FINITE SEMIGROUPS OF ORDERED-DECREASING TRANSFORMATIONS

Dmytro BEZUSHCHAK
Taras Shevchenko National University of Kyiv, Volodymyrska, 60, 01033, Kyiv, UKRAINE
e-mail: bezushchak@gmail.com

Abstract

We study semigroups of partially defined order-decreasing transformations of partially ordered sets and semigroups of partially defined order-decreasing transformations of the lexicographic and direct product of partially ordered sets.

Key words: semigroup, partially defined transformation, order-decreasing transformation, lexicographic product, direct product.

1. Introduction

Let (M, \leqslant) be a partially ordered set. A transformation $\varphi: M \rightarrow M$ (generally speaking, partial) is called order-decreasing if for any a from the domain of the transformation φ the inequality $\varphi(a) \leqslant a$ holds. The set of all partially defined order-decreasing transformations of the set (M, \leqslant) is denoted by $\operatorname{PDecr}(M, \leqslant)$, and all everywhere defined order-decreasing transformations are denoted by $\operatorname{Decr}(M, \leqslant)$. If it is clear which partial order is being referred to, we will simply write $\operatorname{PDecr}(M)$ and $\operatorname{Decr}(M)$.

Each of these sets forms a semigroup with respect to the composition of transformations.

Sometimes (for example, when studying nilpotent semigroups, see [4], [3], [5]) it is convenient to consider semigroups of strictly order-decreasing transformations φ, which for any a from the domain satisfy the inequality $\varphi(a)<a$. For a finite set (M, \leqslant), such a transformation will always be only partially defined. The corresponding subsemigroup from $\operatorname{PDecr}(M)$ will be denoted $\operatorname{PSDecr}(M)$.

Instead of order-decreasing transformations, one can also study the dual concept of order-increasing transformations $\varphi: M \rightarrow M$ such that for all $a \in M$ the inequality

[^0]© Bezushchak, D., 2023
$\varphi(a) \geqslant a$ holds. They form the semigroups $\operatorname{Incr}(M)$ and $\operatorname{PIncr}(M)$ with respect to the composition of transformations. If the partial order \leqslant is self-dual (as in many important cases), then these semigroups will be isomorphic to the corresponding semigroups of order-decreasing transformations.

The semigroup $\operatorname{Decr}\left(L_{n}\right)$ of all order-decreasing transformations of an n-element linearly ordered set L_{n} first appears, perhaps, in [13] in connection with the study of formal languages. In 1992, Howie [8] drew attention to the importance of studying semigroups of order-decreasing transformations. Deeper study of the semigroups PDecr $\left(L_{n}\right)$ and $\operatorname{Decr}\left(L_{n}\right)$ began in the 1990s in the works of Umar [15, 16, 17]. Later, the combinatorial properties of some other semigroups of order-decreasing transformations were studied by A. Laradji and A. Umar [10].

Currently, there are several dozen works in which the semigroups of order-decreasing transformations of the set L_{n} and some of their special subsemigroups are studied (see, for example, [18], [19], [10], [11], [9] and the bibliography in [4]). However, semigroups of order-decreasing transformations of other partially ordered sets have been little studied so far ([6], [14], [12]).

The symbol N denotes the set $1,2, \ldots, n$, and \mathfrak{B}_{n} denotes the set of all subsets of the set N , ordered by the inclusion relation.

2. SEMIGROUPS OF ORDER-DECREASING TRANSFORMATIONS OF SOME PARTIALLY ORDERED SETS

The lower cone of an element a in a partially ordered set (M, \leqslant) is defined as the set $a_{\triangle}=\{x \in M \mid x \leqslant a\}$.

