ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2022. Випуск 94. С. 89–97 Visnyk of the Lviv Univ. Series Mech. Math. 2022. Issue 94. P. 89–97 http://publications.lnu.edu.ua/bulletins/index.php/mmf doi: http://dx.doi.org/10.30970/vmm.2022.94.089-097

УДК 517.53

REMARKS TO LOWER ESTIMATES FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

Myroslav SHEREMETA¹, Markiyan DOBUSHOVSKYY²

 ¹ Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE e-mail: m.m.sheremeta@gmail.com
 ² Jan Kochanowski University of Kielce, Żeromskiego 5, 25-369 Kielce, POLAND e-mail: mdobush19@gmail.com

For the analytic in $\mathbb{D}_R = \{z : |z| < R\}$ characteristic function φ of a probability law F it is investigated conditions on $W_F(x) = 1 - F(x) + F(-x)$ $(x \ge 0)$ and a positive continuous function h increasing to $+\infty$, under which $h(\ln M(r,\varphi)) \ge (1+o(1))/(R-r)$ or $\ln M(r,\varphi)) \ge (1+o(1))h(1/(R-r))$ as $r \uparrow R$, where $M(r,\varphi) = \max\{|\varphi(z)| : |z| = r < R\}$.

Key words: characteristic function, probability law, lower estimate.

1. INTRODUCTION

A non-decreasing function F continuous on the left on $(-\infty, +\infty)$ is said [1, p. 10] to be a probability law if $\lim_{x \to +\infty} F(x) = 1$ and $\lim_{x \to -\infty} F(x) = 0$, and the function

$$\varphi(z) = \int_{-\infty}^{+\infty} e^{izx} dF(x)$$

defined for real z is called [1, p. 12] a characteristic function of this law. If φ has an analytic continuation on the disk $\mathbb{D}_R = \{z : |z| < R\}, 0 < R \leq +\infty$, then we call φ an analytic in \mathbb{D}_R characteristic function of the law F. Further we always assume that \mathbb{D}_R is the maximal disk of the analyticity of φ . It is known [1, p. 37-38] that φ is an analytic in \mathbb{D}_R characteristic function of the law F if and only if

$$W_F(x) =: 1 - F(x) + F(-x) = O(e^{-rx})$$

²⁰²⁰ Mathematics Subject Classification: 30A10, 30J99, 60E10

 $[\]bigodot$ Sheremeta, M., Dobushovskyy, M., 2022

as $0 \le x \to +\infty$ for every $r \in [0, R)$. Hence it follows that

$$\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{W_F(x)} = R.$$

If we put

$$M(r, \varphi) = \max\{|\varphi(z)| : |z| = r\}$$
 and $\mu(r, \varphi) = \sup\{W_F(x)e^{rx} : x \ge 0\}$

for $0 \le r < R$ then [1, p. 55] $\mu(r, \varphi) \le 2M(r, \varphi)$. Therefore, the estimates from below for $\ln M(r, \varphi)$ follow from such estimates for $\ln \mu(r, \varphi)$. Further we assume that $\ln \mu(r, \varphi) \uparrow +\infty$ as $r \uparrow R$, i. e.

(1)
$$\overline{\lim_{x \to +\infty}} W_F(x) e^{Rx} = +\infty.$$

By L_{si} we denote a class of positive continuous functions α on $(-\infty, +\infty)$ such that $\alpha(x) = \alpha(x_0)$ for $x \leq x_0, 0 < \alpha(x) \uparrow +\infty$ and $\alpha(cx) = (1+o(1))\alpha(x)$ as $x_0 \leq x \uparrow +\infty$ for each $c \in (0, +\infty)$, i. e. α is a slowly increasing function. In [2] the following statements are proved.

