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We study the semigroup of non-injective monoid endomorphisms of the
semigroup BF

ω with the two-elements family F of inductive nonempty subsets
of ω. We describe the structure of elements of the semigroup End∗

0(B
F
ω )

of non-injective monoid endomorphisms of the semigroup BF
ω . In particular

we show that its subsemigroup End∗(BF
ω ) of non-injective non-annihilating

monoid endomorphisms of the semigroup BF
ω is isomorphic to the direct

product of the two-element left-zero semigroup and the multiplicative semi-
group of positive integers and describe Green's relations on End∗(BF

ω ).
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We shall follow the terminology of [1, 2, 9]. By ω we denote the set of all non-negative
integers, by N the set of all positive integers, and by Z the set of all integers.

Let P(ω) be the family of all subsets of ω. For any F ∈ P(ω) and n ∈ Z we put
n + F = {n + k : k ∈ F} if F 6= ∅ and n + ∅ = ∅. A subfamily F ⊆ P(ω) is called
ω-closed if F1 ∩ (−n+ F2) ∈ F for all n ∈ ω and F1, F2 ∈ F . For any a ∈ ω we denote
[a) = {x ∈ ω : x > a}.

A subset A of ω is said to be inductive, if i ∈ A implies i + 1 ∈ A. Obviously, ∅ is
an inductive subset of ω.

Remark 1 ([5]). (1) By Lemma 6 from [4] a nonempty subset F ⊆ ω is inductive in
ω if and only (−1 + F ) ∩ F = F .
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(2) Since the set ω with the usual order is well-ordered, for any nonempty inductive
subset F in ω there exists a nonnegative integer nF ∈ ω such that [nF ) = F .

(3) Statement (2) implies that the intersection of an arbitrary �nite family of
nonempty inductive subsets in ω is a nonempty inductive subset of ω.

A semigroup S is called inverse if for any element x ∈ S there exists a unique
x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse
of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns to
every element x of S its inverse element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order 4 on E(S): e 4 f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order 4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te.
This order is called the natural partial order on S [12].

If S is a semigroup, then we shall denote the Green relations on S by R, L , J , D
and H (see [1, Section 2.1]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;

D = L ◦R = R ◦L ;

H = L ∩R.

The L -class [R-class, H -class, D-class, J -class] of the semigroup S containing the
element a ∈ S will be denoted by La [Ra, Ha, Da, Ja].

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subjected only to the condition pq = 1. The semigroup operation on
C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a
group congruence [1].

On the set Bω = ω × ω we de�ne the semigroup operation �·� in the following way

(1) (i1, j1) · (i2, j2) =
{

(i1 − j1 + i2, j2), if j1 6 i2;
(i1, j1 − i2 + j2), if j1 > i2.

It is well known that the bicyclic monoid C (p, q) is isomorphic to the semigroup Bω

by the mapping h : C (p, q) → Bω, q
kpl 7→ (k, l), k, l ∈ ω (see: [1, Section 1.12] or [11,

Exercise IV.1.11(ii)]). Later we identify the bicyclic monoid C (p, q) with the semigroup
Bω by the mapping h.
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Next we shall describe the construction which is introduced in [4].
Let Bω be the bicyclic monoid and F be an ω-closed subfamily of P(ω). On the

set Bω ×F we de�ne the semigroup operation �·� in the following way

(2) (i1, j1, F1) · (i2, j2, F2) =

{
(i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2), if j1 6 i2;
(i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)), if j1 > i2.

In [4] is proved that if the family F ⊆P(ω) is ω-closed then (Bω×F , ·) is a semigroup.
Moreover, if an ω-closed family F ⊆ P(ω) contains the empty set ∅ then the set
I = {(i, j,∅) : i, j ∈ ω} is an ideal of the semigroup (Bω×F , ·). For any ω-closed family
F ⊆P(ω) the following semigroup

BF
ω =

{
(Bω ×F , ·)/I, if ∅ ∈ F ;
(Bω ×F , ·), if ∅ /∈ F

is de�ned in [4]. The semigroup BF
ω generalizes the bicyclic monoid and the countable

semigroup of matrix units. It is proven in [4] thatBF
ω is a combinatorial inverse semigroup

and Green's relations, the natural partial order on BF
ω and its set of idempotents are

described. Here, the criteria when the semigroup BF
ω is simple, 0-simple, bisimple, 0-

bisimple, or it has the identity, are given. In particularly in [4] it is proved that the

semigroup BF
ω is isomorphic to the semigrpoup of ω×ω-matrix units if and only if F

consists of a singleton set and the empty set, andBF
ω is isomorphic to the bicyclic monoid

if and only if F consists of a non-empty inductive subset of ω.