The proposition directly follows from the definitions.
Proposition 1. For a finite partially ordered set (M, \leqslant),

$$
\begin{gathered}
|\operatorname{Decr}(M)|=|\operatorname{PSDecr}(M)|=\prod_{a \in M}\left|a_{\Delta}\right|, \\
|\operatorname{PDecr}(M)|=\prod_{a \in M}\left(\left|a_{\Delta}\right|+1\right) .
\end{gathered}
$$

Proposition 2 ([15]). For an n-element linearly ordered set L_{n},

$$
\left|\operatorname{Decr} L_{n}\right|=n!, \quad\left|\operatorname{PDecr} L_{n}\right|=(n+1)!.
$$

Proposition 3. a) For a 3-generated free modular lattice $F_{M}(3)$,

$$
\begin{aligned}
& \mid \text { Decr } F_{M}(3) \mid=28 \cdot 22^{3} \cdot 18^{3} \cdot 15 \cdot 12^{3} \cdot 10^{3} \cdot 8 \cdot 6^{3} \cdot 5^{3} \cdot 4^{3} \cdot 2^{3}= \\
& \quad=11^{3} \cdot 7 \cdot 5^{7} \cdot 3^{13} \cdot 2^{32}=4984278472584069120000000 .
\end{aligned}
$$

b) For a 3-generated free distributive lattice $F_{D}(3)$,

$$
\begin{gathered}
\left|\operatorname{Decr} F_{D}(3)\right|=20 \cdot 19 \cdot 14^{3} \cdot 11^{3} \cdot 9 \cdot 6^{3} \cdot 5^{3} \cdot 3^{3} \cdot 2= \\
\quad=19 \cdot 11^{3} \cdot 7^{3} \cdot 5^{4} \cdot 3^{8} \cdot 2^{9}=18211503119040000
\end{gathered}
$$

Proof. The Hasse diagrams of the 3 -generated free modular lattice $F_{M}(3)$ and the distributive lattice $F_{D}(3)$, are as follows, respectively:

(see [7]). The proposition follows directly from the appearance of these diagrams and Proposition 4.
Theorem 1. a) $\left|\operatorname{Decr} \mathfrak{B}_{n}\right|=2^{n \cdot 2^{n-1}}$;
b) \mid PDecr $\mathfrak{B}_{n} \left\lvert\,=\prod_{k=0}^{n}\left(2^{k}+1\right)^{\binom{n}{k}}\right.$.

Proof. a) For a k-element subset $A \in \mathfrak{B}_{n}$, the lower cone A_{\triangle} has a size of 2^{k}. Therefore, according to Proposition 4,

$$
\mid \text { Decr } \mathfrak{B}_{n} \left\lvert\,=\prod_{k=0}^{n}\left(2^{k}\right)^{\binom{n}{k}}=2^{\sum_{k} k\binom{n}{k}}=2^{n \sum_{k}\binom{n-1}{k-1}}=2^{n \cdot 2^{n-1}}\right.
$$

Statement b) Follows from Proposition 4.
Let $\mathcal{L}(n, q)$ denote the set of all subspaces of the n-dimensional vector space \mathbb{F}_{q}^{n} over the q-element finite field \mathbb{F}_{q}, ordered by the inclusion relation. The Gaussian binomial coefficient $\binom{n}{k}_{q}$ (is referred to as the Gauss number) is the number of all k dimensional subspaces of an n-dimensional vector space over the field \mathbb{F}_{q}. The number $G_{n}(q)$, representing all subspaces of an n-dimensional space over the field \mathbb{F}_{q}, is referred to as the Galois number.
Theorem 2. For the set ordered by inclusion, $\mathcal{L}(n, q)$

$$
|\operatorname{Decr} \mathcal{L}(n, q)|=\prod_{k=0}^{n}\left(G_{k}(q)\right)^{\binom{n}{k}_{q}}=\prod_{k=0}^{n}\left(\sum_{i=0}^{k}\binom{k}{i}_{q}\right)^{\binom{n}{k}_{q}}
$$

Proof. It follows from Proposition 4 since the lower cone of a k-dimensional subspace from $\mathcal{L}(n, q)$ contains $\binom{n}{k}_{q}$ elements.

There is a natural one-to-one correspondence between the partitions of the set N and the equivalence relations on the set N. The set $E q_{n}$ of all equivalence relations on the set N is naturally ordered by the inclusion relation. This order induces an order relation on the set Part_{n} of partitions of the set N .