Theorem A. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\frac{d \ln \beta^{-1}(\alpha(x))}{d \ln x} \leq q < 1$ for all x large enough and $\alpha \left(x/\beta^{-1}(\alpha(x)) \right) = (1 + o(1))\alpha(x)$ as $x \to +\infty$, and φ be the analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of a probability law F, for which $\beta \left(\frac{x_k}{\ln (W_F(x_k)e^{Rx_k})} \right) \leq \alpha(x_k)$ for some increasing to $+\infty$ sequence (x_k) of positive numbers such that $\beta^{-1}(\alpha(x_{k+1})) = O(\beta^{-1}(\alpha(x_k)))$ as $k \to \infty$. Then

(2)
$$\alpha(\ln \mu(r, f)) \ge (1 + o(1))\beta(1/(R - r)), \quad r \uparrow R.$$

Theorem B. Let $\alpha \in L_{si}$, $\beta \in L_{si}$, $\frac{d \ln \alpha^{-1}(\beta(x))}{d \ln x} \leq q < 1$ for all x large enough, $\frac{d\alpha^{-1}(\beta(x))}{dx} = \frac{1}{f(x)} \downarrow 0$ and $\alpha^{-1}(\beta(f(x))) = O(\alpha^{-1}(\beta(x)))$ as $x \to +\infty$, and φ be an analytic in \mathbb{D}_R , $0 < R < +\infty$, characteristic function of a probability law F, for which $\alpha \left(\ln \left(W_F(x_k) e^{Rx_k} \right) \right) \geq \beta(x_k)$ for some increasing to $+\infty$ sequence (x_k) of positive numbers such that $\lim_{k \to \infty} (f(x_{k+1})/f(x_k)) < 2$. Then asymptotical inequality (2) holds.

It is clear that if one of the functions α or β is a power function then the conditions of neither Theorem A nor Theorem B are satisfied. These conditions do not hold also if $\alpha(x) \simeq \beta(x)$ as $x \to +\infty$. Here we examine the cases when one of functions α or β is power. Without loss of generality we can assume that $\alpha(x) \equiv x$ or $\beta(x) \equiv x$ for $x \ge x_0$. Also we examine the case when $\beta(x) = \rho\alpha(x)$ for all $x \ge x_0$, where $0 < \rho < +\infty$.

2. Cases of power functions

We use a result from [2]. Let $\Omega(R)$ be a class of positive unbounded on (0, R) function Φ such that the derivative Φ' is positive continuously differentiable and increasing to $+\infty$ on (0, R). For $\Phi \in \Omega(R)$ we denote by ϕ the inverse function to Φ' , and let $\Psi(r) = r - \Phi(r)/\Phi'(r)$ be the function associated with Φ in the sense of Newton.

90

Lemma [2]). Let $\Phi \in \Omega(R)$, $0 < R < +\infty$, and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F, for which (1) holds and

(3)
$$\ln W_F(x_k) \ge -x_k \Psi(\phi(x_k))$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that $\phi(x_{k+1}) - \phi(x_k) \le h(x_{k+1})$, where h is positive continuous and non-increasing function on $[x_0, +\infty)$ and $R > \phi(x) - h(x) \to R$ as $x \to +\infty$. Then

(4)
$$\ln \mu(r,\varphi) \ge \Phi(r - h(\Phi'(r))), \quad r_0 \le r < R.$$

At first we consider the case when $\beta(x) \equiv x$ for $x \ge x_0$.

Theorem 1. Let $\alpha \in L_{si}$, $\alpha(x/\alpha(x)) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F. If

(5)
$$\ln\left(W_F(x_k)e^{Rx_k}\right) \ge x_k/\alpha(x_k)$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that

 $\alpha(x_{k+1}) = (1 + o(1))\alpha(x_k) \qquad as \qquad k \to \infty$

then

(6)
$$\alpha(\ln M(r,\varphi)) \ge (1+o(1))/(R-r), \quad r \uparrow R.$$

Proof. We can assume that the function α is continuously differentiable. Then $\alpha \in L_{si}$ if and only if $x\alpha'(x)/\alpha(x) \to 0$ as $x \to +\infty$. Therefore, using L'Hospital's rule we obtain

$$\lim_{x \to +\infty} \frac{1}{x/\alpha(x)} \int_{x_0}^{x_k} \frac{dt}{\alpha(t)} \le \lim_{x \to +\infty} \frac{\alpha(x)}{\alpha(x) - x\alpha'(x)} = 1,$$

i.e., $x/\alpha(x) \ge (1+o(1)) \int_{x_0}^{x_k} dt/\alpha(t)$ as $x \to +\infty$ and, therefore, in view of (5) the next

result is obtained

(7)
$$\ln W_F(x_k) \ge -Rx_k + (1+o(1)) \int_{x_0}^{x_k} \frac{dt}{\alpha(t)}, \quad k \to \infty.$$