Group congruences on the semigroup BF
ω and its homomorphic retracts in the case

when an ω-closed family F consists of inductive non-empty subsets of ω are studied
in [5]. It is proven that a congruence C on BF

ω is a group congruence if and only if its

restriction on a subsemigroup ofBF
ω , which is isomorphic to the bicyclic semigroup, is not

the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms

of the semigroup BF
ω are described. In [6] it is proved that an injective endomorphism ε

of the semigroup BF
ω is the indentity transformation if and only if ε has three distinct

�xed points, which is equivalent to existence non-idempotent element (i, j, [p)) ∈ BF
ω

such that (i, j, [p))ε = (i, j, [p)).

In [3, 10] the algebraic structure of the semigroup BF
ω is established in the case

when ω-closed family F consists of atomic subsets of ω.

It is well-known that every automorphism of the bicyclic monoid Bω is the identity
self-map of Bω [1], and hence the group Aut(Bω) of automorphisms of Bω is trivial.
In [8] it is proved that the semigroup End(Bω) of all endomorphisms of the bicyclic
semigroup Bω is isomorphic to the semidirect products (ω,+)oϕ (ω, ∗), where + and ∗
are the usual addition and the usual multiplication on ω.

In the paper [7] we study injective endomorphisms of the semigroup BF
ω with the

two-elements family F of inductive nonempty subsets of ω. We describe the elements of
the semigroup End1

∗(B
F
ω ) of all injective monoid endomorphisms of the monoid BF

ω . In

particular we show that every element of the semigroup End1
∗(B

F
ω ) has a form either
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αk,p or βk,p, where the endomorphism αk,p is de�ned by the formulae

(i, j, [0))αk,p = (ki, kj, [0)),

(i, j, [1))αk,p = (p+ ki, p+ kj, [1)),

for an arbitrary positive integer k and any p ∈ {0, . . . , k − 1}, and the endomorphism
βk,p is de�ned by the formulae

(i, j, [0))βk,p = (ki, kj, [0)),

(i, j, [1))βk,p = (p+ ki, p+ kj, [0)),

an arbitrary positive integer k > 2 and any p ∈ {1, . . . , k − 1}. In [7] we describe the

product of elements of the semigroup End1
∗(B

F
ω ):

αk1,p1
αk2,p2

= αk1k2,p2+k2p1
;

αk1,p1βk2,p2 = βk1k2,p2+k2p1 ;

βk1,p1
βk2,p2

= βk1k2,k2p1
;

βk1,p1
αk2,p2

= βk1k2,k2p1
.

Also, here we prove that Green's relations R, L , H , D , and J on End1
∗(B

F
ω ) coincide

with the equality relation.

Later we assume that an ω-closed family F consists of two nonempty inductive
nonempty subsets of ω.

This paper is a continuation of [7]. We study non-injective monoid endomorphisms of

the semigroupBF
ω . We describe the structure of elements of the semigroupEnd∗0(B

F
ω ) of

all non-injective monoid endomorphisms of the semigroupBF
ω . In particular we show that

its subsemigroup End∗(BF
ω ) of all non-injective non-annihilating monoid endomorphi-

sms of the semigroup BF
ω is isomorphic to the direct product the two-element left-zero

semigroup and the multiplicative semigroup of positive integers and describe Green's
relations on End∗(BF

ω ).

Remark 2. By Proposition 1 of [5] for any ω-closed family F of inductive subsets in P(ω)
there exists an ω-closed family F ∗ of inductive subsets in P(ω) such that [0) ∈ F ∗ and

the semigroups BF
ω and BF∗

ω are isomorphic. Hence without loss of generality we may
assume that the family F contains the set [0).