A partition τ is said to have type $\left\langle l_{1}, l_{2}, \ldots, l_{n}\right\rangle$ if it contains l_{1} blocks of length 1 , l_{2} blocks of length $2, \ldots, l_{n}$ blocks of length n. Obviously,

$$
l_{1}+2 l_{2}+\cdots+n l_{n}=n
$$

It is easy to understand that the number $P\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ of partitions of the set N of type $\left\langle l_{1}, l_{2}, \ldots, l_{n}\right\rangle$ is equal to

$$
\begin{equation*}
P\left(l_{1}, l_{2}, \ldots, l_{n}\right)=\frac{n!}{(1!)^{l_{1}}(2!)^{l_{2}} \cdots(n!)^{l_{n}} l_{1}!l_{2}!\cdots l_{n}!} \tag{1}
\end{equation*}
$$

Theorem 3. For the lattice of partitions Part_{n},

$$
\mid{\text { Decr } \operatorname{Part}_{n} \mid=\prod_{l_{1}+2 l_{2}+\cdots+n l_{n}=n} P\left(l_{1}, l_{2}, \ldots, l_{n}\right) B_{1}^{l_{1}} B_{2}^{l_{2}} \cdots B_{n}^{l_{n}}, ~ ; ~, ~}
$$

where B_{k} is the k-th Bell number.
Proof. It is evident that when two partitions have the same type, their lower cones are of equal power. Let's consider the structure of the lower cone of a partition ρ of type $\left\langle l_{1}, l_{2}, \ldots, l_{n}\right\rangle$. If a partition τ belongs to the lower cone ρ_{Δ}, then each block of the partition τ is contained in one of the blocks of the partition ρ. Therefore, the partition τ induces on each block M of the partition ρ a certain partition τ_{M}. The set of these induced partitions can be viewed as an element of the set

$$
\operatorname{Part}_{1}^{l_{1}} \times \cdots \times \operatorname{Part}_{n}^{l_{n}}
$$

Conversely, each element from Part $_{1}^{l_{1}} \times \cdots \times$ Part $_{n}^{l_{n}}$ can be considered as a set of partitions of the blocks of the partition ρ, that is, as a partition of the set N belonging to the lower cone ρ_{\triangle}. Therefore,

$$
\rho_{\triangle} \simeq \operatorname{Part}_{1}^{l_{1}} \times \cdots \times \operatorname{Part}_{n}^{l_{n}}, \quad \text { and } \quad\left|\rho_{\Delta}\right|=\left|\operatorname{Part}_{1}\right|^{l_{1}} \cdots\left|\operatorname{Part}_{n}\right|^{l_{n}}
$$

The proof is completed by referring to Proposition 4 and noting that the number of partitions of a k-element set is the k-th Bell number B_{k}.

For any group G, let $\mathcal{L}(G)$ denote the lattice of its subgroups ordered by inclusion. For a subgroup $H \leqslant G$, let $\mathcal{L}(H, G)$ denote the lattice $\{Q \in \mathcal{L}(G) \mid H \leqslant Q\}$ of its overgroups.

Recall that according to the Fricke-Klein Theorem (see [2]), each subgroup H of the direct product of groups $P \times Q$ is uniquely determined by 5 parameters: subgroups $A_{1} \triangleleft A \leqslant P, B_{1} \triangleleft B \leqslant Q$ such that $A / A_{1} \simeq B / B_{1}$, and an isomorphism $\Phi: A / A_{1} \rightarrow$ B / B_{1}. Here,

$$
H=\{(a, b) \in A \times B \mid \Phi(\bar{a})=\bar{b}\}
$$

where \bar{x} denotes the corresponding element of the quotient group. The subgroup H with parameters $\left(A, A_{1}, B, B_{1}, \Phi\right)$ is denoted by

$$
A / A_{1} \underset{\Phi}{\times} B / B_{1} .
$$

Remark 1. From the Fricke-Klein theorem, it follows that

$$
\left|A / A_{1} \underset{\Phi}{\times} B / B_{1}\right|=\left|A_{1}\right| \cdot\left|B_{1}\right| \cdot\left|A / A_{1}\right|
$$

Proposition 4. For any natural numbers r, s, and a prime number p,

$$
\begin{equation*}
\left|\mathcal{L}\left(C_{p^{r}} \times C_{p^{s}}\right)\right|=\sum_{k=0}^{\min (r, s)}(r-k+1)(s-k+1) \varphi\left(p^{k}\right) \tag{2}
\end{equation*}
$$

where $\varphi\left(p^{k}\right)$ is the Euler's function.

