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oo
Let f(z) = Z fxz" be an entire transcendental function, (\,) be a sequence
k=0

of positive numbers increasing to +oco and the series A(z) = Z anf(Anz) be
n=1

regularly convergent in D = {z : |z| < 1}, i.e, Z |an|Mys(rAn) < +oo for

n=1
all » € [0, 1), where My (r) = max{|f(z)| : |z| = r}. Suppose that o and
B are slowly increasing such that x/87'(ca(z)) 1+ 400, a(z/B7 " (ca(z)))
(1 4+ o(1))a(z) and a(ln z) = o(B(x)) as zo(c) < = — +oo for every c
(0, +00). It is proved, for example, that if a, > 0 for all n and a(ln n)

m

o(B(T#(cAn)/1In n)) as n — oo, where I's(r) = dlr;lil\nﬁ;(r), then
= o(n Ma(r)) _ —— o(n"(|flpp (k)

MBa-n) LT Bk

where pp(0) := max {|an|exp{ocIn A\n}: n > 0}.

Key words: series in systems of functions, regularly convergent series,
generalized order.

1. INTRODUCTION

Let

(1) f(z) = kazk
k=0
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be an entire transcendental function,
My (r) = max{|f(z)|: [2] = r}

and (\,,) be a sequence of positive numbers increasing to +oco. At first we suppose that
the series

n=1

in the system {f(\,2)} regularly converges in C, i.e. for all € [0, +00)

oo

(3) Z |an | M (rA,) < 400.

n=1

Many authors have studied the representation of analytic functions by series in the system
f(Anz). We will specify here only on the monographs of A. F. Leont’ev [1] and B. V. Vin-
nitskyi [2], where references are to other works.

Since series (2) regularly convergent in C, the function A is entire. To study its
growth, generalized orders are used. For this purpose, as in [3] by L we denote a class
of continuous non-negative on (—oo, +00) functions « such that a(zx) = a(zy) > 0
for * < x¢ and a(x) T +o0o as 19 <  — +o0o. We say that a € LY, if o € L and
a((l4+o0(1)z) = (1 4+ o(1))a(x) as  — 4oo. Finally, o € Ly, if & € L and a(cz) =
(I+o0(1))a(x) as & — +oo for each ¢ € (0, +00), i.e., a is a slowly increasing function.
Clearly, L,; C L°. For o € L and § € L the quantity

m— o(ln M (r))

Q(MB [f] = TEIEOO 5(111 T)

is called [3] the generalized («, 8)-order of the entire function f.

In the papers [4-5] the relationship between the growth of functions My (r), Ma(r)
and Mjfl(MA(r)) was studied. The logarithmic convexity of the function In M (r) impli-
es

dln Mf (7“)
r =
f(T) dln r / +Oo7 r— +OO7
dln Mg(r)
dln r
ve). For example, in [5] the following theorem was proved.

d -1
Theorem A. Let a € Lsi, 3 € L° and M
nx

¢ € (0, +00). If ap, > 0 for all n > 1, the series (2) is regularly convergent in C, In n =
1 1

O(¢(An)) and In A\, =0 (ﬁ_l(ca ( 1 )) as n — oo each ¢ € (0, +00), then

20.8[A] = €alf]-

n
In A\, an
Here we counsider the case when the series (2) regularly converges in a finite disk.

(in points where the derivative does not exist, means the right-hand derivati-

= 0(1) as © — +oo for each
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2. RADIUS OF REGULAR CONVERGENCE

Let R[A] be the radius of regular convergence of the series (2), that is (3) holds for
r < R[A] and does not hold for r > R[A]. The following statement is true.

Proposition 1. Let
1 1
ap = lim —M;'(— ).
e W (Ian)
If Tg(cr) < T4(r) as 1 — +oo for each ¢ € (0, +00) and In n = o(T'¢(\y)) as n — oo,
then R[A] = «ap.

Proof. Suppose that R[A] > 0. For every r < R[A] from (3) we have |a,|Ms(rA,) = 0

1
as n — 0o, i. e. |a,|Ms(rA,) <1 for all n > ng(r), whence )\—Mf_l Tan] > r for all
n an
n > no(r) and, therefore,
1 1
ap = lim —M;! <> >
P e S a7

In view of the arbitrariness of r < R[A] we get R[A] < «p. If R[A] = 0, then this
inequality is trivial.