If F is an arbitrary ω-closed family F of inductive subsets in P(ω) and [s) ∈ F
for some s ∈ ω then

B{[s)}ω = {(i, j, [s)) : i, j ∈ ω}

is a subsemigroup ofBF
ω [5] and by Proposition 3 of [4] the semigroupB{[s)}ω is isomorphic

to the bicyclic semigroup.

Lemma 1. Let F = {[0), [1)} and let e be a monoid endomorphism of the semigroup

BF
ω . If (i1, j1, F )e = (i2, j2, F )e for distinct two elements (i1, j1, F ), (i2, j2, F ) of B

F
ω for

some F ∈ F then e is the annihilating endomorphism of BF
ω .
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Proof. By Theorem 1 of [5] the image (BF
ω )e is a subgroup of BF

ω . By Theorem 4(iii)

of [4] every H -class in BF
ω is a singleton, and hence e is the annihilating monoid

endomorphism of BF
ω . �

Lemma 2. Let F = {[0), [1)}. Then (BF
ω )e ⊆ B{[0)}ω for any non-injective monoid

endomorphism e of BF
ω .

Proof. By Proposition 3 of [4] the subsemigroup B{[0)}ω of BF
ω is isomorphic to the

bicyclic semigroup and hence by Corollary 1.32 of [1] the image (B{[0)}ω )e either is

isomorphic to the bicyclic semigroup or is a cyclic subgroup of BF
ω . Since (0, 0, [0))e =

(0, 0, [0)), Proposition 4 from [5] implies that (B{[0)}ω )e ⊆ B{[0)}ω in the case when the

image (B{[0)}ω )e is isomorphic to the bicyclic semigroup. In the other case we have that
the equality (0, 0, [0))e = (0, 0, [0)) implies that

(B{[0)}ω )e ⊆ {(0, 0, [0))} ⊆ B{[0)}ω ,

because by Theorem 4(iii) of [4] every H -class in BF
ω is a singleton.

Next, by Proposition 3 of [4] the subsemigroup B{[1)}ω of BF
ω is isomorphic to

the bicyclic semigroup and hence by Corollary 1.32 of [1] the image (B{[1)}ω )e either

is isomorphic to the bicyclic semigroup or is a cyclic subgroup of BF
ω . Suppose that

the image (B{[1)}ω )e is isomorphic to the bicyclic semigroup and (B{[1)}ω )e ⊆ B{[1)}ω .

Then monoid endomorphism e of BF
ω is injective. Indeed, injectivity of the restriction

e�
B
{[1)}
ω

B{[1)}ω → B{[1)}ω , Proposition 4 of [5], Corollary 1.32 of [1], Theorem 4(iii) of [4],

and the equality (0, 0, [0))e = (0, 0, [0)) imply that either the restriction e�
B
{[0)}
ω

B{[0)}ω →
B{[0)}ω is an injective mapping or is an annihilating endomorphism. In the case when the

restriction e�
B
{[0)}
ω

B{[0)}ω → B{[0)}ω is an injective mapping we get that the endomorphi-

sm e is injective. If the image (B{[0)}ω )e is a singleton then by Lemma 1 we have that

e is the annihilating monoid endomorphism of BF
ω . In the both cases we obtain that

(BF
ω )e ⊆ B{[0)}ω . �

Example 1. Let F = {[0), [1)} and k be an arbitrary non-negative integer. We de�ne

a map γk : B
F
ω → BF

ω by the formulae

(i, j, [0))γk = (i, j, [1))γk = (ki, kj, [0))

for all i, j ∈ ω.
We claim that γk : B

F
ω → BF

ω is an endomorphism. Example 2 and Proposition 5

from [5] imply that the map γ1 : B
F
ω → BF

ω is a homomorphic retraction of the monoid

BF
ω , and hence it is a monoid endomorphism of BF

ω . By Lemma 2 of [8] every monoid
endomorphism h of the semigroup Bω has the following form

(i, j)h = (ki, kj), for some k ∈ ω.
This implies that the map γk is a monoid endomorphism of BF

ω .