Proof. Every subsemigroup H of $C_{p^{r}} \times C_{p^{s}}$ is determined by 5 parameters: subsemigroups

$$
A_{1} \leqslant A \leqslant C_{p^{r}}, \quad B_{1} \leqslant B \leqslant C_{p^{s}}
$$

such that $\left|A / A_{1}\right|=\left|B / B_{1}\right|$, and an isomorphism $\Phi: A / A_{1} \rightarrow B / B_{1}$. If

$$
\left|A / A_{1}\right|=\left|B / B_{1}\right|=p^{k}
$$

then the exponent k can be any integer in $[0, \min (r, s)]$, the pair $A_{1} \leqslant A \leqslant C_{p^{r}}$ can be chosen in $r-k+1$ ways, the pair

$$
B_{1} \leqslant B \leqslant C_{p^{s}}
$$

in $s-k+1$ ways, and the cyclic group $C_{p^{k}}$ has $\varphi\left(p^{k}\right)$ automorphisms.
Let's denote the right-hand side of the equality (2) as $N_{p}(r, s)$.
Lemma 1. Let a subgroup H of

$$
C_{p^{n}} \times C_{p^{m}}
$$

be defined by the parameters $\left(A, A_{1}, B, B_{1}, \Phi\right)$, where

$$
A \simeq C_{p^{r}}, \quad A_{1} \simeq C_{p^{r^{\prime}}}, \quad B \simeq C_{p^{t}}, \quad B_{1} \simeq C_{p^{t}}
$$

and $n \geqslant r \geqslant r^{\prime}, m \geqslant t \geqslant t^{\prime}$. Then

$$
H \simeq C_{p^{\max (r, t)}} \times C_{p^{\min \left(r^{\prime}, t^{\prime}\right)}}
$$

Proof. As a subgroup of a 2-generated abelian group, H must have a generating set with $\leqslant 2$ elements. Therefore,

$$
H \simeq C_{p^{k}} \times C_{p^{l}} \quad \text { for some } \quad k \geqslant l \geqslant 0 .
$$

In particular, the maximum order of an element in H equals p^{k}. On the other hand, as a subgroup of

$$
A \times B \simeq C_{p^{r}} \times C_{p^{t}}
$$

H cannot have elements of an order greater than $p^{\max (r, t)}$. However, since the projection of H onto each of the factors A and B coincides with these factors, it follows that the subgroup H does have an element of order $p^{\max (r, t)}$. Therefore, $k=\max (r, t)$.

Furthermore, from Remark 1 and the equality $r-r^{\prime}=t-t^{\prime}$, it follows that

$$
H=p^{\max (r, t)} \cdot p^{\min \left(r^{\prime}, t^{\prime}\right)}
$$

Hence, l must coincide with $\min \left(r^{\prime}, t^{\prime}\right)$.
Remark 2. From the equality $r-r^{\prime}=t-t^{\prime}$, it follows that the subgroup H from Lemma 1 is uniquely determined by 4 independent parameters $r, t, v=r-r^{\prime}=t-t^{\prime}$, and Φ.
Theorem 4. For the lattice of subgroups $\mathcal{L}\left(C_{p^{n}} \times C_{p^{m}}\right)$ of the group $C_{p^{n}} \times C_{p^{m}}$ ordered by inclusion

$$
\left|\operatorname{Decr} \mathcal{L}\left(C_{p^{n}} \times C_{p^{m}}\right)\right|=\sum_{r \leqslant n} \sum_{t \leqslant m} \sum_{v \leqslant \min r, t} \varphi\left(p^{v}\right) N_{p}(\max (r, t), \min (r, t)-v) .
$$