Now suppose on the contrary that the equality R[A] = ag not holds. Then R[A] <

1 1
ap. We choose R[A] < a1 < as < ap. Then )\—Mfl () > ag for all n > ng(az),
n an

ie. — fi > . Theref
ie., |an| < M (o) or n > np(ag) erefore,
Mf(o‘l)‘n)
n M A'TL
ol My(an) < SO
27An
=exp{ — / dlan(T)dl ry =
dln r
a1,
ag)\n
:exp{— Ty(r)dlnr y <
041)\7l
< exp {Ff(ozlx\n) In OQ} =
ai

Since I'y(cr) < T'y(r) as r — +oo for each ¢ € (0, +00) and In n = o(T'f(A,,)) as n — oo,
we have

Ff(al/\n)
_— > =
T 0w = K (o) = const >0
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1
and T'r(\,) > % for each € > 0 and all n > n;(g), and thus,

> s K(a1), «
> laalMgtenin) < 3 e {1 S n} < .
n=ni n=ni
Hence we get R[A] > ay what is impossible. Proposition 1 is proved. O

3. ANALYTIC IN THE UNIT DISK FUNCTIONS OF THE FINITE ORDER

For an analytic in D = {2 : |2| < 1} function

(4) p(z) = Z‘szk
k=0

the order is defined as -
— In" In™ M,(r)
=lim——2 7
ool = lm =
It is known [6-7] that
olp — InTIn" Pk
- ¢ ol

—_— :: 1.
ole] +1 gyl el In k

Using formula (5) we prove the following theorem.
Theorem 1. Let R[A] = 1 and a, > 0 for all n. If T'f(cA,) > w(n) for all n and

some 0 < ¢ < 1, where w is a positive function on [1, +00) increasing to +oo such that
Inln z = o(ln w(z)) as * — +oo then
— In" In" (| fi|up (k)

i
6 Al=—— =1
®) =7 =

where pp(o) = max{|a,|exp{ocln \,} : n > 1} is the mazimal term of entire Dirichlet
series

(7) D(o) = Z |an|exp{oln A,}.
n=1

Proof. Since a,, > 0 for all n > 1 and

A(z) = Zan ka(z)\n)k = ka (Z an)\f;> 2",
n= k=0 k=0 n=1

1
in view of Cauchy inequality we have

(8) Ma(r) = |fxl (Z an/\ﬁ> > an| fil Anr)*

n=1

for all m > 1, k > 0 and r € [0,1). Hence it follows that Ma(r) > |fx|up(k)r*, where
up(o) = max{|a,|exp{oln A, } is the maximal term of entire Dirichlet series

D(o) = Z lan|exp{oln A,}.
n=1
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Therefore, M(r) > pc(r) for r € [0,1), where
116:(r) = max{| flun (k)r* : k> 0}
is the maximal term of the series

(9) G(r) = |felup(k)r*, 0<r<1.
k=0

On the other hand, since the series (2) is regularly convergent in D, for every r € [0, 1)
we have

(10) Malr) < S lanlMy(rha) < pia (3) 3 - ]‘Eﬁffi )
S (T,

where p14(r) = max{|a,|M;(rA,) : n>1}. For r € [¢,1) we have

n=1

) (r+1)An/2
In M; (r i )\n) —In My(rA,) = / Ts(z)dln o >
TAn
1+r

>Ts(rAy)In — =
= f(r)\)n o

1—r
=T4(r\,)In (1 >
f(T)n<+2T)_

NIEIVC)
- 4

Since I'¢(cA,) > w(n) for all n and w is a positive function on [1, +-00) increasing
to +o0 such that InIn z = o(ln w(x)) as © — +oo, we get w(n) > (In n)/¢ for every
£ € (0, 1) and all n > n*(¢) and, therefore, I';(c),,) > (In n)/s~11n n.

We put
no(r) = [eXp { (1 f T)E/u—s)}

Then ng(r) > n*(g) for r € [ro(e), 1) and for n > ng(r) we get

+ 1.

(1—=7)Ts(cAn) - (1—=7)Inn)/stinn <

>

4 4 -
(I =7r)(In no(r))l/‘f_l Inn
- 4 -
8 (I-r)lnn
1-r 4

=2In n.
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Therefore,
o no(r)—
M (rin) K (I —r)¢(rA)

D Z > | e {- A=)

n=1 M | —— Ay no(r)

2
no(r)—1

< Z 1+ Z — <
=1 n= 1
)
6/(1*6)
+3
Thus, (10) implies

(11) Ma(r) < pa (1;«) (exp { (1 fr>6/(16)} - 3) . (r€fro(e), 1)

Also we have

I /\

\ /\

o0
pa(r) < max {|an| S Al (At 0> 1} <
< Zmax{|an|)\ﬁ s > 1Y fulrk =
k=0
=G(r)=
k
147 2r
= <
=3 ot (4 ) () <
1+7r\1+r
< <
= ”G< 2 > [
2 1+7r
< .
= 1—T“G( 2 )
Therefore, in view of (11)
e/(1—e)
4
(12) In pa(r) <ln Ma(r) <ln ug (T) +In 1—r + (&) +1n 6.

