic monoid € (p, ¢) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on € (p,q) is a
group congruence [1].

[T

On the set B, = w X w we define the semigroup operation “-” in the following way

o o (i — j1 +12,72), if j1 <ig;
1 ,J1) - (G2, j2) = S . e .
( ) (11 ]1) (12 32) { (“7]1 — iy +]2), if j1 > io.
It is well known that the bicyclic monoid % (p, q) is isomorphic to the semigroup B,
by the mapping h: € (p,q) — B., ¢*p' — (k,1), k,1 € w (see: [1, Section 1.12] or [11,
Exercise IV.1.11(47)]). Later we identify the bicyclic monoid % (p, ¢) with the semigroup
B, by the mapping b.
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Next we shall describe the construction which is introduced in [4].
Let B, be the bicyclic monoid and .# be an w-closed subfamily of %(w). On the
set B, x # we define the semigroup operation “-” in the following way

S o (i1 — J1 + 12, J2, (J1 —d2 + F1) N Fy), if ji <idg;
@) g 1) - G2, g2, F) { (i1, 41 —d2 + j2, F1 N (i — j1 + F2)), if j1 = da.
In [4] is proved that if the family .# C &?(w) is w-closed then (B, X .Z,-) is a semigroup.
Moreover, if an w-closed family % C £?(w) contains the empty set & then the set
I={(i,j,9): i,j € w} is an ideal of the semigroup (B, x .%,-). For any w-closed family
F C P(w) the following semigroup

g7 _ [ (Bux 7)1 ioeZ;
© T\ (BuxZ.,), ito¢TF

is defined in [4]. The semigroup B generalizes the bicyclic monoid and the countable
semigroup of matrix units. It is proven in [4] that B is a combinatorial inverse semigroup
and Green’s relations, the natural partial order on Bf and its set of idempotents are
described. Here, the criteria when the semigroup Bf is simple, 0-simple, bisimple, 0-
bisimple, or it has the identity, are given. In particularly in [4] it is proved that the
semigroup Bf is isomorphic to the semigrpoup of wXxw-matrix units if and only if .#
consists of a singleton set and the empty set, and ij is isomorphic to the bicyclic monoid
if and only if .# consists of a non-empty inductive subset of w.

Group congruences on the semigroup Bf and its homomorphic retracts in the case
when an w-closed family .# consists of inductive non-empty subsets of w are studied
in [5]. It is proven that a congruence € on Bf is a group congruence if and only if its
restriction on a subsemigroup of Biz, which is isomorphic to the bicyclic semigroup, is not
the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms
of the semigroup Bf are described. In [6] it is proved that an injective endomorphism &
of the semigroup ij is the indentity transformation if and only if € has three distinct
fixed points, which is equivalent to existence non-idempotent element (i,7, [p)) € B

such that (i, 4, [p))e = (4,4, [p))-

In [3, 10] the algebraic structure of the semigroup Bf is established in the case
when w-closed family .%# consists of atomic subsets of w.

It is well-known that every automorphism of the bicyclic monoid B,, is the identity
self-map of B, [1], and hence the group Aut(B,,) of automorphisms of B,, is trivial.
In [8] it is proved that the semigroup End(B,,) of all endomorphisms of the bicyclic
semigroup B, is isomorphic to the semidirect products (w,+) X, (w, *), where + and *
are the usual addition and the usual multiplication on w.

In the paper [7] we study injective endomorphisms of the semigroup B with the
two-elements family .# of inductive nonempty subsets of w. We describe the elements of
the semigroup End}k(Bf) of all injective monoid endomorphisms of the monoid Bf. In
particular we show that every element of the semigroup End} (sz) has a form either
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a.p or B p, where the endomorphism oy, )y, is defined by the formulae

(iajv [0))0%717 = (kia kj, [O))7
(1,4, [))akp = (p + ki, p + k4, [1)),

for an arbitrary positive integer & and any p € {0,...,k — 1}, and the endomorphism
Bi,p is defined by the formulae

(i,j7 [0))519,17 = (k}l, k.]a [O)),
(iv.j’ [1))/8k,p = (p + ki;p + k‘], [O)),

an arbitrary positive integer £ > 2 and any p € {1,...,k — 1}. In [7] we describe the
product of elements of the semigroup End! (B ):

k1 ,p1 Aky,ps = Xkikg,patkapr)
akl,plﬁk%;ﬂz - Bk1k27p2+k2p1;
Bkl,plﬂkz,:m = ﬁklkz,kﬂ)l;
/Bkldhakmpz = /Bklk27k2p1 .

