ISSN 2078-3744. Bicuux Jlveis. yu-my. Cepisa mex.-mam. 2022. Bunycx 94. C. 89-97
Visnyk of the Lviv Univ. Series Mech. Math. 2022. Issue 94. P. 89-97
http://publications.lnu.edu.ua/bulletins /index.php /mimf
doi: http://dx.doi.org/10.30970/vmm.2022.94.089-097

VIK 517.53

REMARKS TO LOWER ESTIMATES FOR CHARACTERISTIC
FUNCTIONS OF PROBABILITY LAWS

Myroslav SHEREMETA!, Markiyan DOBUSHOVSKYY?

! Tvan Franko National University of Lviv,
Universytetska Str., 1, 79000, Lviv, UKRAINE
e-mail: m.m.sheremeta@gmail.com
2 Jan Kochanowski University of Kielce, Zeromskiego 5,
25-369 Kielce, POLAND
e-mail: mdobush19@Qgmail.com

For the analytic in Dr = {2z : |2| < R} characteristic function ¢ of a
probability law F it is investigated conditions on Wg(z) =1 — F(z) + F(—x)
(z > 0) and a positive continuous function h increasing to +oo, under which
h(In M(r,9)) > (1+o(1))/(R— 1) or In M(r,)) > (1 +o(1))h(1/(R — 1)) as
r 1 R, where M(r, ) = max{|p(z)| : |z| =r < R}.
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1. INTRODUCTION

A non-decreasing function F' continuous on the left on (—oo, +00) is said [1, p. 10]
to be a probability law if lirf F(z)=1and lim F(x)=0, and the function
xr—r+00 r—r— 00

—+oo

o) = [ ear)

defined for real z is called [1, p. 12] a characteristic function of this law. If ¢ has an
analytic continuation on the disk D = {2z : |2| < R}, 0 < R < +o0, then we call ¢ an
analytic in Dg characteristic function of the law F'. Further we always assume that Dg
is the maximal disk of the analyticity of ¢. It is known [1, p. 37-38] that ¢ is an analytic
in Dg characteristic function of the law F' if and only if

WF(J?) =:1—- F(x) + F(—l‘) — O(e—rm)
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as 0 <z — +oo for every r € [0, R). Hence it follows that

I 1 1 1
m —nN-—7F-7-=
z—4o0 L WF (I)

If we put
M(r, ) = max{|p(z)] : |z| =r} and pu(r,¢) =sup{Wpr(z)e™ : x > 0}

for 0 < r < R then [1, p. 55] pu(r,¢) < 2M (r, ). Therefore, the estimates from below for
In M (r, ) follow from such estimates for In p(r, ¢). Further we assume that In u(r, ) 1
400 asr T R, i. e.

(1) lim Wg(z)ef™ = +oc.

r—r+00
By Lg; we denote a class of positive continuous functions « on (—oo, +00) such that
a(z) = alzg) for z < xg, 0 < ax) T +o0 and a(cx) = (1+0(1))a(x) as xo < x T 400 for
each ¢ € (0, +00), i. e. v is a slowly increasing function. In [2] the following statements
are proved.

dln g1
Theorem A. Let o« € Ly, B € Ly, néT(;(x))

enough and o (z/B7(a(z))) = (1 + o(1))a(z) as x — +oo, and ¢ be the analytic
in Dr, 0 < R < +4o0, characteristic function of a probability law F, for which

/3( Tk

In (Wg(z)eftr)
ve numbers such that B~ (a(zr11)) = O(B~(a(zk))) as k — co. Then

(2) a(ln p(r, f)) = (1 +0(1)B(1/(R=7)), r1TR.
dln o~ 1(B(z))

< q < 1 for all x large

) < a(xy) for some increasing to +oo sequence (xy) of positi-

Theorem B. Let a € Ly;, § € Ly,

dln z
W = f(lm) 10 and o= Y(B(f(z))) = O(a"1(B(x))) as * — +oo, and ¢ be

an analytic in Dr, 0 < R < 400, characteristic function of a probability law F, for
which o (In (Wg(zy)ef™*)) > B(xy) for some increasing to +00 sequence (1) of positive

< q < 1 for all x large enough,

numbers such that km (f(xg41)/f(zr)) < 2. Then asymptotical inequality (2) holds.
— 00

It is clear that if one of the functions « or 3 is a power function then the conditions
of neither Theorem A nor Theorem B are satisfied. These conditions do not hold also if
a(x) < B(x) as © — +oo. Here we examine the cases when one of functions « or f is
power. Without loss of generality we can assume that a(z) = x or 8(x) = x for = > xo.
Also we examine the case when 5(z) = pa(x) for all z > xg, where 0 < o < 4o00.