Proof. From Lemma 1, it follows that a subgroup $H \leqslant C_{p^{n}} \times C_{p^{m}}$ with parameters r, t, v, Φ is isomorphic to the group

$$
C_{p^{\max (r, t)}} \times C_{p^{\min (r, t)-v}}
$$

Therefore, the type of subgroup H is completely determined by the first three parameters r, t, v, and the number of subgroups with such parameters equals $\varphi\left(p^{v}\right)$. According to Proposition 4, the lower cone H_{\triangle} of the subgroup H with parameters r, t, v has a cardinality of

$$
N_{p}(\max (r, t), \min (r, t)-v)
$$

The statement of the theorem now follows from Proposition 4 and the fact that $r \leqslant n$, $t \leqslant m$, and $v \leqslant \min (r, t)$.
Remark 3. Unlike the Klein-Fricke Theorem, a good description of subgroups for the direct product of more than two factors is still unknown. Therefore, the question about the order of the semigroup Decr, $\mathcal{L}(G)$, even for the group

$$
G=C_{p^{n}} \times C_{p^{m}} \times C_{p^{k}},
$$

remains open.

3. CONNECTION WITH OPERATIONS OVER PARTIALLY ORDERED SETS

Theorem 5. For the lexicographic product $M_{1} \circ M_{2}$ of partially ordered sets M_{1} and M_{2}

$$
\left|\operatorname{Decr}\left(M_{1} \circ M_{2}\right)\right|=\prod_{a \in M_{1}, b \in B_{2}}\left(\left|b_{\Delta}\right|+\left(\left|a_{\triangle}\right|-1\right)\left|M_{2}\right|\right) .
$$

Proof. For elements (a, b) and (x, y) from $M_{1} \circ M_{2}$, the inequality $(a, b) \geqslant(x, y)$ holds if and only if either $a=x$ and $b \geqslant y$ (there are $\left|b_{\Delta}\right|$ such elements (x, y)), or $a>x$ (there are $\left(\left|a_{\Delta}\right|-1\right)\left|M_{2}\right|$ such elements $\left.(x, y)\right)$. Therefore,

$$
\left|(a, b)_{\triangle}=\left|b_{\Delta}\right|+\left(\left|a_{\triangle}\right|-1\right)\right| M_{2} \mid .
$$

The statement of the theorem follows from Proposition 4.
Corollary 1. For the lexicographic product

$$
L_{n_{1}} \circ L_{n_{2}} \circ \cdots \circ L_{n_{k}}
$$

of linearly ordered sets $L_{n_{1}}, L_{n_{2}}, \ldots, L_{n_{k}}$

$$
\left|\operatorname{Decr}\left(L_{n_{1}} \circ L_{n_{2}} \circ \cdots \circ L_{n_{k}}\right)\right|=\left(n_{1} n_{2} \cdots n_{k}\right)!.
$$

Theorem 6. For the direct product $M_{1} \times M_{2}$ of partially ordered sets M_{1} and M_{2}

$$
\left|\operatorname{Decr}\left(M_{1} \times M_{2}\right)\right|=\left|\operatorname{Decr} M_{1}\right|^{\left|M_{2}\right|}\left|\operatorname{Decr} M_{2}\right|^{\left|M_{1}\right|}
$$

Proof. Since $\left|(a, b)_{\Delta}\right|=\left|a_{\Delta}\right| \cdot\left|b_{\Delta}\right|$ for $(a, b) \in M_{1} \times M_{2}$, according to the Proposition 4 we get that

$$
\begin{aligned}
& \left|\operatorname{Decr}\left(M_{1} \times M_{2}\right)\right|=\prod_{(a, b) \in M_{1} \times M_{2}}\left|(a, b)_{\Delta}\right|=\prod_{a \in M_{1}, b \in M_{2}}\left|a_{\Delta}\right| \cdot\left|b_{\Delta}\right|= \\
& =\prod_{a \in M_{1}, b \in M_{2}}\left|a_{\Delta}\right| \prod_{a \in M_{1}, b \in M_{2}}\left|b_{\Delta}\right|=\left|\operatorname{Decr} M_{1}\right|^{\left|M_{2}\right|} \cdot\left|\operatorname{Decr} M_{2}\right|^{\left|M_{1}\right|} .
\end{aligned}
$$