Also, here we prove that Green’s relations Z, £, 7, 7, and ¢ on Endi(ij) coincide
with the equality relation.

Later we assume that an w-closed family % consists of two nonempty inductive
nonempty subsets of w.

This paper is a continuation of [7]. We study non-injective monoid endomorphisms of
the semigroup B . We describe the structure of elements of the semigroup End;, (B ) of
all non-injective monoid endomorphisms of the semigroup Bf. In particular we show that
its subsemigroup End* (sz) of all non-injective non-annihilating monoid endomorphi-
sms of the semigroup Biz is isomorphic to the direct product the two-element left-zero
semigroup and the multiplicative semigroup of positive integers and describe Green’s
relations on End*(B7).

Remark 2. By Proposition 1 of [5] for any w-closed family .# of inductive subsets in &2 (w)
there exists an w-closed family .#* of inductive subsets in Z?(w) such that [0) € .#* and

the semigroups Bfr and Bf* are isomorphic. Hence without loss of generality we may
assume that the family .# contains the set [0).

If .Z is an arbitrary w-closed family .# of inductive subsets in & (w) and [s) € .F
for some s € w then

B = {(i,j.[s)): 1. € w}
is a subsemigroup of B [5] and by Proposition 3 of [4] the semigroup BL*)} is isomorphic
to the bicyclic semigroup.
Lemma 1. Let % = {[0),[1)} and let ¢ be a monoid endomorphism of the semigroup
Bf. If (i1, j1, F)e = (ig, jo, F)e for distinct two elements (i1, j1, F), (i2, j2, F') of Bf for
some F € & then ¢ is the annihilating endomorphism of Bf.
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Proof. By Theorem 1 of [5] the image (B )e is a subgroup of B . By Theorem 4(iii)
of [4] every s#-class in Bf is a singleton, and hence ¢ is the annihilating monoid
endomorphism of BZ . O

Lemma 2. Let .Z = {[0),[1)}. Then (BZ)e C BI9Y for any non-injective monoid
endomorphism ¢ of B .

Proof. By Proposition 3 of [4] the subsemigroup Bﬂo)} of Biz is isomorphic to the
bicyclic semigroup and hence by Corollary 1.32 of [1] the image (BU”})e cither is
isomorphic to the bicyclic semigroup or is a cyclic subgroup of Bfr. Since (0,0,[0))e =
(0,0,[0)), Proposition 4 from [5] implies that (BJ”})e € B} in the case when the
image (Bﬂo)})e is isomorphic to the bicyclic semigroup. In the other case we have that
the equality (0, 0,[0))e = (0,0,[0)) implies that
(BEM)e € {(0.0,[0))} € BE,

because by Theorem 4(iii) of [4] every #-class in B2 is a singleton.

Next, by Proposition 3 of [4] the subsemigroup B;{J[l)} of BZ is isomorphic to
the bicyclic semigroup and hence by Corollary 1.32 of [1] the image (BI"})e either
is isomorphic to the bicyclic semigroup or is a cyclic subgroup of Bf. Suppose that
the image (BUY})e is isomorphic to the bicyclic semigroup and (BUY})e ¢ BIY}.
Then monoid endomorphism ¢ of ij is injective. Indeed, injectivity of the restriction
e]Bm)}Bgl)} — B!V} Proposition 4 of [5], Corollary 1.32 of [1], Theorem 4(iii) of [4],
and the equality (0,0, [0))e = (0,0,[0)) imply that either the restriction e]B{[O))B;{J[O)} —
BL{U[O)} is an injective mapping or is an annihilating endomorphism. In the case when the
restriction e] B{[())}Bi)[o)} — Bgo)} is an injective mapping we get that the endomorphi-
sm e is injective. If the image (Bi[o)})e is a singleton then by Lemma 1 we have that

¢ is the annihilating monoid endomorphism of Bf In the both cases we obtain that
(BZ)e C B}, O

Example 1. Let .# = {[0),[1)} and k be an arbitrary non-negative integer. We define
amap vx: B2 — BZ by the formulae

(iajv [0>)7k = (i7j7 [1))719 = (kl, kj, [0))
for all 4,j € w.