Example 2. Let F = {[0), [1)} and k be an arbitrary non-negative integer. We de�ne

a map δk : B
F
ω → BF

ω by the formulae

(i, j, [0))δk = (ki, kj, [0)) and (i, j, [1))δk = (k(i+ 1), k(j + 1), [0))
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for all i, j ∈ ω.

Proposition 1. Let F = {[0), [1)}. Then for any k ∈ ω the map δk is an endomorphism

of the monoid BF
ω .

Proof. Since by Proposition 3 of [4] the subsemigroups B{[0)}ω and B{[1)}ω of BF
ω are

isomorphic to the bicyclic semigroup, by Lemma 2 of [8] the restrictions δk�B{[0)}ω
: B{[0)}ω

→ BF
ω and δk�B[1)

ω
: B{[1)}ω → BF

ω of δk are homomorphisms. Hence it su�cient to show

that the following equalities

(i1, j1, [0))δk · (i2, j2, [1))δk = ((i1, j1, [0)) · (i2, j2, [1)))δk;
(i1, j1, [1))δk · (i2, j2, [0))δk = ((i1, j1, [1)) · (i2, j2, [0)))δk,

hold for any i1, j1, i2, j2 ∈ ω.
We observe that the above equalities are trivial in the case when k = 0. Hence later

we assume that k is a positive integer.

Then we have that

(i1,j1, [0))δk · (i2, j2, [1))δk = (ki1, kj1, [0)) · (k(i2 + 1), k(j2 + 1), [0)) =

=

 (ki1+k(i2+1)−kj1, k(j2+1), (kj1−k(i2+1)+[0)) ∩ [0)), if kj1 < k(i2 + 1);
(ki1, k(j2 + 1), [0) ∩ [0)), if kj1 = k(i2 + 1);
(ki1, kj1+k(j2+1)−k(i2+1), [0) ∩ (k(i2+1)−kj1+[0))), if kj1 > k(i2 + 1)

=

 (k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2 + 1;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1

=


(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1

=


(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1,

((i1, j1, [0)) · (i2, j2, [1)))δk =

 (i1 + i2 − j1, j2, (j1 − i2 + [0)) ∩ [1))δk, if j1 < i2;
(i1, j2, [0) ∩ [1))δk, if j1 = i2;
(i1, j1 + j2 − i2, [0) ∩ (i2 − j1 + [1)))δk, if j1 > i2

=

 (i1 + i2 − j1, j2, [1))δk, if j1 < i2;
(i1, j2, [1))δk, if j1 = i2;
(i1, j1 + j2 − i2, [0))δk, if j1 > i2

=

 (k(i1 + i2 − j1 + 1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2
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=


(k(i1 + i2 − j1 + 1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j1 + j2 − i2), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1

=


(k(i1 + i2 + 1− j1), k(j2 + 1), [0)), if j1 < i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(ki1, k(j2 + 1), [0)), if j1 = i2 + 1;
(ki1, k(j1 + j2 − i2), [0)), if j1 > i2 + 1,

and

(i1, j1,[1))δk · (i2, j2, [0))δk = (k(i1 + 1), k(j1 + 1), [0)) · (ki2, kj2, [0)) =

=

 (k(i1+1)+ki2−k(j1+1), kj2, (k(j1+1)−ki2+[0)) ∩ [0)), if k(j1 + 1) < ki2;
(k(i1 + 1), kj2, [0) ∩ [0)), if k(j1 + 1) = ki2;
(k(i1+1), k(j1+1)+kj2−ki2, [0) ∩ (ki2−k(j1+1)+[0))), if k(j1 + 1) > ki2

=

 (k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j1 + 1 + j2 − i2), [0)), if j1 + 1 > i2

=


(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j1 + 1 + j2 − i2), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + 1 + j2 − i2), [0)), if j1 + 1 > i2

=


(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + j2 − i2 + 1), [0)), if j1 > i2,

((i1, j1, [1)) · (i2, j2, [0)))δk =

 (i1 + i2 − j1, j2, (j1 − i2 + [1)) ∩ [0))δk, if j1 < i2;
(i1, j2, [1) ∩ [0))δk, if j1 = i2;
(i1, j1 + j2 − i2, [1) ∩ (i2 − j1 + [0)))δk, if j1 > i2