We choose a function $\Phi \in \Omega(R)$ so that

$$\Phi(r) = \int_{r_0}^r \alpha^{-1} ((1-\varepsilon)/(R-x)) dx$$

for $r_0 < r_0^* \le r < R$, where $\varepsilon \in (0, 1)$ is an arbitrary number. Then

$$f'(r) = \alpha^{-1}((1-\varepsilon)/(R-x)), \qquad \phi(x) = R - (1-\varepsilon)/\alpha(x)$$

for $x \ge x^*$ and, since $(x\Psi(\phi(x)))' = \phi(x)$, we have

$$x\Psi(\phi(x)) = Rx - (1-\varepsilon)\int_{x_0}^{\infty} dt/\alpha(t) + \text{const.}$$

Hence and from (7) the inequality (3) is being followed.

Putting $h(x) = \delta(1-\varepsilon)/\alpha(x)$, where $\delta \in (0, 1)$ is an arbitrary number, we obtain $h(\Phi'(r)) = \delta(R-r), \ \phi(x) - h(x) \uparrow R$ as $x \to +\infty$ and since $\alpha(x_{k+1}) \leq (1+\delta)\alpha(x_k)$ for all $k \geq k_0$ we have

$$\phi(x_{k+1}) - \phi(x_k) = \frac{1 - \varepsilon}{\alpha(x_k)} - \frac{1 - \varepsilon}{\alpha(x_{k+1})} \le \le (1 - \varepsilon) \left(\frac{1 + \delta}{\alpha(x_{k+1})} - \frac{1}{\alpha(x_{k+1})} \right) = h(x_{k+1}).$$

Finally, for every $\eta \in (\delta,1)$ and all $r \geq (r_0^* + \eta R)/(1+\eta)$ we have

$$\begin{split} \Phi(r-h(\Phi'(r))) &= \Phi(r-\delta(R-r)) \ge \\ &\geq \int_{r-\eta(R-r)}^{r-\delta(R-r)} \alpha^{-1} \left(\frac{1-\varepsilon}{R-x}\right) dx \ge \\ &\geq (\eta-\delta)(R-r)\alpha^{-1} \left(\frac{1-\varepsilon}{(1+\eta)(R-r)}\right). \end{split}$$

Therefore, by Lemma in view of the conditions $\alpha \in L_{si}$ and $\alpha(x/\alpha(x)) = (1 + o(1))\alpha(x)$ as $x \to +\infty$ we obtain

$$\begin{aligned} \alpha(\ln \mu(r,\varphi)) &\geq \alpha \left((\eta - \delta)(R - r)\alpha^{-1} \left(\frac{1 - \varepsilon}{(1 + \eta)(R - r)} \right) \right) = \\ &= \frac{(1 + o(1))(1 - \varepsilon)}{(1 + \eta)(R - r)}, \quad r \uparrow R. \end{aligned}$$

Since $\ln M(r,\varphi) \ge \ln \mu(r,\varphi) + \ln 2$ and $\alpha \in L_{si}$, hence in view of the arbitrariness of ε and η we obtain (6). Theorem 1 is proved.

In the case when $\alpha(x) \equiv x$ for $x \geq x_0$ the following theorem is correct.