We claim that ~: Bf — Bf is an endomorphism. Example 2 and Proposition 5
from [5] imply that the map v,: B — B is a homomorphic retraction of the monoid
Bff, and hence it is a monoid endomorphism of Bf. By Lemma 2 of [8] every monoid
endomorphism § of the semigroup B,, has the following form

(4,7)h = (ki, kj), for some k € w.

This implies that the map 7, is a monoid endomorphism of Bf.

Example 2. Let .% = {[0),[1)} and k be an arbitrary non-negative integer. We define
amap 6,: BZ — B by the formulae

(i,j, [O))ak = (1“7 k]v [O)) and (i,j, [1))6k = (k(Z + 1)7 k(] + 1)’ [O))
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for all i, € w.

Proposition 1. Let % = {[0),[1)}. Then for any k € w the map 6y, is an endomorphism
of the monoid BY .

Proof. Since by Proposition 3 of [4] the subsemigroups B{[O)} and B{[l)} of By are
isomorphic to the bicyclic semigroup, by Lemma 2 of [8] the restrictions dx1 5 ([0} : B{[O)}

— B‘/ and o1 5 B{[l)} — Bf of §;, are homomorphisms. Hence it sufﬁ(:lent to show
that the followmg equahtles

(i1, 71,[0))0% - (42, J2, [1))0r = ((i1, 41, [0)) - (i2; J2, [1)))O%;
(i1, 41, (1)) - (i2, 2, [0))0k = ((i1, j1,[1)) - (i2, j2. [0)))0k,
hold for any i1, j1, 12, j2 € w.

We observe that the above equalities are trivial in the case when k& = 0. Hence later
we assume that k is a positive integer.

Then we have that

(i1,J1,[0))0% - (i2, j2, [1))0x = (Ki1, kj1,[0)) - (k(i2 + 1), k(j2 +1),[0)) =
(ki1 +k(io+1)—kj1, k(j2+1), (kj1—k(i2+1)+[0)) N [0)), if kjr < k(i2 +1);
=4 (kiy, k(j2 +1),[0) N [0)), if kj1 = k(iz +1);
(ki1 kji+k(j2+1)—k(i2+1), [0) N (k(i2+1)—kj1+[0))), if kjr > k(i2 +1)
( <21+z2+1 )7k(j2+1)7[0))7 lf.jl <ig+1;
= (kllv (]2"‘1)7[0)) lfjl =12+ 1
(kllv (]1 + Jj2 — iZ), [0)) if J1 >+ 1
( (21+’L2+1—]1)7/{3(j2+1)7[ )) if j1 <9
_ ) (kG +i2+1—51), k(2 +1),[0)), if j1 =iz
(ki1, k(j2 + 1),1]0)), if j; = ig 4+ 1;
(kllv (]1 +j27i2)a[0))7 lfjl >i2+1
(k(i1 +i2 +1—j1),k(j2 +1),[0)), if j1 <iy;
_ ) (k@1 +1),k(j2 +1),(0)), if j1 = io;
(kiy, k(j2 +1),10)), if j1 =d2 + 1
(kllv (Jl +j2_12 ,[0)), lfjl >i2+1a

i1+ iz = J1,J2, (1 —i2 + [0)) N [1))0k, if j1 < i2;
i1, j2,[0) N [1))dy, if j1 = io;
Zlvjl +-72_7’27[0)m(7’2_;71+[1)))5k7 lfjl >i2
i1 +i2 — 1, j2, [1))0k, if j1 <ig;