=

 (i1 + i2 − j1, j2, [0))δk, if j1 < i2;
(i1, j2, [1))δk, if j1 = i2;
(i1, j1 + j2 − i2, [1))δk, if j1 > i2

=


(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + j2 − i2 + 1), [0)), if j1 > i2

=


(k(i1 + i2 − j1), kj2, [0)), if j1 + 1 < i2;
(k(i1 + 1), kj2, [0)), if j1 + 1 = i2;
(k(i1 + 1), k(j2 + 1), [0)), if j1 = i2;
(k(i1 + 1), k(j1 + j2 − i2 + 1), [0)), if j1 > i2.

This completes the proof of the statement of the proposition. �
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Remark 3. It obvious that if e is the annihilating endomorphism of the monoid BF
ω then

e = γ0 = δ0.

By End∗0(B
F
ω ) we denote the semigroup of all non-injective monoid endomorphisms

of the monoid BF
ω for the family F = {[0), [1)}.

Theorems 1 and 2 describe the algebraic structure of the semigroup End∗0(B
F
ω ).

Theorem 1. If F = {[0), [1)}, then for any non-injective monoid endomorphism e of

the monoid BF
ω only one of the following conditions holds:

(1) e is the annihilating endomorphism, i.e., e = γ0 = δ0;
(2) e = γk for some positive integer k;
(3) e = δk for some positive integer k.

Proof. Fix an arbitrary non-injective monoid endomorphism e of the monoid BF
ω . If e

is the annihilating endomorphism then statement (1) holds. Hence, later we assume that
the endomorphism e is not annihilating.

By Lemma 1 the restriction e�
B
{[0)}
ω

B{[0)}ω → BF
ω of the endomorphism e is an

injective mapping. Since by Proposition 3 of [4] the subsemigroup B{[0)}ω of BF
ω are

isomorphic to the bicyclic semigroup, the injectivity of the restriction e�
B
{[0)}
ω

of the

endomorphism e, Proposition 4 of [5], and Lemma 2 of [8] imply that there exists a
positive integer k such that

(3) (i, j, [0))e = (ki, kj, [0)),

for all i, j ∈ ω.
By Lemma 1 the restriction e�

B
{[1)}
ω

B{[1)}ω → BF
ω of the endomorphism e is an

injective mapping, and by Lemma 2 we have that (B{[1)}ω )e ⊆ B{[0)}ω . By Propositi-
on 1.4.21(6) of [9] a homomorphism of inverse semigroups preserves the natural partial
order, and hence the following inequalities

(1, 1, [0)) 4 (0, 0, [1)) 4 (0, 0, [0)),

Lemma 2, and Propositions 2 of [5] imply that

(k, k, [0)) = (1, 1, [0))e 4

4 (s, s, [0)) =

= (0, 0, [1))e 4

4 (0, 0, [0)) =

= (0, 0, [0))e

for some s ∈ {0, 1, . . . , k}. Again by Proposition 1.4.21(6) of [9] and by Lemma 2 we get
that

(1, 1, [1))e = (s+ p, s+ p, [0))

for some non-negative integer p. If p = 0 then (1, 1, [1))e = (0, 0, [1))e. By Lemma 1 the
endomorphism e is annihilating. Hence we assume that p is a positive integer.
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Let (0, 1, [1))e = (x, y, [0)) for some x, y ∈ ω. By Proposition 1.4.21(1) of [9] and
Lemma 4 of [4] we have that

(1, 0, [1))e = ((0, 1, [1))−1)e =

= ((0, 1, [1))e)−1 =

= (x, y, [0))−1 =

= (y, x, [0)).

Since

(0, 1, [1)) · (1, 0, [1)) = (0, 0, [1)) and (1, 0, [1)) · (0, 1, [1)) = (1, 1, [1)),

the equalities (0, 0, [1))e = (s, s, [0)) and (1, 1, [1))e = (s+ p, s+ p, [0)) imply that

(s, s, [0)) = (0, 0, [1))e =

= ((0, 1, [1)) · (1, 0, [1)))e =
= (0, 1, [1))e · (1, 0, [1))e =
= (x, y, [0)) · (y, x, [0)) =
= (x, x, [0))

and

(s+ p, s+ p, [0)) = (1, 1, [1))e =

= ((1, 0, [1)) · (0, 1, [1)))e =
= (1, 0, [1))e · (0, 1, [1))e =
= (y, x, [0)) · (x, y, [0)) =
= (y, y, [0)).