Theorem 2. Let $\beta \in L_{si}$, $\beta'(x) \downarrow 0$, $\beta(1/\beta'(x)) = (1 + o(1))\beta(x)$ as $x \to +\infty$ and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F. If

(8)
$$\ln\left(W_F(x_k)e^{Rx_k}\right) \ge \beta(x_k)$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that

$$\overline{\lim}_{k \to \infty} (\beta'(x_k) / \beta'(x_{k+1})) < 2$$

then

(9)
$$\ln M(r,\varphi) \ge (1+o(1))\beta(1/(R-r)), \quad r \uparrow R.$$

Proof. We put $x\Psi(\phi(x)) = Rx - \beta(x)$. Then (8) implies (3). Since

$$\phi(x) = (x\Psi(\phi(x)))' = R - \beta'(x),$$

we have $r = R - \beta'(\Phi'(r))$, i.e., $\Phi'(r) = B(R - r)$, where B is the function inverse to β' and $B(t) \uparrow +\infty$ as $t \downarrow 0$. Hence it follows that

$$(r) = \int_{r_0}^{r} B(R-x)dx + \text{const} = = -\int_{t_0}^{B(R-r)} td\beta'(t) + \text{const} = = -B(R-r)\beta'(B(R-r)) + \beta(B(R-r)) + \text{const} = = (1+o(1))\beta(B(R-r)), \quad r \uparrow R,$$

because $B(R-r) \uparrow +\infty$ as $r \uparrow R$ and $x\beta'(x)/\beta(x) \to 0$ as $x \to +\infty$. But the condition $\beta(1/\beta'(x)) = (1+o(1))\beta(x)$ as $x \to +\infty$ implies the equality $\beta(t) = (1+o(1))\beta(B(1/t))$ as $t \to +\infty$ and, thus, $\beta(B(R-r)) = (1+o(1))\beta(1/(R-r))$ as $r \uparrow R$. Therefore, $\Phi(r) = (1+o(1))\beta(1/(R-r))$ as $r \uparrow R$.

Now if
$$h(x) = a(R - \phi(x))$$
, where $a \in (0, 1)$, then $h(\Phi'(r)) = a(R - r)$ and

(10)
$$\Phi(r - h(\Phi'(r))) = (1 + o(1))\beta\left(\frac{1}{(1+a)(R-r)}\right) = (1 + o(1))\beta\left(\frac{1}{R-r}\right), \quad r \uparrow R.$$

It is easy to see that $\phi(x) - h(x) \uparrow R$ as as $x \to +\infty$ and the condition

$$\phi(x_{k+1}) - \phi(x_k) \le h(x_{k+1})$$

is equivalent to the condition

Φ

$$\beta'(x_k) - \beta'(x_{k+1}) \le a\beta'(x_{k+1}),$$

that is $\beta'(x_k) \leq (1+a)\beta'(x_{k+1})$. Since a < 1 the last condition holds because

$$\overline{\lim}_{k \to \infty} (\beta'(x_k) / \beta'(x_{k+1})) < 2.$$

Therefore, by Lemma from (10) we obtain (9). Theorem 2 is proved.

3. The case
$$\beta(x) = \rho \alpha(x)$$

Using Lemma we prove also the following theorem.

Theorem 3. Let $\alpha \in L_{si}$ be a continuously differentiable function and φ be an analytic in \mathbb{D}_R characteristic function of a probability law F. Suppose that one of the following conditions holds:

1)
$$1 < \varrho < +\infty$$
, $\lim_{x \to +\infty} \frac{d \ln \alpha^{-1}(x)}{d \ln \alpha^{-1}(\varrho x)} = q(\varrho) < 1$, $\alpha \left(\frac{\alpha^{-1}(\varrho \alpha(x))}{x}\right) = (1 + o(1))\varrho \alpha(x)$
as $x \to +\infty$ *and*
(11) $\alpha \left(\frac{x_k}{\ln (W_F(x_k)e^{Rx_k})}\right) \le \frac{\alpha(x_k)}{\varrho}$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that

$$\alpha^{-1}(\alpha(x_{k+1})/\varrho) = O(\alpha^{-1}(\alpha(x_k)/\varrho)) \quad as \quad k \to \infty;$$