(i
((41,41,[0)) - (42, J2,[1))) 0k = E
(i
(i1, J2, [1)) 0%, if j1 = da;
(i
(
(
(

{ i1, J1 + J2 — i2,[0))0k, if j1 > d2
{ i1 42 — j1 + 1), k(j2 +1),[0)), if j1 <ig;

k(i
k(iy + 1), k(j2 + 1),[0)), if j1 = ig;
ki1, k(j1 + j2 — i2),[0)), if j1 > iy
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(k(i1 +d2 — j1 + 1), k(j2 + 1),[0)), if j1 < iz;
_ ) (k(i1 +1),k(j2 +1),(0)), if j1 = da;
(ki1, k(j1 + g2 —i2),10)), if j1 =ia+ 15
(kiv, k(j1 + j2 —i2),[0)), if ju >i2+1
(k(i1 +i2 +1—j1),k(j2 +1),[0)), if j1 <iy;
— ( (Zl +]-) (]2+1)7[0))7 lfjl :7:2;
(ki1 k(j2 + 1),10)), if j1 =idp + 1;
(klla (.71 +¢72_22)7[0))7 lf.]l >i2+17
and
(ilajlv[l))ék : (i27j27 [O)) (k(zl + 1) (.71 + 1)7 [0)) : (ki27kj27 [0)> =
(k(i1+1)+kia—k(j1+1), kja, (k(j1+1)—kia+[0)) N [0)), if k(j1 + 1) < kio;
= (/ﬂ(ll-l-].),ka,[()) [ )) if k(]1+1) = kiog;
(k(in+1), k(i1 +1) s ki, [0) 0 (kia—k(ir-+ 1) +0))), if k(i + 1) > ki
(k(i1 + 12 — j1), kj2, [0)), if j1 +1 < dg;
=< (k(i1 + 1), kja, [0)), if j1 + 1 = i9;
(k(i1 +1),k(j1 + 1+ j2 —42),10)), ifj1+1>is
(k(i1 + 12 — j1), kj2, [0)), if j1 + 1 < dg;
_ (k(i1 + 1), kjo, [0)), if j1 + 1 = ig;
(k(i1 4+ 1),k(j1 + 1+ j2 —i2),[0)), if j1 =io;
(k(i1 4+ 1), k(j1 + 1 4 j2 —i2),[0)), if j1 +1 >4y
(k‘(ll+227]1) k]g,[())), ifj1+]. < i9;
_ (k(ll +1) kjg,[())), lfjl +1 :ig;
(k(i1 +1),k(j2 + 1),[0)), if j1 = do;
(k(ir + 1), k(j1 + j2 —i2 +1),[0)), if j1 > ia,
(11 +i2 — j1, g2, (J1 — 2 + [1)) N [0))0k, if j1 < io;
((ilajh [1)) : (Z.ij?a [0)))5]6 = (7'17.]27 [ ) [ ))6]@) if jl - 227
(11,71 + 2 —i2,[1) N (i2 — j1 +[0)))0k, if j1 > iz
(’Ll +22_]17¢72a[ ))6/67 lfjl <227
= (7'17.]27 [ ))6/67 if jl = i2;
(i1, 71 + jo —i2,[1))0k, if j1 > o
(k(i1 +i2 — j1), kj2, [0)), if j1 41 <ia;
— (k(21+22—J1) kaa[ ))a 1f]1+1:7/2,
(k(i1 + 1), k(j2 + 1), [0)), if j1 = ia;
(k(iy +1),k(j1 +J2 —d2 +1),[0)), if ji1 > o
(k‘(’tl + 79 —]1) ki]g, [0)), if jl + 1 < i9;
_ } (k(in + 1), k32, [0)), if j1 41 =i
(k(zl + 1) (.72 + 1)5 [O))a if jl = i?;
(k(i1+1),k(j1 + j2 — @2 +1),[0)), if j1 > ia.

This completes the proof of the statement of the proposition.
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Remark 3. It obvious that if ¢ is the annihilating endomorphism of the monoid Bf then
e =" — 50.

By Endjj(BZ ) we denote the semigroup of all non-injective monoid endomorphisms
of the monoid B for the family . = {[0),[1)}.

Theorems 1 and 2 describe the algebraic structure of the semigroup Endj(B7).
Theorem 1. If % = {[0),[1)}, then for any non-injective monoid endomorphism ¢ of
the monoid Bf only one of the following conditions holds:

(1) e is the annihilating endomorphism, i.e., ¢ = vy = dp;
(2) e =k for some positive integer k;
(3) e =0y for some positive integer k.

Proof. Fix an arbitrary non-injective monoid endomorphism ¢ of the monoid Bf. If e
is the annihilating endomorphism then statement (1) holds. Hence, later we assume that
the endomorphism e is not annihilating.