2. CASES OF POWER FUNCTIONS

We use a result from [2]. Let Q(R) be a class of positive unbounded on (0, R) function
® such that the derivative @' is positive continuously differentiable and increasing to
+oo on (0, R). For ® € Q(R) we denote by ¢ the inverse function to @', and let ¥(r) =
r — ®(r)/®'(r) be the function associated with ® in the sense of Newton.
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Lemma (2]). Let ® € Q(R), 0 < R < +00, and ¢ be an analytic in D characteristic
function of a probability law F, for which (1) holds and
(3) In Wr(zg) > —2, V(¢ (1))

for some increasing to +oo sequence (x) of positive numbers such that ¢(zp41)—@(zr) <
h(zk+1), where h is positive continuous and non-increasing function on [xg, +00) and
R > ¢(z) — h(xz) = R as * — +o00. Then

(4) In u(r,p) > ®(r — h(@(r)), ro <r <R,

At first we consider the case when f(x) = x for > z.

Theorem 1. Let o € Lg;, a(z/a(z)) = (1+0(1))a(x) as x — +0o and ¢ be an analytic
in Dg characteristic function of a probability law F. If
(5) In (Wg(zk)e™) >y /alzy)
for some increasing to +00 sequence (xy) of positive numbers such that
a(zr41) = (14 o(1))a(zy) as k— oo
then
(6) alln M(r,¢)) = (1 +o(1)/(R—7), 1R,

Proof. We can assume that the function « is continuously differentiable. Then o € Lg;
if and only if za/(z)/a(z) — 0 as & — 4o00. Therefore, using L’Hospital’s rule we obtain

1 Fa . — a
lim — [ —< lim —————— =1,
z—+oo x/a(x) | a(t) T =t alz) — xa/(x)
Zo
Tr

ie., z/alx) > (1 + o(1)) /dt/a(t) as x — +oo and, therefore, in view of (5) the next

result is obtained ’
t
(7) In We(zh) > —Rax + (1 + o(1)) / 5 ko

Zo

We choose a function ® € Q(R) so that

O(r) = /a_l((l —¢e)/(R—x))dx
for ro < r§ <r < R, where ¢ € (0, 1) is an arbitrary number. Then
(r)=a"(1-e)/(R-2), oé(@)=R-(1-¢e)/a()
for x > 2* and, since (zU(p(x)))’ = ¢(x), we have
2¥(p(x)) = R — (1 —¢) /dt/a(t) + const.

Zo
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Hence and from (7) the inequality (3) is being followed.

Putting h(z) = 6(1 — ¢)/a(z), where § € (0, 1) is an arbitrary number, we obtain
h(®'(r)) = 6(R—r), ¢(x) — h(x) T R as ¢ — 400 and since a(zg11) < (1 + §)a(zy) for
all £ > ko we have

1—¢ 1—¢
P(Tt1) — P(or) = awr) ol S

§(1_6)< 145 1 )_

a(Tps1)  (Tpt1)

= h($k+1).
Finally, for every n € (,1) and all » > (r§ + nR)/(1 + n) we have
O(r — h(®'(r) =2(r—§(R—r)) >

r—8(R—r) .
2 =m0 ()

Therefore, by Lemma in view of the conditions « € Ly; and a(x/a(x)) = (1 + o(1))a(x)
as £ — 400 we obtain

- et B Sl O
a(ln p(r,p)) > « <(77 §)(R—r) ((1 ) (R - 7«)))
(1+o(1)(1—2)

= , rTR.
(L +n)(R =)
Since In M (r, ) > In p(r,¢) +1n 2 and « € L;, hence in view of the arbitrariness of ¢
and 1 we obtain (6). Theorem 1 is proved. O

In the case when a(z) = x for x > z( the following theorem is correct.