Since (12) implies

In* InT pg(r) <Int Int Mu(r) <

4
§ln+ln+ug<3zr>—|—ln+ln+1 7"++ ot 8T+1n24,

we get

0[G] < o[A] < 0[G] +
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i.e., in view of the arbitrariness of ¢ we obtain p[A] = p[G|. By formula (5) we have
1[Gl
olG)

= ———— where
1 —1[G]

— In" In™ (| fulun(k))
7[G] = lim In k

i.e., (6) holds with v = 4[G]. Theorem 1 is proved. O

)

Let

—— InIn My(r)

alfl= tm — o >

be the logarithmic order of the entire function (1) and

— Inln D(o)
prlD] = Ugr}rloo Ino

be the logarithmic R-order of the entire Dirichlet series (7). Then [§]

alfl = k@o llhllkl +1
(50 )
and [9] pr[D] = qr[D] + 1, where
- In In A,

D=1
it n1—>Holo In 71 In i ,
In A, an]

— Inl
provided lim L
n—oo n n

If 0;[f] < 400 and pg[D] < +o0, then we obtain D(c) < exp{oPrIPI*¢} for every
e >0 and all o > 0y(e), and

<1.

|fu] < exp{—kl@l/1+e)/(alfl+e—1)y
for every € € (0, oi[f] — 1) and all k > ko(e). Therefore, if

pr[D]+e < (alfl+e)/(alfl+e-1)

then
| fulpp (k) < exp{kPrPlte _ glalflte)/(alfl+e—1)} <1

and v[G] = 0. We remark that if pr[D] < o/[f]/(0i[f] — 1) then € can be chosen so that
prID] +¢& < (alfl +&)/(alfl+e—1).
Therefore, Theorem 1 implies the following corollary.

Corollary 1. Let the conditions of Theorem 1 hold. If pr[D] < oi[f]/(ai[f] — 1) (i-e.
qr[D] < 1/(a[f] = 1)) then o[A] = 0.
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4. GENERALIZED ORDERS

For a € L and 8 € L, the quantity
r—a(ln My(r))
Oa,plp] = lim —————=5
= B )
is called [10] the generalized (v, )-order of an analytic in D function (4). From the results
proved in [11], it is easy to obtain the following statement.

Lemma 1. Let o € Ly, § € Ly; and a(ln x) = o(S(x)) as x — +oo. Then:

1) if T +o0 anda(

A=Y (calx)) 5‘1(0a($))) = (1+o(1))a(z) as xo(c) < @ — +00

— a(k)
for every c € (0, +00), then gqpl¢] = lim —————F———.
T k5% B (k/ I )

2) if (B @) T 400 and 8 (al(cﬁ(z))> = (140(1))B(x) as zo(c) <z = 400
_ oo o)
for every c € (0, +00), then oq 5[] = klirgo 308)

Using Lemma 1 we prove the following theorem.

Teopema 1. Let R[A] =1 and a,, > 0 for alln, a € Ly;, B € Lg;, a(ln x) = o(5(x)) as
T — +00 and

(13) atnm =o (5 (H20)). 0o,

In n
If the conditions of the assertion 1) of Lemma 1 hold then
— a(k
(14) 0aplA] = lim T (k) ,
koo B(k/In™ (| felup (k)))
and if the conditions of the assertion 2) of Lemma 1 hold then

_ — a(ln(|frlpn (k)
(15) Oa,p[A] = lim 5h) :

1
Proof. From (13) it follows that I'f(c),) > 871 (a(r;n)) In n every € € (0, 1) and all

n > n*(c). We put
o= o (52,

Then ng(r) > n*(e) for r € [ro(g), 1) and for n > ngy(r) we get
(1—=r)T¢(cAn) - 1 —=7r) .1 (a(n ny(r)) 8 (1—-r)lnn
> =
1 =g P e A R
Therefore, as above

=2In n.