By Lemma 1 the restriction e]B{[o)}BﬂO)} — Bf[ of the endomorphism ¢ is an

injective mapping. Since by Proposition 3 of [4] the subsemigroup Bi[o)} of Bf are
isomorphic to the bicyclic semigroup, the injectivity of the restriction e] ) of the

endomorphism e, Proposition 4 of [5], and Lemma 2 of [8] imply that there exists a
positive integer k such that

(3) (4,7, [0))e = (ki, kj,[0)),
for all 7,5 € w.
By Lemma 1 the restriction e]B{[l)}BU{J[l)} — Bf of the endomorphism ¢ is an

injective mapping, and by Lemma 2 we have that (Bﬂl)})e c B£[0)}. By Propositi-
on 1.4.21(6) of [9] a homomorphism of inverse semigroups preserves the natural partial
order, and hence the following inequalities

(1,1,[0)) = (0,0,[1)) < (0,0,[0)),

Lemma 2, and Propositions 2 of [5] imply that

(k, K, [0)) = ( L [0
[

for some s € {0,1,...,k}. Again by Proposition 1.4.21(6) of [9] and by Lemma 2 we get
that

(1,1, [1))e = (s +p,s+p,[0))

for some non-negative integer p. If p = 0 then (1,1,[1))e = (0,0,[1))e. By Lemma 1 the
endomorphism e is annihilating. Hence we assume that p is a positive integer.
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Let (0,1,[1))e = (z,v,]0)) for some z,y € w. By Proposition 1.4.21(1) of [9] and
Lemma 4 of [4] we have that

Since
(0717[1)) '(1707 [1)) = (O?Oﬂ [1)) and (]‘?Oﬂ [1)) ’ (0317[1)) = (1717[1))7

the equalities (0,0,[1))e = (s,s,[0)) and (1,1,[1))e = (s + p, s + p,[0)) imply that
(s,5,10)) = (0,0,[1))e =
= ((O’ 15 [1)) : (1, 0, [1)))2 =
=(0,1,[1))e - (1,0,[1))e =
= (.%‘,y, [O)) : (y,a; [O)) =
~ (z2.[0)
and
(s+ps+p[0)=(1,1,[1))e=
= ((1,0,[1)) - (0,1,[1)))e =
=(1,0,[1))e- (0,1,[1))e =
= (y,4,10)).

This and the definition of the semigroup ij imply that
(0,1,[1))e = (s,s+p,[0)) and  (1,0,[1))e = (s +p,s,[0)).
Then for any positive integers n; and no by usual calculations we get that

(0,71, [1))e = ((0,1,[1)) ... (0,1,[1)))e =

= (0,1, [1)):-1: (0 1,[1))e =
= (s,5+p,[0))™ =
= (5,5 +m1p,[0))

and

(n2,0,[1))e = ((1,0,1)) - ... - (1,0,[1)))e =

= (1,0,[1))e ... (1,0,[1))e =

n2-times
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— (s 4 p.5.[0)" =
= (s + nap, s,[0)),
and hence
(4) (n1,mn2,[1))e = (s + n1p, s + nap, [0)).

The definition of the natural partial order on the semigroup Bf (see Proposition 4
of [5]) imply that for any positive integer m we have that

(m+1,m+1,[0)) < (m,m,[1)) < (m,m,[0)).
Then by equalities (3), (4), and Proposition 1.4.21(6) of [9] we obtain that
(k(m +1),k(m +1),[0)) = (m + 1,m + 1,[0))e <
< (s+pm,s+pm,[0)) =
— (m,m, [1)e <
< (m,m, [0)e =
= (km, km, [0)).

The above inequalities and the definition of the natural partial order on the semigroup
B (see Proposition 4 of [5]) imply that km < s+pm < k(m+1) for any positive integer
m. This implies that

1
<~ +p<k+—,
m m
and since p is a positive integer we get that p = k. Hence by (4) we get that
(5) (n1,mn9,[1))e = (s + nik, s + n2k, [0)),

for all ny,ny € w.

It is obvious that if s € {1,...,k — 1} then ¢ is an injective monoid endomorphism
of the semigroup. Hence we have that either s = 0 or s = k, Simple verifications show
that

- (Sk, if s =k.
This completes the proof of the theorem. O

Theorem 2. Let .# = {[0),[1)}. Then for all positive integers ki and ko the following
conditions hold:

(1) Vi1 Vka = Vkikas
(2) 7’616162 = Vkikas
(3) 51@17162 = 5k1k2 ;
(4)

Proof. (1) For any 4,j € w we have that

5k15k2 = 5k1k2 .