Corollary 2. For the direct product $M_{1} \times \cdots \times M_{k}$ of partially ordered sets M_{1}, \ldots, M_{k}

$$
\mid \operatorname{Decr}\left(M_{1} \times \cdots \times M_{k}\left|=\prod_{i=1}^{k}\right| \operatorname{Decr} M_{i} \prod^{\mid \neq i}\left|M_{j}\right|\right.
$$

Corollary 3. For the direct product

$$
L_{n_{1}} \times L_{n_{2}} \times \cdots \times L_{n_{k}}
$$

of linearly ordered sets $L_{n_{1}}, L_{n_{2}}, \ldots, L_{n_{k}}$

$$
\left|\operatorname{Decr}\left(L_{n_{2}} \times \cdots \times L_{n_{k}}\right)\right|=\left(n_{1}!\right)^{n_{2} \cdots n_{k}} \cdot\left(n_{2}!\right)^{n_{1} n_{3} \cdots n_{k}} \cdot\left(n_{k}!\right)^{n_{1} \cdots n_{k-1}}
$$

Corollary 4. If the group G decomposes into the direct product $G=H_{1} \times \cdots \times H_{k}$ of subgroups H_{1}, \ldots, H_{k} of pairwise coprime orders, then

$$
|\operatorname{Decr} \mathcal{L}(G)|=\prod_{i=1}^{k}\left|\operatorname{Decr} \mathcal{L}\left(H_{i}\right)\right|^{\prod_{j \neq i}\left|\mathcal{L}\left(H_{j}\right)\right|}
$$

Доведення. [Proof] From the Fricke-Klein theorem, it follows that when the orders of subgroups A and B are coprime, each subgroup H from $A \times B$ decomposes into the direct product $H=A_{1} \times B_{1}$ of subgroup A_{1} from A and subgroup B_{1} from B. Therefore, the lattice $\mathcal{L}(G)$ decomposes into the direct product $\mathcal{L}(G)=\mathcal{L}\left(H_{1}\right) \times \cdots \times \mathcal{L}\left(H_{k}\right)$ of lattices $\mathcal{L}\left(H_{1}\right), \ldots, \mathcal{L}\left(H_{k}\right)$.

For any prime number p and a group $G, \operatorname{Syl}_{p}(G)$ denotes the Sylow p-subgroup of the group G.

Corollary 5. If for each prime number p the group G contains a unique Sylow p-subgroup (in particular, if G is abelian), then

$$
|\operatorname{Decr} \mathcal{L}(G)|=\prod_{p| | G \mid}\left|\operatorname{Decr} \mathcal{L}\left(\operatorname{Syl}_{p}(G)\right)\right|^{\prod_{q \neq p}\left|\operatorname{Syl}_{q}(G)\right|}
$$

Proof. This follows from Corollary 4, since such a group decomposes into the direct product of its Sylow subgroups.

Corollary 6. For a cyclic group

$$
C_{p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}}
$$

we have

$$
|\operatorname{Decr} \mathcal{L}(G)|=\left(n_{1}+1\right)!^{n_{2} \cdots n_{k}} \cdot\left(n_{2}+1\right)!^{n_{1} n_{3} \cdots n_{k}} \cdot\left(n_{k}+1\right)!^{n_{1} \cdots n_{k-1}}
$$

Proof. This follows from Proposition 2 and Corollary 5, since the Sylow p_{i}-subgroup of the group

$$
C_{p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}}
$$

is the group $C_{p_{i}^{n_{i}}}$, the lattice of subgroups of which is linearly ordered and has $\left(n_{i}+1\right)$ elements.

