
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2022. Âèïóñê 94. Ñ. 89�97

Visnyk of the Lviv Univ. Series Mech. Math. 2022. Issue 94. P. 89�97

http://publications.lnu.edu.ua/bulletins/index.php/mmf

doi: http://dx.doi.org/10.30970/vmm.2022.94.089-097

ÓÄÊ 517.53

REMARKS TO LOWER ESTIMATES FOR CHARACTERISTIC
FUNCTIONS OF PROBABILITY LAWS

Myroslav SHEREMETA1, Markiyan DOBUSHOVSKYY2

1Ivan Franko National University of Lviv,

Universytetska Str., 1, 79000, Lviv, UKRAINE

e-mail: m.m.sheremeta@gmail.com
2Jan Kochanowski University of Kielce, 
Zeromskiego 5,

25-369 Kielce, POLAND

e-mail: mdobush19@gmail.com

For the analytic in DR = {z : |z| < R} characteristic function ϕ of a
probability law F it is investigated conditions on WF (x) = 1− F (x) + F (−x)
(x ≥ 0) and a positive continuous function h increasing to +∞, under which
h(ln M(r, ϕ)) ≥ (1 + o(1))/(R− r) or ln M(r, ϕ)) ≥ (1 + o(1))h(1/(R− r)) as
r ↑ R, where M(r, ϕ) = max{|ϕ(z)| : |z| = r < R}.
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1. Introduction

A non-decreasing function F continuous on the left on (−∞, +∞) is said [1, p. 10]
to be a probability law if lim

x→+∞
F (x) = 1 and lim

x→−∞
F (x) = 0, and the function

ϕ(z) =

+∞∫
−∞

eizxdF (x)

de�ned for real z is called [1, p. 12] a characteristic function of this law. If ϕ has an
analytic continuation on the disk DR = {z : |z| < R}, 0 < R ≤ +∞, then we call ϕ an
analytic in DR characteristic function of the law F . Further we always assume that DR
is the maximal disk of the analyticity of ϕ. It is known [1, p. 37-38] that ϕ is an analytic
in DR characteristic function of the law F if and only if

WF (x) =: 1− F (x) + F (−x) = O(e−rx)
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as 0 ≤ x→ +∞ for every r ∈ [0, R). Hence it follows that

lim
x→+∞

1

x
ln

1

WF (x)
= R.

If we put

M(r, ϕ) = max{|ϕ(z)| : |z| = r} and µ(r, ϕ) = sup{WF (x)erx : x ≥ 0}

for 0 ≤ r < R then [1, p. 55] µ(r, ϕ) ≤ 2M(r, ϕ). Therefore, the estimates from below for
ln M(r, ϕ) follow from such estimates for ln µ(r, ϕ). Further we assume that ln µ(r, ϕ) ↑
+∞ as r ↑ R, i. e.

(1) lim
x→+∞

WF (x)eRx = +∞.

By Lsi we denote a class of positive continuous functions α on (−∞, +∞) such that
α(x) = α(x0) for x ≤ x0, 0 < α(x) ↑ +∞ and α(cx) = (1+o(1))α(x) as x0 ≤ x ↑ +∞ for
each c ∈ (0, +∞), i. e. α is a slowly increasing function. In [2] the following statements
are proved.

Theorem A. Let α ∈ Lsi, β ∈ Lsi,
d ln β−1(α(x))

d ln x
≤ q < 1 for all x large

enough and α
(
x/β−1(α(x))

)
= (1 + o(1))α(x) as x → +∞, and ϕ be the analytic

in DR, 0 < R < +∞, characteristic function of a probability law F , for which

β

(
xk

ln (WF (xk)eRxk)

)
≤ α(xk) for some increasing to +∞ sequence (xk) of positi-

ve numbers such that β−1(α(xk+1)) = O(β−1(α(xk))) as k →∞. Then

(2) α(ln µ(r, f)) ≥ (1 + o(1))β(1/(R− r)), r ↑ R.

Theorem B. Let α ∈ Lsi, β ∈ Lsi,
d ln α−1(β(x))

d ln x
≤ q < 1 for all x large enough,

dα−1(β(x))

dx
= 1

f(x) ↓ 0 and α−1(β(f(x))) = O(α−1(β(x))) as x → +∞, and ϕ be

an analytic in DR, 0 < R < +∞, characteristic function of a probability law F , for
which α

(
ln
(
WF (xk)eRxk

))
≥ β(xk) for some increasing to +∞ sequence (xk) of positive

numbers such that lim
k→∞

(f(xk+1)/f(xk)) < 2. Then asymptotical inequality (2) holds.

It is clear that if one of the functions α or β is a power function then the conditions
of neither Theorem A nor Theorem B are satis�ed. These conditions do not hold also if
α(x) � β(x) as x → +∞. Here we examine the cases when one of functions α or β is
power. Without loss of generality we can assume that α(x) ≡ x or β(x) ≡ x for x ≥ x0.
Also we examine the case when β(x) = %α(x) for all x ≥ x0, where 0 < % < +∞.

