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1. Introduction

Let (M,6) be a partially ordered set. A transformation ϕ : M → M (generally
speaking, partial) is called order-decreasing if for any a from the domain of the
transformation ϕ the inequality ϕ(a) 6 a holds. The set of all partially de�ned
order-decreasing transformations of the set (M,6) is denoted by PDecr(M,6), and
all everywhere de�ned order-decreasing transformations are denoted by Decr(M,6). If
it is clear which partial order is being referred to, we will simply write PDecr(M) and
Decr(M).

Each of these sets forms a semigroup with respect to the composition of transformati-
ons.

Sometimes (for example, when studying nilpotent semigroups, see [4], [3], [5]) it is
convenient to consider semigroups of strictly order-decreasing transformations ϕ, which
for any a from the domain satisfy the inequality ϕ(a) < a. For a �nite set (M,6), such
a transformation will always be only partially de�ned. The corresponding subsemigroup
from PDecr(M) will be denoted PSDecr(M).

Instead of order-decreasing transformations, one can also study the dual concept of
order-increasing transformations ϕ : M → M such that for all a ∈ M the inequality
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ϕ(a) > a holds. They form the semigroups Incr(M) and PIncr(M) with respect to the
composition of transformations. If the partial order 6 is self-dual (as in many important
cases), then these semigroups will be isomorphic to the corresponding semigroups of
order-decreasing transformations.

The semigroup Decr(Ln) of all order-decreasing transformations of an n-element
linearly ordered set Ln �rst appears, perhaps, in [13] in connection with the study of
formal languages. In 1992, Howie [8] drew attention to the importance of studying semi-
groups of order-decreasing transformations. Deeper study of the semigroups PDecr(Ln)
and Decr(Ln) began in the 1990s in the works of Umar [15, 16, 17]. Later, the combi-
natorial properties of some other semigroups of order-decreasing transformations were
studied by A. Laradji and A. Umar [10].

Currently, there are several dozen works in which the semigroups of order-decreasing
transformations of the set Ln and some of their special subsemigroups are studied (see,
for example, [18], [19], [10], [11], [9] and the bibliography in [4]). However, semigroups of
order-decreasing transformations of other partially ordered sets have been little studied
so far ([6], [14], [12]).

The symbol N denotes the set 1, 2, . . . , n, and Bn denotes the set of all subsets of
the set N, ordered by the inclusion relation.

2. Semigroups of order-decreasing transformations of some

partially ordered sets

The lower cone of an element a in a partially ordered set (M,6) is de�ned as the
set a4 = {x ∈M | x 6 a}.

The proposition directly follows from the de�nitions.

Proposition 1. For a �nite partially ordered set (M,6),

|Decr(M)| = |PSDecr(M)| =
∏
a∈M
|a4|,

|PDecr(M)| =
∏
a∈M

(|a4|+ 1).

Proposition 2 ([15]). For an n-element linearly ordered set Ln,

|DecrLn| = n!, |PDecrLn| = (n+ 1)! .

Proposition 3. a) For a 3-generated free modular lattice FM (3),

|DecrFM (3)| = 28 · 223 · 183 · 15 · 123 · 103 · 8 · 63 · 53 · 43 · 23 =

= 113 · 7 · 57 · 313 · 232 = 4984278472584069120000000.

b) For a 3-generated free distributive lattice FD(3),

|DecrFD(3)| = 20 · 19 · 143 · 113 · 9 · 63 · 53 · 33 · 2 =

= 19 · 113 · 73 · 54 · 38 · 29 = 18211503119040000.

Proof. The Hasse diagrams of the 3-generated free modular lattice FM (3) and the distri-
butive lattice FD(3), are as follows, respectively:
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(see [7]). The proposition follows directly from the appearance of these diagrams and
Proposition 4. �

Theorem 1. a) |DecrBn| = 2n·2
n−1

;

b) |PDecrBn| =
n∏

k=0

(2k + 1)(
n
k).

Proof. a) For a k-element subset A ∈ Bn, the lower cone A4 has a size of 2k. Therefore,
according to Proposition 4,

|DecrBn| =
n∏

k=0

(2k)(
n
k) = 2

∑
k k(n

k) = 2n
∑

k (n−1
k−1) = 2n·2

n−1

.

Statement b) Follows from Proposition 4. �

Let L(n, q) denote the set of all subspaces of the n-dimensional vector space Fn
q

over the q-element �nite �eld Fq, ordered by the inclusion relation. The Gaussian bi-
nomial coe�cient

(
n
k

)
q
(is referred to as the Gauss number) is the number of all k-

dimensional subspaces of an n-dimensional vector space over the �eld Fq. The number
Gn(q), representing all subspaces of an n-dimensional space over the �eld Fq, is referred
to as the Galois number.

Theorem 2. For the set ordered by inclusion, L(n, q)

|DecrL(n, q)| =
n∏

k=0

(Gk(q))
(n
k)

q =

n∏
k=0

( k∑
i=0

(
k

i

)
q

)(n
k)

q
.