2) $0 < \varrho < 1, \quad \lim_{x \to +\infty} \frac{d \ln \alpha^{-1}(\varrho x)}{d \ln \alpha^{-1}(x)} = q(\varrho) < 1, \quad \frac{d\alpha^{-1}(\varrho \alpha(x))}{dx} = \frac{1}{f(x)} \downarrow 0$
 $\alpha^{-1}(\varrho \alpha(f(x))) = O(\alpha^{-1}(\varrho \alpha(x))) \quad as \quad x \to +\infty \quad and$

(12)
$$\alpha(\ln\left(W_F(x_k)e^{Rx_k}\right) \ge \varrho\alpha(x_k)$$

for some increasing to $+\infty$ sequence (x_k) of positive numbers such that $\lim_{k\to\infty} \frac{f(x_{k+1})}{f(x_k)} < 2.$

Then

(13)
$$\alpha(\ln M(r,\varphi)) \ge (1+o(1))\varrho\alpha(1/(R-r)), \quad r \uparrow R.$$

Proof. At first let $1 < \rho < +\infty$. Then from (11) it follows that

$$\ln\left(W_F(x_k)e^{Rx_k}\right) \ge -Rx_k + \frac{x_k}{\alpha^{-1}(\alpha(x_k)/\varrho)}.$$

Since $\lim_{\substack{x \to +\infty \\ x}} \frac{d \ln \alpha^{-1}(x)}{d \ln \alpha^{-1}(\varrho x)} = q(\varrho) < 1$, we have $\frac{d \ln \alpha^{-1}(\alpha(x)/\varrho)}{d \ln x} \le (1 + o(1))q(\varrho)$ and $\frac{x}{\alpha^{-1}(\alpha(x)/\varrho)} \uparrow +\infty$ as $x_0 \le x \to +\infty$. Therefore, using L'Hospital's rule we get

$$\frac{x}{\alpha^{-1}(\alpha(x)/\varrho)} \ge (1+o(1))(1-q(\varrho)) \int_{x_0}^x \frac{dt}{\alpha^{-1}(\alpha(t)/\varrho)}, \quad x \to +\infty,$$

and, thus,

(14)
$$\ln \left(W_F(x_k) e^{Rx_k} \right) \ge -Rx_k + (1-q_1) \int_{x_0}^{x_k} \frac{dt}{\alpha^{-1}(\alpha(t)/\varrho)}$$

for each $q_1 \in (q(\varrho), 1)$ and for all x large enough. We choose a function $\Phi \in \Omega(R)$ so that for $r_0 \le r < R$

(15)
$$\Phi(r) = \int_{r_0}^{r} \alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{R-x} \right) \right) dx, \quad q_1 < q_2 < 1.$$

Then

$$\Phi'(r) = \alpha^{-1} \left(\varrho \alpha \left(\frac{1 - q_2}{R - r} \right) \right), \quad \phi(x) = R - \frac{1 - q_2}{\alpha^{-1}(\alpha(x)/\varrho))}$$

 and

$$x\Psi(\phi(x)) = \int_{x_0}^x \phi(t)dt + \text{const} = Rx - (1 - q_2)\int_{x_0}^x \frac{dt}{\alpha^{-1}(\alpha(t)/\varrho)} + \text{const}$$

i.e., in view of (14) and the inequality $q_1 < q_2$ we get (3).

Since

$$\alpha^{-1}(\alpha(x_{k+1})/\varrho) \le K\alpha^{-1}(\alpha(x_k)/\varrho) \quad (K>1)$$

for all $k \ge 1$, we have

$$\frac{1}{\alpha^{-1}(\alpha(x_k)/\varrho)} - \frac{1}{\alpha^{-1}(\alpha(x_{k+1})/\varrho)} \le \frac{K-1}{\alpha^{-1}(\alpha(x_k)/\varrho)} \le \frac{K(K-1)}{\alpha^{-1}(\alpha(x_{k+1})/\varrho)}.$$

Therefore, putting

$$h(x) = \frac{K(K-1)(1-q_2)}{\alpha^{-1}(\alpha(x)/\varrho)},$$

we get

$$\phi(x) - h(x) = R - \frac{(K^2 + 1 - K)(1 - q_2)}{\alpha^{-1}(\alpha(x)/\varrho)} \uparrow R, \quad x \to +\infty,$$

$$h(\Phi'(r)) = K(K - 1)(R - r) \quad \text{and} \quad \phi(x_{k+1}) - \phi(x_k) \le h(x_{k+1})$$

for all $k \geq 1$.