Theorem 2. Let 8 € Ly, 8'(z) 10, B(1/5'(z)) = (1 + 0(1))B(x) as x — 400 and ¢ be
an analytic in Dr characteristic function of a probability law F. If

(8) In (Wr(zk)e ™) > B(xk)
for some increasing to +-00 sequence (z1) of positive numbers such that
Jim (B'(zx)/B'(wx41)) <2
then
(9) In M(r,¢) 2 (14+0(1))8(1/(R—=7)), rTR
Proof. We put 2¥(¢(x)) = Rz — B(z). Then (8) implies (3). Since
o(z) = (2¥(4(2)))" = R — B'(z),
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we have r = R — 3/(®'(r)), i.e., '(r) = B(R — r), where B is the function inverse to 3’
and B(t) 1 400 as ¢ | 0. Hence it follows that
O(r) = /B(R — z)dx + const =
K B(R—r)
=— / tdp'(t) + const =
to

=—-B(R—-7)8'(B(R—r))+ B(B(R—7)) + const =

=1 +oM)B(B(R~71)), rTR,
because B(R —r) 1 +oo0 as r 1 R and zf'(x)/5(z) — 0 as x — +o00. But the condition
B(1/6'(x)) = (1+0(1))B(x) as x — +oo implies the equality 5(t) = (1+ o(1))58(B(1/t))
as t — 4oo and, thus, S(B(R— 1)) = (1 4+ 0(1))8(1/(R —r)) as r T R. Therefore,
O(r)=(1+0(1))8(1/(R—7)) asr T R.

Now if h(z) = a(R — ¢(x)), where a € (0, 1), then h(®'(r)) = a(R —r) and

B = h@0) = 1+ 008 (= ) =

— (1+0(1))8 <R1_r> . 1R

It is easy to see that ¢(z) — h(z) T R as as © — +oo and the condition
P(@rt1) — dln) < M(@pi1)

(10)

is equivalent to the condition

B () — B (xr41) < af(zh11),
that is 8'(zr) < (1 + a)B'(xg+1). Since a < 1 the last condition holds because

k@o(ﬂ/(ﬂfk)/ﬂl(zkﬂ)) <2

Therefore, by Lemma from (10) we obtain (9). Theorem 2 is proved. O

3. THE CASE f(z) = pa(x)
Using Lemma we prove also the following theorem.
Theorem 3. Let o € Lg; be a continuously differentiable function and ¢ be an analytic

in Di characteristic function of a probability law F. Suppose that one of the following
conditions holds:

a”'(ea(r))

— dlna ()
1)1 li _—
) I<e<+eo, s—too dln a~1(ox)

as r — +oo and

~ (o) <10 ) = L+ o()gata)

Tk a(zy)

(11) “ <ln (WF(xk)eRzk)) =7
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for some increasing to +00 sequence (xy) of positive numbers such that

aHa(zri1)/0) = O(a™ (a(ar)/e))  as Kk — oo
— dlnat(ex) da'(oa(z)) 1
2)0 < o <1, xl}f_{lwm = q(o) < 1, dr ) 10,
o (0ol f(x))) = O(a~(ga(x))) as & — +00 and

(12) a(ln (Wp(zk)eRz’“) > oa(xy)

for some increasing to +oo sequence (xy) of positive numbers such that
— f(x

fm L@

k—oo f(l‘k)

Then
(13) a(ln M(r,¢)) = (1+o0(1)ea(1/(R—=7)), 71T R.
Proof. At first let 1 < ¢ < +o0o. Then from (11) it follows that

In (Wp(a?k)eRz’“) > —Rxy, + Tk

a~Ha(zr)/0)

din o~ (a(x)/o)
dln z
T +00 as kg < & — +o0. Therefore, using L’Hospital’s rule we get

— dlna"(2)
. T
Since =100 d1n a~px)

a~t(a(z)/e)

— 4(0) < 1, we have < (1+ 0(1))q(g) and

x

x dt
s 2 e - Q(@)Zaua(t)@’ 5 - o0,
and, thus,
R —Rx — ka
(14) In (Wp(zg)e™*) > —Ray + (1 ql)/a_l(a(t)/g)

Zo

for each ¢1 € (q(p), 1) and for all = large enough. We choose a function ® € Q(R) so that
forrg <r <R

o o)~ o (o0 (522) ) ar. w<m<t

To

Then
/ -1 1—q o 1—¢qo
v =a (e (52)). o0 =R
and
dt
xU(p(x)) = /¢(t)dt + const = Rz — (1 — ¢2) / a1(at)/a) + const,