Proof. It follows from Proposition 4 since the lower cone of a k-dimensional subspace
from L(n, q) contains

(
n
k

)
q
elements. �

There is a natural one-to-one correspondence between the partitions of the set N

and the equivalence relations on the set N. The set Eqn of all equivalence relations on the
set N is naturally ordered by the inclusion relation. This order induces an order relation
on the set Partn of partitions of the set N.

A partition τ is said to have type 〈l1, l2, . . . , ln〉 if it contains l1 blocks of length 1,
l2 blocks of length 2, . . . , ln blocks of length n. Obviously,

l1 + 2l2 + · · ·+ nln = n.
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It is easy to understand that the number P (l1, l2, . . . , ln) of partitions of the set N of type
〈l1, l2, . . . , ln〉 is equal to

(1) P (l1, l2, . . . , ln) =
n!

(1!)l1(2!)l2 · · · (n!)ln l1!l2! · · · ln!
.

Theorem 3. For the lattice of partitions Partn,

|DecrPartn| =
∏

l1+2l2+···+nln=n

P (l1, l2, . . . , ln)Bl1
1 B

l2
2 · · ·Bln

n ,

where Bk is the k-th Bell number.

Proof. It is evident that when two partitions have the same type, their lower cones are
of equal power. Let's consider the structure of the lower cone of a partition ρ of type
〈l1, l2, . . . , ln〉. If a partition τ belongs to the lower cone ρ4, then each block of the
partition τ is contained in one of the blocks of the partition ρ. Therefore, the partition
τ induces on each block M of the partition ρ a certain partition τM . The set of these
induced partitions can be viewed as an element of the set

Partl11 × · · · × Partlnn .

Conversely, each element from Partl11 ×· · ·×Part
ln
n can be considered as a set of partitions

of the blocks of the partition ρ, that is, as a partition of the set N belonging to the lower
cone ρ4. Therefore,

ρ4 ' Partl11 × · · · × Partlnn , and |ρ4| = |Part1|l1 · · · |Partn|ln .
The proof is completed by referring to Proposition 4 and noting that the number of
partitions of a k-element set is the k-th Bell number Bk. �

For any group G, let L(G) denote the lattice of its subgroups ordered by inclusion.
For a subgroup H 6 G, let L(H,G) denote the lattice {Q ∈ L(G) | H 6 Q} of its
overgroups.

Recall that according to the Fricke-Klein Theorem (see [2]), each subgroup H of
the direct product of groups P ×Q is uniquely determined by 5 parameters: subgroups
A1 � A 6 P , B1 � B 6 Q such that A/A1 ' B/B1, and an isomorphism Φ : A/A1 →
B/B1. Here,

H = {(a, b) ∈ A×B | Φ(a) = b},
where x denotes the corresponding element of the quotient group. The subgroup H with
parameters (A,A1, B,B1,Φ) is denoted by

A/A1 ×
Φ
B/B1.

Remark 1. From the Fricke-Klein theorem, it follows that

|A/A1 ×
Φ
B/B1| = |A1| · |B1| · |A/A1|.

Proposition 4. For any natural numbers r, s, and a prime number p,

(2) |L(Cpr × Cps)| =
min(r,s)∑

k=0

(r − k + 1)(s− k + 1)ϕ(pk),

where ϕ(pk) is the Euler's function.
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Proof. Every subsemigroup H of Cpr × Cps is determined by 5 parameters: subsemi-
groups

A1 6 A 6 Cpr , B1 6 B 6 Cps

such that |A/A1| = |B/B1|, and an isomorphism Φ : A/A1 → B/B1. If

|A/A1| = |B/B1| = pk,

then the exponent k can be any integer in [0,min(r, s)], the pair A1 6 A 6 Cpr can be
chosen in r − k + 1 ways, the pair

B1 6 B 6 Cps

in s− k + 1 ways, and the cyclic group Cpk has ϕ(pk) automorphisms. �

Let's denote the right-hand side of the equality (2) as Np(r, s).

Lemma 1. Let a subgroup H of

Cpn × Cpm

be de�ned by the parameters (A,A1, B,B1,Φ), where

A ' Cpr , A1 ' Cpr′ , B ' Cpt , B1 ' Cpt′ ,

and n > r > r′, m > t > t′. Then

H ' Cpmax(r,t) × Cpmin(r′,t′) .

Proof. As a subgroup of a 2-generated abelian group, H must have a generating set with
6 2 elements. Therefore,

H ' Cpk × Cpl for some k > l > 0.

In particular, the maximum order of an element in H equals pk. On the other hand, as
a subgroup of

A×B ' Cpr × Cpt ,

H cannot have elements of an order greater than pmax(r,t). However, since the projection
of H onto each of the factors A and B coincides with these factors, it follows that the
subgroup H does have an element of order pmax(r,t). Therefore, k = max(r, t).

Furthermore, from Remark 1 and the equality r − r′ = t− t′, it follows that

H = pmax(r,t) · pmin(r′,t′).

Hence, l must coincide with min(r′, t′). �

Remark 2. From the equality r− r′ = t− t′, it follows that the subgroup H from Lemma
1 is uniquely determined by 4 independent parameters r, t, v = r − r′ = t− t′, and Φ.