Finally, for all $r \in [R/2, R)$ from (15) follows that

$$\begin{split} \Phi(r) &\geq \int_{2r-R}^{r} \alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{R-x} \right) \right) dx \geq \\ &\geq (R-r) \alpha^{-1} \left(\varrho \alpha \left(\frac{1-q_2}{2(R-r)} \right) \right). \end{split}$$

Therefore, by Lemma

$$\ln \mu(r,\varphi) \ge (R - r + h(\Phi'(r)))\alpha^{-1} \left(\varrho \alpha \left(\frac{1 - q_2}{2(R - r + h(\Phi'(r)))} \right) \right) = (K^2 + 1 - K)(R - r))\alpha^{-1} \left(\varrho \alpha \left(\frac{1 - q_2}{2(K^2 + 1 - K)(R - r))} \right) \right),$$

whence in view of conditions $\alpha \in L_{si}$ and

$$\alpha\left(\frac{\alpha^{-1}(\varrho\alpha(x))}{x}\right) = (1+o(1))\varrho\alpha(x)$$

as $x \to +\infty$ we get

$$\alpha(\ln M(r,\varphi)) \ge (1+o(1))\alpha(\ln \mu(r,\varphi)) \ge (1+o(1))\varrho\alpha(1/(R-r))$$

as $r \uparrow R$, i.e., (13) is proved.

Now let $0 < \rho < 1$. If we put

$$x\Psi(\phi(x)) = Rx - \alpha^{-1}(\varrho\alpha(x))$$

then (12) implies (3),

$$\phi(x) = R - 1/f(x), \qquad \Phi'(r) = f^{-1}(1/(R-r))$$

and since

$$\frac{d\ln \alpha^{-1}(\varrho x)}{d\ln x} \le (1+o(1))q(\varrho)$$

as $x \to +\infty$, we have

$$\begin{split} \Phi(r) &= \int_{r_0}^r f^{-1} \left(\frac{1}{R-x} \right) dx + \text{const} = \\ &= \int_{f^{-1}(1/(R-r_0))}^{f^{-1}(1/(R-r))} td \left(\frac{-1}{f(t)} \right) + \text{const} = \\ &= -(R-r)f^{-1} \left(\frac{1}{R-r} \right) + \alpha^{-1} \left(\varrho \alpha \left(f^{-1} \left(\frac{1}{R-r} \right) \right) \right) + \text{const} = \\ &= \alpha^{-1} \left(\varrho \alpha \left(f^{-1} \left(\frac{1}{R-r} \right) \right) \right) \left\{ 1 - \frac{(R-r)f^{-1} \left(\frac{1}{R-r} \right) + \text{const}}{\alpha^{-1} \left(\varrho \alpha \left(f^{-1} \left(\frac{1}{R-r} \right) \right) \right)} \right\} \ge \\ &\ge (1-q)\alpha^{-1} \left(\varrho \alpha \left(f^{-1} \left(\frac{1}{R-r} \right) \right) \right) \end{split}$$

for each $q \in (q(\varrho), 1)$ and all $r \in [r_0(q), R)$. Since the condition

$$\alpha^{-1}(\varrho\alpha(f(x))) = O(\alpha^{-1}(\varrho\alpha(x))) \quad \text{as} \quad x \to +\infty$$

implies the inequality

$$\alpha^{-1}\left(\varrho\alpha\left(\frac{1}{R-r}\right)\right) \le K\alpha^{-1}\left(\varrho\alpha\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right), \quad K = \text{const} > 0,$$

we $\Phi(r) \ge \frac{1-q}{\alpha}\alpha^{-1}\left(\varrho\alpha\left(\frac{1}{R-r}\right)\right),$ Therefore, if we put $h(x) = q(R-r)$