This and the de�nition of the semigroup BF
ω imply that

(0, 1, [1))e = (s, s+ p, [0)) and (1, 0, [1))e = (s+ p, s, [0)).

Then for any positive integers n1 and n2 by usual calculations we get that

(0, n1, [1))e = ((0, 1, [1)) · . . . · (0, 1, [1))︸ ︷︷ ︸
n1-times

)e =

= (0, 1, [1))e · . . . · (0, 1, [1))e︸ ︷︷ ︸
n1-times

=

= (s, s+ p, [0))n1 =

= (s, s+ n1p, [0))

and

(n2, 0, [1))e = ((1, 0, [1)) · . . . · (1, 0, [1))︸ ︷︷ ︸
n2-times

)e =

= (1, 0, [1))e · . . . · (1, 0, [1))e︸ ︷︷ ︸
n2-times

=
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= (s+ p, s, [0))n2 =

= (s+ n2p, s, [0)),

and hence

(4) (n1, n2, [1))e = (s+ n1p, s+ n2p, [0)).

The de�nition of the natural partial order on the semigroup BF
ω (see Proposition 4

of [5]) imply that for any positive integer m we have that

(m+ 1,m+ 1, [0)) 4 (m,m, [1)) 4 (m,m, [0)).

Then by equalities (3), (4), and Proposition 1.4.21(6) of [9] we obtain that

(k(m+ 1), k(m+ 1), [0)) = (m+ 1,m+ 1, [0))e 4

4 (s+ pm, s+ pm, [0)) =

= (m,m, [1))e 4

4 (m,m, [0))e =

= (km, km, [0)).

The above inequalities and the de�nition of the natural partial order on the semigroup
BF

ω (see Proposition 4 of [5]) imply that km 6 s+pm 6 k(m+1) for any positive integer
m. This implies that

k 6
s

m
+ p 6 k +

1

m
,

and since p is a positive integer we get that p = k. Hence by (4) we get that

(5) (n1, n2, [1))e = (s+ n1k, s+ n2k, [0)),

for all n1, n2 ∈ ω.
It is obvious that if s ∈ {1, . . . , k − 1} then e is an injective monoid endomorphism

of the semigroup. Hence we have that either s = 0 or s = k, Simple veri�cations show
that

e =

{
γk, if s = 0;
δk, if s = k.

This completes the proof of the theorem. �

Theorem 2. Let F = {[0), [1)}. Then for all positive integers k1 and k2 the following

conditions hold:

(1) γk1γk2 = γk1k2 ;

(2) γk1δk2 = γk1k2 ;

(3) δk1
γk2

= δk1k2
;

(4) δk1
δk2

= δk1k2
.

Proof. (1) For any i, j ∈ ω we have that

(i, j, [0))γk1
γk2

= (k1i, k1j, [0))γk2
=

= (k1k2i, k1k2j, [0)),

and (i, j, [1))γk1
= (i, j, [0))γk1

. This implies that γk1
γk2

= γk1k2
.
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(2) Since

(i, j, [0))γk1
δk2

= (k1i, k1j, [0))δk2
=

= (k1k2i, k1k2j, [0)),

and (i, j, [1))γk1
= (i, j, [0))γk1

for all i, j ∈ ω, we get that γk1
δk2

= γk1k2
.

(3) For any i, j ∈ ω we have that

(i, j, [0))δk1
γk2

= (k1i, k1j, [0))γk2
=

= (k1k2i, k1k2j, [0)),

and

(i, j, [1))δk1
γk2

= (k1(i+ 1), k1(j + 1), [0))γk2
=

= (k1k2(i+ 1), k1k2(j + 1), [0)),

and hence δk1γk2 = δk1k2 .