Theorem 4. For the lattice of subgroups L(Cpn ×Cpm) of the group Cpn ×Cpm ordered
by inclusion

|DecrL(Cpn × Cpm)| =
∑
r6n

∑
t6m

∑
v6min r,t

ϕ(pv)Np(max(r, t),min(r, t)− v).
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Proof. From Lemma 1, it follows that a subgroup H 6 Cpn ×Cpm with parameters r, t,
v, Φ is isomorphic to the group

Cpmax(r,t) × Cpmin(r,t)−v .

Therefore, the type of subgroup H is completely determined by the �rst three parameters
r, t, v, and the number of subgroups with such parameters equals ϕ(pv). According to
Proposition 4, the lower cone H4 of the subgroup H with parameters r, t, v has a
cardinality of

Np(max(r, t),min(r, t)− v).

The statement of the theorem now follows from Proposition 4 and the fact that r 6 n,
t 6 m, and v 6 min(r, t). �

Remark 3. Unlike the Klein-Fricke Theorem, a good description of subgroups for the
direct product of more than two factors is still unknown. Therefore, the question about
the order of the semigroup Decr,L(G), even for the group

G = Cpn × Cpm × Cpk ,

remains open.

3. Connection with operations over partially ordered sets

Theorem 5. For the lexicographic product M1 ◦M2 of partially ordered sets M1 and M2

|Decr (M1 ◦M2)| =
∏

a∈M1, b∈B2

(
|b4|+ (|a4| − 1)|M2|

)
.

Proof. For elements (a, b) and (x, y) from M1 ◦M2, the inequality (a, b) > (x, y) holds if
and only if either a = x and b > y (there are |b4| such elements (x, y)), or a > x (there
are (|a4| − 1)|M2| such elements (x, y)). Therefore,

|(a, b)4 = |b4|+ (|a4| − 1)|M2|.
The statement of the theorem follows from Proposition 4. �

Corollary 1. For the lexicographic product

Ln1 ◦ Ln2 ◦ · · · ◦ Lnk

of linearly ordered sets Ln1
, Ln2

, . . . , Lnk

|Decr (Ln1 ◦ Ln2 ◦ · · · ◦ Lnk
)| = (n1n2 · · ·nk)!.

Theorem 6. For the direct product M1 ×M2 of partially ordered sets M1 and M2

|Decr (M1 ×M2)| = |DecrM1||M2||DecrM2||M1|.

Proof. Since |(a, b)4| = |a4| · |b4| for (a, b) ∈ M1 ×M2, according to the Proposition 4
we get that

|Decr (M1 ×M2)| =
∏

(a,b)∈M1×M2

|(a, b)4| =
∏

a∈M1, b∈M2

|a4| · |b4| =

=
∏

a∈M1, b∈M2

|a4|
∏

a∈M1, b∈M2

|b4| = | DecrM1||M2| · |DecrM2||M1|.
�
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Corollary 2. For the direct product M1×· · ·×Mk of partially ordered sets M1, . . . , Mk

|Decr (M1 × · · · ×Mk| =
k∏

i=1

|DecrMi|
∏
j 6=i

|Mj |
.

Corollary 3. For the direct product

Ln1 × Ln2 × · · · × Lnk

of linearly ordered sets Ln1
, Ln2

, . . . , Lnk

|Decr (Ln2
× · · · × Lnk

)| = (n1!)n2···nk · (n2!)n1n3···nk · (nk!)n1···nk−1 .

Corollary 4. If the group G decomposes into the direct product G = H1 × · · · ×Hk of
subgroups H1, . . . , Hk of pairwise coprime orders, then

|DecrL(G)| =
k∏

i=1

|DecrL(Hi)|
∏
j 6=i

|L(Hj)|
.

Äîâåäåííÿ. [Proof ] From the Fricke-Klein theorem, it follows that when the orders of
subgroups A and B are coprime, each subgroup H from A×B decomposes into the direct
product H = A1 × B1 of subgroup A1 from A and subgroup B1 from B. Therefore, the
lattice L(G) decomposes into the direct product L(G) = L(H1)× · · · ×L(Hk) of lattices
L(H1), . . ., L(Hk). �

For any prime number p and a group G, Sylp(G) denotes the Sylow p-subgroup of
the group G.

Corollary 5. If for each prime number p the group G contains a unique Sylow p-subgroup
(in particular, if G is abelian), then

|DecrL(G)| =
∏
p||G|

|DecrL(Sylp(G))|
∏
q 6=p

|Sylq(G)|
.

Proof. This follows from Corollary 4, since such a group decomposes into the direct
product of its Sylow subgroups. �

Corollary 6. For a cyclic group

Cp
n1
1 ···p

nk
k
,

we have

|DecrL(G)| = (n1 + 1)!n2···nk · (n2 + 1)!n1n3···nk · (nk + 1)!n1···nk−1 .

Proof. This follows from Proposition 2 and Corollary 5, since the Sylow pi-subgroup of
the group

Cp
n1
1 ···p

nk
k

is the group Cp
ni
i
, the lattice of subgroups of which is linearly ordered and has (ni + 1)

elements. �
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