(7:7j7 [0))7]@1’7/62 = (k1i7 klj) [0))7]()2 =
= (k1k2i7 k1k2j7 [O))7

and (7,7, [1))7&, = (4,3,[0))7&, - This implies that yg, Ve, = Yk,
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(2) Since
(4,7, 10)) 71 Ok, = (K1, k15, [0)) 0k, =
= (k1kai, k1k23,[0)),
and (2, 7,[1))vk, = (¢,7,[0))vk, for all i,5 € w, we get that Vi, Ok, = Vkiks-
(3) For any i,j € w we have that
(4,7,10))0k, Yoo = (K1, k17, [0)) vk, =
= (kikai, k1k23,[0)),
and
(4,75 [1))0ky Yoo = (K1(i 4 1), k1 (5 + 1), [0)) v, =
= (k1k2(i + 1), k1k2(j + 1), ]0)),
and hence 6, Yk, = Ok ks, -
(4) For any i,j € w we have that
(1,5, [0))0k, O, = (k1i, k15, [0))dk, =
= (kikai, k1k23,[0)),
and
(4,7,[1))0k, 0k, = (k1(i + 1), k1(j + 1),[0))0n, =
= (k1k2(i + 1), k1 k2 (5 + 1), [0)),
and hence 0, 0k, = Ok, - O
By ¢¢ we denote the annihilating monoid endomorphism of the monoid sz for the
family &% = {[0),[1)}, i-e., (4,4,[p))eo = (0,0,[0)) for all 4,5 € w and p = 0,1. We put
End*(BY) = End}(B7)\ {¢o}. Theorem 2 implies that End*(B7) is a subsemigroup
of End}(B7).
Theorem 2 implies the following corollary.
Corollary 1. If # = {[0),[1)}, then the elements v and &1 are unique idempotents of
the semigroup End*(B7).

Next, by £35 we denote the left zero semigroup with two elements and by N, the
multiplicative semigroup of positive integers.

Proposition 2. Let .Z = {[0),[1)}. Then the semigroup End*(BZ) is isomorphic to
the direct product £35 X N,,.

Proof. Put LZy = {¢,d}. We define a map J: End*(B”) — £3, x N, by the formula

~ | (c,k), ife=ry;
(e)3 = { (d.k), if e = .

It is obvious that such defined map J is bijective, and by Theorem 2 it is a homomorph-
ism. O

Theorem 3 describes Green’s relations on the semigroup End*(Bf). Later by
End*(B7)!" we denote the semigroup End*(BZ ) with adjoined identity element.



ON THE SEMIGROUP OF NON-INJECTIVE ENDOMORPHISMS OF BZ
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mar. 2023. Bumyck 95 25

Theorem 3. Let .# = {[0),[1)}. Then the following statements hold:
(1) Yo, 2k, in End*(BY) if and only if ky = ko;

(2) Vi, Z0r, does not hold in End*(B7) for any vy, , 0, ;

(3) Ok, Z0k, in End (B if and only if ky = ky;

(4) Y, Lk, in End*(BZ) if and only if ki = ko;

(5) Vi, L0k, in End*(BY) if and only if ky = ko;

(6) Ok, L0k, in End*(BZ) if and only if ky = ko;

(7) A is the identity relation on End*(B7);

(8) e1Z¢y in End*(BY) if and only if ¢ = ¢y or there exists a positive integer k
such that ey, ea € {vi,dk};

(9) 2= ¢ in End*(BY).

Proof. (1) (=) Suppose that i, %7, in End*(BZ). Then there exist e,er €
End*(B7)! such that vk, = yr,e1 and Yk, = Yk, ¢2. The equality 7%, = yr,e1 and
Theorem 2 imply that there exists a positive integer p such that either ¢; = 7, or
¢1 = 6p. In both above cases by Theorem 2 we have that

Yk = Tha®1 = Vo Vp = V2 Op = Vhop;

and hence ks |k;. The proof of the statement that v, = i, ¢2 implies that kq |k is similar.
Therefore we get that k1 = ko.