(4) For any i, j ∈ ω we have that

(i, j, [0))δk1δk2 = (k1i, k1j, [0))δk2 =

= (k1k2i, k1k2j, [0)),

and

(i, j, [1))δk1
δk2

= (k1(i+ 1), k1(j + 1), [0))δk2
=

= (k1k2(i+ 1), k1k2(j + 1), [0)),

and hence δk1δk2 = δk1k2 . �

By e0 we denote the annihilating monoid endomorphism of the monoid BF
ω for the

family F = {[0), [1)}, i.e., (i, j, [p))e0 = (0, 0, [0)) for all i, j ∈ ω and p = 0, 1. We put

End∗(BF
ω ) = End∗0(B

F
ω )\{e0}. Theorem 2 implies that End∗(BF

ω ) is a subsemigroup

of End∗0(B
F
ω ).

Theorem 2 implies the following corollary.

Corollary 1. If F = {[0), [1)}, then the elements γ1 and δ1 are unique idempotents of

the semigroup End∗(BF
ω ).

Next, by LZ2 we denote the left zero semigroup with two elements and by Nu the
multiplicative semigroup of positive integers.

Proposition 2. Let F = {[0), [1)}. Then the semigroup End∗(BF
ω ) is isomorphic to

the direct product LZ2 × Nu.

Proof. Put LZ2 = {c, d}. We de�ne a map I : End∗(BF
ω )→ LZ2 × Nu by the formula

(e)I =

{
(c, k), if e = γk;
(d, k), if e = δk.

It is obvious that such de�ned map I is bijective, and by Theorem 2 it is a homomorph-
ism. �

Theorem 3 describes Green's relations on the semigroup End∗(BF
ω ). Later by

End∗(BF
ω )1 we denote the semigroup End∗(BF

ω ) with adjoined identity element.
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Theorem 3. Let F = {[0), [1)}. Then the following statements hold:

(1) γk1Rγk2 in End∗(BF
ω ) if and only if k1 = k2;

(2) γk1
Rδk2

does not hold in End∗(BF
ω ) for any γk1

, δk2
;

(3) δk1
Rδk2

in End∗(BF
ω ) if and only if k1 = k2;

(4) γk1
L γk2

in End∗(BF
ω ) if and only if k1 = k2;

(5) γk1
L δk2

in End∗(BF
ω ) if and only if k1 = k2;

(6) δk1
L δk2

in End∗(BF
ω ) if and only if k1 = k2;

(7) H is the identity relation on End∗(BF
ω );

(8) e1De2 in End∗(BF
ω ) if and only if e1 = e2 or there exists a positive integer k

such that e1, e2 ∈ {γk, δk};
(9) D = J in End∗(BF

ω ).

Proof. (1) (⇒) Suppose that γk1Rγk2 in End∗(BF
ω ). Then there exist e1, e2 ∈

End∗(BF
ω )1 such that γk1

= γk2
e1 and γk2

= γk1
e2. The equality γk1

= γk2
e1 and

Theorem 2 imply that there exists a positive integer p such that either e1 = γp or
e1 = δp. In both above cases by Theorem 2 we have that

γk1 = γk2e1 = γk2γp = γk2δp = γk2p,

and hence k2|k1. The proof of the statement that γk2
= γk1

e2 implies that k1|k2 is similar.
Therefore we get that k1 = k2.

Implication (⇐) is trivial.

Statement (2) follows from Theorem 2(2).

The proof of statement (3) is similar to (1).

(4) (⇒) Suppose that γk1L γk2 inEnd∗(BF
ω ). Then there exist e1, e2 ∈ End∗(BF

ω )1

such that γk1
= e1γk2

and γk2
= e2γk1

. The equality γk1
= e1γk2

and Theorem 2 imply
that there exists a positive integer p such that e1 = γp. Then we have that

γk1 = e1γk2 = γpγk2 = γpk2 ,

and hence k2|k1. The proof of the statement that γk2
= e2γk1

implies that k1|k2 is similar.
Therefore we get that k1 = k2.

Implication (⇐) is trivial.