oo

Z]\ZJ;(?;))<”O(T)+2<€XP{Q_1 (55<1§r>)}+3

n=1 Mf ) /\n
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and (10) implies

Ma) < a (S50 (ewdat (a8 (15)) f+3) 0 @ eluten )

i.e., in view of (12) we get

4
In pe(r) <In Ma(r) <In pe (3+r> +In +at (5[3 <8>) +1n 6.
4 1—7r 1—7r
Since a € Lyg;, from hence we have

a(ln pg(r)) < a(ln Ma(r)) <

il () o o1 )
v o (7)o (3 () )
ol (5 1) )
<o) (a (wne (240)) + ( L) e (1) vatme). i

Therefore, if o € Lg; and a(In ) = o(f(z)) as  — 400, we obtain
Tim o(ln pg(r)) < Tim a(ln MA(T)) < Tim a(ln pg(r))
et B/ (1 —r)) = o1 B(1/(1 =) ~ o1t B(1/(1 = 7))

whence in view of the arbitrariness of € we get 9o g[A] = 0q,3][G]. Since by Lemma 1

Tim +a(k)

koo B(k/ I (| fxlpp(K)))

provided the conditions of the assertion 1) of Lemma 1 hold and

o a(ln*(|fxlpn (k)
0a,8[A] = lim k)

k—o0

+ €,

Qa,p [G] =

provided the conditions of the assertion 2) of Lemma 1 hold, Theorem 2 is proved. O

For entire function (1) the generalized («, §)-order is defined [3] by

T
Qa,ﬁ[‘ﬂ_ 1 ﬁ(ln 7") .

r—-+00
d -1
It is known [3] that if o € Ly;, 8 € L° and W = O(1) as © — oo for every
€ (0, +00) then
a(k)

Qz,ﬁ[f] = k@o 6<11>7
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Le., [ fi| < exp{—kB~"(a(k)/01)} for every o1 > o, 5[f] and all k > ko(0). On the other
hand, for entire Dirichlet series (7) the modified generalized (3, «)-order is defined [12]

as
o)'[D] = Tim 1 5<1HD(0)>.

o—+400 Oé(O') g

If o', [D] < +oc then

In 11p(0) < In D(0) < 0B~ (020(0))
for every g, > 04/, [D] and all o > 0¢(02)-
Therefore, if g3 < 1/01 then

| felun (k) < exp{—=kB~" (a(k)/01) + kB~ (020(k))} < 1

for all sufficiently large k, i. e. In™ (| fx|up(k)) = 0 for all sufficiently large k. Hence in
view of formulas (14) and (15) it follows that g, g[A] = 0.

We remark that if o}, 5(f]os’,[D] < 1 then we can choose o1 > ¢, 5[f] and g2 >
Qg/{a [D] so that p102 < 1. Therefore, Theorem 2 implies the following corollary.

= (ca(z))

Corollary 2. Let the conditions of Theorem 2 hold and I
nx

for every ¢ € (0, +00). If Q;ﬁ[f]gg/{a[D] < 1 then g[A] = 0.

=0(1) asz — +o0
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oo

Hexait f(z) = Z fuz" — mina TpancHenmenTHa QyHKIIA, (An) — 3pocTaota
k=0

oo
J10 400 HOCJIIOBHICTE JOJATHUX dnces, a psag A(z) = Z an f(Anz) peryasipao

n=1
36ikmmit B D = {z : |2] < 1}, To6TO Z |an|Ms(rAn) < +oo mast Beix r €

n=1
[0, 1), me Ms(r) = max{|f(z)| : |z| = r}. Ipunycrumo, mo a i § — raxi
HOBiIBHO 3pocTaroui dymkmii, mo x/87 " (ca(z)) T +oo, a(z/B7 " (ca(x))) =
(14 o0(1)a(z) i a(ln z) = o(B(x)) upu zo(c) < x — 400 st KOKHOTO ¢ €
(0, +00). HdoBemeno, HAIPUKIIAT, MO AKIMO an > 0 maa Beix n i a(ln n) =

o(B(T#(cAn)/1In n)) upu n — oo, me L' (r) = C“T:“ijfj;(”’ TO
—a(ln Ma(r))

lim ———— 72/ — ]im M
rit B(1/(L=17)) koo B(k) ’

ae pp (o) :=max {|an| exp{oln An}: n > 0}.

Karouost caosa:  pan 3a cucteMoio GYHKINH, peryaspHO 30iKHMA P,
y3arajJbHeHUN TTOPAI0K.