Implication (<) is trivial.
Statement (2) follows from Theorem 2(2).
The proof of statement (3) is similar to (1).

(4) (=) Suppose that v, Lk, in End* (B ). Then there exist ¢, ¢, € End*(BZ)!
such that vx, = e17vk, and i, = eayk,. The equality %, = e17x, and Theorem 2 imply
that there exists a positive integer p such that e¢; = 7,. Then we have that

Viy = €1Vky = YpVka = Vpkas

and hence ks |k;. The proof of the statement that v, = eayg, implies that kq|ko is similar.
Therefore we get that ki = ko.

Implication (<) is trivial.

(5) (=) Suppose that vy, £y, in End* (B ). Then there exist ¢, ¢; € End*(BZ)!
such that v, = e10k, and 0, = eayk,. The equality v, = ¢10, and Theorem 2 imply
that there exists a positive integer p such that ¢; = 7,. Then we have that

Ve = el(skz = Vpakz = Ypka>
and hence kso|k;. The equality dr, = eayg, and Theorem 2 imply that there exists a
positive integer ¢ such that ¢; = J;. Then we have that

5k2 =e2Vk, = 5(1/7](51 = Yqk1»
and hence k1|k2. Thus we get that k; = ko.

Implication (<) is trivial.
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(6) (=) Suppose that 8, £0,, in End* (B ). Then there exist ¢1, ¢, € End* (B )
such that 0y, = ¢10, and 0, = e20,. The equality 6, = e16x, and Theorem 2 imply
that there exists a positive integer p such that ¢; = d,. Then we have that

Ok, = €10k, = OpOr, = Opks,

and hence ks |k1. The proof of the statement that o, = e2dy, implies that kq |k is similar.
Hence we get that k1 = ko.

Implication (<) is trivial.

(7) By statements (1), (2), and (3), & is the identity relation on the semigroup
End*(B7). Then so is ., because . C Z.

Statement (8) follows from statements (1)—(6).

(9) Suppose to the contrary that 2 # ¢ in End*(B7). Since 2 C ¢, statement
(8) implies that there exist eq,es € End*(Bf,})l such that e; _Zes and ey, e2 & {7V, 01}
for any positive integer k. Then there exist distinct positive integers k1 and ko such
that e; € {Vk,,dk,  and ez € {Vk,, 0k, }- Without loss of generality we may assume that
k1 < ko. Since ¢;_Zey there exist ¢),¢h, ¢/ ¢y € End*(BZ)" such that ¢; = ¢jeqe/
and ey = eheoel. Since e; € {Vk,,0k } and ez € {yi,, 0k, }, the equality e; = efeqef,
Theorems 1 and 2 imply that ko|ki. This contradicts the inequality k1 < ko. The
obtained contradiction implies the requested statement O

Remark 4. Since ¢ is zero of the semigroup End;(B7), the classes of equivalence
of Green’s relations of non-zero elements of Endj(BZ ) in the semigroup Endg(BZ)
coincide with their corresponding classes of equivalence in End* (Bf), and moreover we
have that

Ly, =Ry =H:, =D¢y =Jeo = {0}

in the semigroup End(B).
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BuBdeno mamiBrpymy Hein’€KTHBHAX MOHOITAIbHAX eHAOMODdi3MiB HAMIB-
rpynu B7Z 3 npoesementHomo ciM'eio F IHTYKTUBHUX HETIOPOXKHIX I IMHOXKWH
y w. Ommcano esementn Hamisrpynu Endg (Bf ) ycix HeiH’€KTUBHHX MOHO-
InaIpbHUX eHomoMOpdi3MiB HAIBrpyIH BZ . Bokpema, nosemeno, mo ii mig-
namnisrpyna End” (B z ) yCiX HeIH’€KTUBHUX HEAHY/IIOIOYUNX MOHOITAILHUX €H-
nomopdismis manisrpymu B isomopdua mpamoMy moGyTKY IBOEIEMEHTHON
HAIBrpynu 3 JIBUM HYJIBOBUM MHOXKEHHSIM 1 MY/JIbTUILTIKATUBHOI HAIIBIPY-
LY HATYpaabHUX umces. TAKOMXK omMcaHMO BigmomedHs I pina Ha Hauisrpyui
End*(BY7).
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