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
2. О. Г. Ганюшкін, Встуn до алгебри, ВПЦ "Київський ун-т", Київ, 2014 (in Ukrainian).
3. O. Ganyushkin and T. Kormysheva, The structure of nilpotent subsemigroups of a finite inverse symmetric semigroup, Dopov. Nats. Akad. Nauk Ukr. 1 (1995), 8-10 (in Ukrainian).
4. O. Ganyushkin and V. Mazorchuk, Classical finite transformation semigroups. An introduction, Algebra and Applications 9. Springer, London, 2009.
DOI: 10.1007/978-1-84800-281-4
5. O. Ganyushkin and V. Mazorchuk, On classification of maximal nilpotent subsemigroups, J. Algebra 320 (2008), no. 8, 3081-3103. DOI: 10.1016/j.jalgebra.2008.07.017
6. О. Ганюшкін, М. Павлов, Про порядки одного класу нілъпотентних напівгруп та їх груп автоморфізмів, Алгебраїчні структури та їх застосування, Праці Укр. матем. конгресу 2001, Ін-т матем. НАН України, (2002), C. 17-21 (in Ukrainian).
7. G. Grätzer, General lattice theory, 2nd ed., Basel, Birkhäuser Verlag, 2003.
8. J. Howie, Combinatorial and arithmetical aspects of the theory of transformation semigroups, Seminario do Centro de Algebra, University of Lisbon (1992), pp. 1-14.
9. E. Korkmaz, Combinatorial results of collapse for order-preserving and order-decreasing transformations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 71 (2022), no. 3, 769777. DOI: 10.31801/cfsuasmas. 1019458
10. A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, J. Algebra, 278 (2004), no. 1, 342-359. DOI: 10.1016/j.jalgebra.2003.10.023
11. A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations. I, Semigroup Forum 69 (2004), no. 2, 184-200. DOI: 10.1007/s00233-004-0101-9
12. I. V. Livinsky and T. G. Zhukovska, On orders of two transformation semigroups of the Boolean, Carpathian Math. Publ. 6 (2014), no. 2, 317-319. DOI: 10.15330/cmp.6.2.317-319
13. J. E. Pin, Variétés de langages formels (French), With a preface by M. P. Schützenberger. Études et Recherches en Informatique. Masson, Paris, 1984.
14. A. O. Stronska, Semigroup of order-decreasing transformations of the boolean of a finite set, Bull. Kyiv Univ.: Series Phys.-Math. Sci. (2006), no. 2, 57-62.
15. A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 129-142. DOI: 10.1017/S0308210500015031
16. A. Umar, On the semigroups of partial one-to-one order-decreasing finite transformations, Proc. Roy. Soc. Edinburgh Sect. A 123 (1992), no. 2, 355-363. DOI: 10.1017/S0308210500025737
17. A. Umar, On the ranks of certain finite semigroups of order-decreasing transformations, Port. Math. 53 (1996), no. 1, 23-34.
18. A. Umar, Semigroups of order-decreasing transformations: the isomorphism theorem, Semigroup forum 53 (1996), no. 2, 220-224. DOI: 10.1007/BF02574137
19. A. Umar, Some combinatorial problems in the theory of symmetric inverse semigroups, Algebra Discrete Math. 9 (2010), no. 2, 113-124.

Статтл: надійшла до редколегії 15.01.2023 прийнята до друку 10.05.2023

СКІНЧЕННІ НАПІВГРУПИ СТИСКУЮЧИХ ПЕРЕТВОРЕНЬ

Дмитро БЕЗУЩАК
Київсъкий націоналвний університет імені Тараса Шевченка, вул. Володимирсъка, 60, 01033, м. Киӥв
e-mail: bezushchak@gmail.com

Вивчаємо напівгрупи частково визначених стискуючих перетворень частково впорядкованих множин і напівгрупи частково визначених стискуючих перетворень лексикографічного та прямого добутку частково впорядкованих множин.

Ключові слова: напівгрупа, частково визначене перетворення, стискуюче перетворення, лексикографічний добуток, прямий добуток.

[^0]: 2020 Mathematics Subject Classification: 20M20