Zo Zo

i.e., in view of (14) and the inequality ¢1 < g2 we get (3).
Since

o N(a(@r)/e) < Ko (a(a)/o) (K > 1)
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for all £ > 1, we have
1 1 K-1

o« aen/e)  a Naler)/o) © a(a(@n)/o) :
K(K —1)

~ aYa(zrt1)/0)

Therefore, putting

we get
(K24+1-K)(1—qo)
a~!(a(z)/0)
h@'(r) =K(K -1)(R—r) and  ¢(zr+1) — dlak) < h(aps)
for all k£ > 1.
Finally, for all » € [R/2, R) from (15) follows that

o0z ] (o (2]

2r—R

_ 1—¢o
> (R— ! .
AN CIC =)
Therefore, by Lemma

st > (b D) (o0 () ) =

=(K’+1-K)(R—r))a"! (90‘ (2(K2 T 11—_1(?)(}% - 7‘)))) ’

whence in view of conditions o € Lg; and

o (D) — (14 o0)gate)

xT

¢(x) —h(z) = R —

TR, = — o0,

as r — +o0o we get

a(ln M(r,¢)) = (1+o(1))a(In pu(r,¢)) = (1+o(1))ea(1/(R — 1))

as r T R, i.e., (13) is proved.
Now let 0 < o < 1. If we put

2¥(¢(z)) = Rr — o™ (0a(x))
then (12) implies (3),
¢(x) =R—1/f(z),  @'(r)=f""(1/(R~7))

and since
dIn a=*(ox)

T S (1+0(1))q(e)
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as x — +o0o, we have

f 1
= /ffl <R—x> dx + const =
To
FH/(R-r))

e

~1(1/(R=r0))

=—(R—r)f! (R1—r> +at (Qa (f ! (R ))) + const =
(o )
00 o ()

for each g € (q(0),1) and all r € [ro(g), R). Since the condition
aea(f(2))) = O™ (ea(z))) as z — +oo

implies the inequality

o)) 25 () e

we have ®(r) > - bl GV (Qa <1>) Therefore, if we put h(z) = a(R — ¢(z)),

H

K R—r
0 <a<1,then

(16) O(r — h(® (1)) > LK% L (ga ((1+a)1(R—r))> .
It is clear that ¢(zgy1) — d(2k) < h(zke1) if and only if f(ags1) < (14 a)f(x) and the
f(@rt)

last condition follows from the condition lim
k—o0 f(:Ek)

(16) in view of conditions a € Lg; we get
alln M(r,9)) = (1+o())a(ln u(r,¢) = (1+o(1))ea(l/(R—1)) as r1R,

i.e., (13) is proved again. The proof of Theorem 3 is completed. (]

< 2. Therefore, by Lemma from

Choosing a(z) = In x for > e from Theorem 3 we obtain the following statement.

Corollary 1. Let ¢ be an analytic in Dy characteristic function of a probability law F.
Suppose that one of the following conditions holds:

1) 1 < o < +oo and In (Wg(zy)ef™r) > x,(f*l)/g for some increasing to +oo

sequence (xy) of positive numbers such that vix11 = O(xy) as k — oo;
2) 0< o<1 andIn (Wg(zg)ef™ ) > af for some increasing to +oco sequence (xy,)

1-0
— [z
of positive numbers such that lim < k+1> < 2.
k—o00 Tk
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ThenInln M(r,¢) > (1+0(1))oln(1/(R—1)) asr T R.
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Hns apamituanol B Dp = {2z : |2| < R} xapakrepucrmanol ¢yHxuil ¢
iimoBipHicHoro posuoziny F' mocninxeni ymoeu Ha Wre(z) = 1— F(z) + F(—x)
(zx > 0) i momaTHOi memepepsHOI dyHKHiI h 3pocTarowol 70 +00 TaKoi, Mo
h(ln M(r, ¢)) = (1 + o(1))/(R = r) abo In M(r,¢)) > (1 + o(1))h(1/(R —r))
upu r T R, ne M(r,p) = max{|p(2)|: |z] =r < R}.

Karowoei caosa: xapakTepecTwdHa (YHKINiS, IMOBIDHICHUN 3aKOH, OIIHKA

3HU3Y.