 $-\alpha \quad \left(\frac{\varrho\alpha}{R-r}\right)$. Therefore we hav $\phi(x)),$ $r(r) \leq -\overline{K}$ t we put h(x) = a(.0 < a < 1, then

(16)
$$\Phi(r-h(\Phi'(r)) \ge \frac{1-q}{K} \alpha^{-1} \left(\varrho \alpha \left(\frac{1}{(1+a)(R-r)} \right) \right).$$

It is clear that $\phi(x_{k+1}) - \phi(x_k) \leq h(x_{k+1})$ if and only if $f(x_{k+1}) \leq (1+a)f(x_k)$ and the last condition follows from the condition $\lim_{k\to\infty} \frac{f(x_{k+1})}{f(x_k)} < 2$. Therefore, by Lemma from (16) in view of conditions $\alpha \in L_{si}$ we get

$$\alpha(\ln M(r,\varphi)) \ge (1+o(1))\alpha(\ln \mu(r,\varphi)) \ge (1+o(1))\varrho\alpha(1/(R-r)) \quad \text{as} \quad r \uparrow R,$$

i.e., (13) is proved again. The proof of Theorem 3 is completed.

Choosing $\alpha(x) = \ln x$ for $x \ge e$ from Theorem 3 we obtain the following statement.

Corollary 1. Let φ be an analytic in \mathbb{D}_R characteristic function of a probability law F. Suppose that one of the following conditions holds:

- 1 < ρ < +∞ and ln (W_F(x_k)e^{Rx_k}) ≥ x_k^{(ρ-1)/ρ} for some increasing to +∞ sequence (x_k) of positive numbers such that x_{k+1} = O(x_k) as k → ∞;
 2) 0 < ρ < 1 and ln (W_F(x_k)e^{Rx_k}) ≥ x_k^ρ for some increasing to +∞ sequence (x_k)
- of positive numbers such that $\overline{\lim_{k\to\infty}}\left(\frac{x_{k+1}}{x_k}\right)^{1-\varrho} < 2.$

96

REMARKS TO LOWER ESTIMATES FOR CHARACTERISTIC FUNCTIONS ISSN 2078-3744. Вісник Львів. ун-ту. Серія мех.-мат. 2022. Випуск 94

Then $\ln \ln M(r, \varphi) \ge (1 + o(1)) \rho \ln (1/(R - r))$ as $r \uparrow R$.

References

- 1. Ju. V. Linnik and I. V. Ostrovskii, *Decompositon of random variables and vectors*, Nauka, Moscow, 1972 (in Russian).
- 2. M. I. Parola and M. M. Sheremeta, *Estimates from below for characteristic functions of probability laws*, Mat. Stud. **39** (2013), no. 1, 54-66.

Стаття: надійшла до редколегії 01.08.2022 прийнята до друку 22.12.2022

ЗАУВАЖЕННЯ ДО ОЦІНОК ЗНИЗУ ХАРАКТЕРИСТИЧНИХ ФУНКЦІЙ З ЙМОВІРНІСНОГО РОЗПОДІЛУ

Мирослав ШЕРЕМЕТА¹, Маркіян ДОБУШОВСЬКИЙ²

¹Львівський національний університет імені Івана Франка, вул. Університетська 1, 79000, м. Львів e-mail: m.m.sheremeta@gmail.com ²Jan Kochanowski University of Kielce, Zeromskiego 5, 25-369 Kielce, POLAND e-mail: mdobush19@gmail.com

Для аналітичної в $\mathbb{D}_R = \{z : |z| < R\}$ характеристичної функції φ ймовірнісного розподілу F досліджені умови на $W_F(x) = 1 - F(x) + F(-x)$ $(x \ge 0)$ і додатної неперервної функції h зростаючої до $+\infty$ такої, що $h(\ln M(r,\varphi)) \ge (1+o(1))/(R-r)$ або $\ln M(r,\varphi)) \ge (1+o(1))h(1/(R-r))$ при $r \uparrow R$, де $M(r,\varphi) = \max\{|\varphi(z)| : |z| = r < R\}.$

Ключові слова: характерестична функція, ймовірнісний закон, оцінка знизу.