(5) (⇒) Suppose that γk1
L δk2

inEnd∗(BF
ω ). Then there exist e1, e2 ∈ End∗(BF

ω )1

such that γk1
= e1δk2

and δk2
= e2γk1

. The equality γk1
= e1δk2

and Theorem 2 imply
that there exists a positive integer p such that e1 = γp. Then we have that

γk1
= e1δk2

= γpδk2
= γpk2

,

and hence k2|k1. The equality δk2 = e2γk1 and Theorem 2 imply that there exists a
positive integer q such that e1 = δq. Then we have that

δk2
= e2γk1

= δqγk1
= γqk1

,

and hence k1|k2. Thus we get that k1 = k2.

Implication (⇐) is trivial.
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(6) (⇒) Suppose that δk1L δk2 inEnd∗(BF
ω ). Then there exist e1, e2 ∈ End∗(BF

ω )1

such that δk1 = e1δk2 and δk2 = e2δk1 . The equality δk1 = e1δk2 and Theorem 2 imply
that there exists a positive integer p such that e1 = δp. Then we have that

δk1
= e1δk2

= δpδk2
= δpk2

,

and hence k2|k1. The proof of the statement that δk2 = e2δk1 implies that k1|k2 is similar.
Hence we get that k1 = k2.

Implication (⇐) is trivial.

(7) By statements (1), (2), and (3), R is the identity relation on the semigroup

End∗(BF
ω ). Then so is H , because H ⊆ R.

Statement (8) follows from statements (1)�(6).

(9) Suppose to the contrary that D 6= J in End∗(BF
ω ). Since D ⊆J , statement

(8) implies that there exist e1, e2 ∈ End∗(BF
ω )1 such that e1J e2 and e1, e2 /∈ {γk, δk}

for any positive integer k. Then there exist distinct positive integers k1 and k2 such
that e1 ∈ {γk1

, δk1
} and e2 ∈ {γk2

, δk2
}. Without loss of generality we may assume that

k1 < k2. Since e1J e2 there exist e′1, e
′
2, e
′′
1 , e
′′
2 ∈ End∗(BF

ω )1 such that e1 = e′1e2e
′′
1

and e2 = e′2e2e
′′
2 . Since e1 ∈ {γk1 , δk1} and e2 ∈ {γk2 , δk2}, the equality e1 = e′1e2e

′′
1 ,

Theorems 1 and 2 imply that k2|k1. This contradicts the inequality k1 < k2. The
obtained contradiction implies the requested statement �

Remark 4. Since e0 is zero of the semigroup End∗0(B
F
ω ), the classes of equivalence

of Green's relations of non-zero elements of End∗0(B
F
ω ) in the semigroup End∗0(B

F
ω )

coincide with their corresponding classes of equivalence in End∗(BF
ω ), and moreover we

have that

Le0 = Re0 = He0 = De0 = Je0 = {e0}
in the semigroup End∗0(B

F
ω ).
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Âèâ÷åíî íàïiâãðóïó íåií'¹êòèâíèõ ìîíî¨äàëüíèõ åíäîìîðôiçìiâ íàïiâ-
ãðóïè BF

ω ç äâîåëåìåíòíîþ ñiì'¹þ F iíäóêòèâíèõ íåïîðîæíiõ ïiäìíîæèí
ó ω. Îïèñàíî åëåìåíòè íàïiâãðóïè End∗

0(B
F
ω ) óñiõ íåií'¹êòèâíèõ ìîíî-

¨äàëüíèõ åíîäîìîðôiçìiâ íàïiâãðóïè BF
ω . Çîêðåìà, äîâåäåíî, ùî ¨¨ ïiä-

íàïiâãðóïà End∗(BF
ω ) óñiõ íåií'¹êòèâíèõ íåàíóëþþ÷èõ ìîíî¨äàëüíèõ åí-

äîìîðôiçìiâ íàïiâãðóïè BF
ω içîìîðôíà ïðÿìîìó äîáóòêó äâîåëåìåíòíî¨

íàïiâãðóïè ç ëiâèì íóëüîâèì ìíîæåííÿì i ìóëüòèïëiêàòèâíî¨ íàïiâãðó-
ïè íàòóðàëüíèõ ÷èñåë. Òàêîæ îïèñàíìî âiäíîøåííÿ �ðiíà íà íàïiâãðóïi
End∗(BF

ω ).
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