2. Cases of power functions

We use a result from [2]. Let Ω(R) be a class of positive unbounded on (0, R) function
Φ such that the derivative Φ′ is positive continuously di�erentiable and increasing to
+∞ on (0, R). For Φ ∈ Ω(R) we denote by φ the inverse function to Φ′, and let Ψ(r) =
r − Φ(r)/Φ′(r) be the function associated with Φ in the sense of Newton.
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Lemma ([2]). Let Φ ∈ Ω(R), 0 < R < +∞, and ϕ be an analytic in DR characteristic

function of a probability law F , for which (1) holds and

(3) ln WF (xk) ≥ −xkΨ(φ(xk))

for some increasing to +∞ sequence (xk) of positive numbers such that φ(xk+1)−φ(xk) ≤
h(xk+1), where h is positive continuous and non-increasing function on [x0, +∞) and

R > φ(x)− h(x)→ R as x→ +∞. Then

(4) ln µ(r, ϕ) ≥ Φ(r − h(Φ′(r))), r0 ≤ r < R.

At �rst we consider the case when β(x) ≡ x for x ≥ x0.

Theorem 1. Let α ∈ Lsi, α(x/α(x)) = (1 + o(1))α(x) as x→ +∞ and ϕ be an analytic

in DR characteristic function of a probability law F . If

(5) ln
(
WF (xk)eRxk

)
≥ xk/α(xk)

for some increasing to +∞ sequence (xk) of positive numbers such that

α(xk+1) = (1 + o(1))α(xk) as k →∞
then

(6) α(ln M(r, ϕ)) ≥ (1 + o(1))/(R− r), r ↑ R.

Proof. We can assume that the function α is continuously di�erentiable. Then α ∈ Lsi
if and only if xα′(x)/α(x)→ 0 as x→ +∞. Therefore, using L'Hospital's rule we obtain

lim
x→+∞

1

x/α(x)

xk∫
x0

dt

α(t)
≤ lim
x→+∞

α(x)

α(x)− xα′(x)
= 1,

i.e., x/α(x) ≥ (1 + o(1))

xk∫
x0

dt/α(t) as x → +∞ and, therefore, in view of (5) the next

result is obtained

(7) ln WF (xk) ≥ −Rxk + (1 + o(1))

xk∫
x0

dt

α(t)
, k →∞.

We choose a function Φ ∈ Ω(R) so that

Φ(r) =

r∫
r0

α−1((1− ε)/(R− x))dx

for r0 < r∗0 ≤ r < R, where ε ∈ (0, 1) is an arbitrary number. Then

Φ′(r) = α−1((1− ε)/(R− x)), φ(x) = R− (1− ε)/α(x)

for x ≥ x∗ and, since (xΨ(φ(x)))′ = φ(x), we have

xΨ(φ(x)) = Rx− (1− ε)
x∫

x0

dt/α(t) + const.
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Hence and from (7) the inequality (3) is being followed.
Putting h(x) = δ(1 − ε)/α(x), where δ ∈ (0, 1) is an arbitrary number, we obtain

h(Φ′(r)) = δ(R − r), φ(x)− h(x) ↑ R as x→ +∞ and since α(xk+1) ≤ (1 + δ)α(xk) for
all k ≥ k0 we have

φ(xk+1)− φ(xk) =
1− ε
α(xk)

− 1− ε
α(xk+1)

≤

≤ (1− ε)
(

1 + δ

α(xk+1)
− 1

α(xk+1)

)
=

= h(xk+1).

Finally, for every η ∈ (δ, 1) and all r ≥ (r∗0 + ηR)/(1 + η) we have

Φ(r − h(Φ′(r))) = Φ(r − δ(R− r)) ≥

≥
r−δ(R−r)∫
r−η(R−r)

α−1
(

1− ε
R− x

)
dx ≥

≥ (η − δ)(R− r)α−1
(

1− ε
(1 + η)(R− r)

)
.

Therefore, by Lemma in view of the conditions α ∈ Lsi and α(x/α(x)) = (1 + o(1))α(x)
as x→ +∞ we obtain

α(ln µ(r, ϕ)) ≥ α
(

(η − δ)(R− r)α−1
(

1− ε
(1 + η)(R− r)

))
=

=
(1 + o(1))(1− ε)
(1 + η)(R− r)

, r ↑ R.

Since ln M(r, ϕ) ≥ ln µ(r, ϕ) + ln 2 and α ∈ Lsi, hence in view of the arbitrariness of ε
and η we obtain (6). Theorem 1 is proved. �

In the case when α(x) ≡ x for x ≥ x0 the following theorem is correct.

Theorem 2. Let β ∈ Lsi, β′(x) ↓ 0, β(1/β′(x)) = (1 + o(1))β(x) as x→ +∞ and ϕ be

an analytic in DR characteristic function of a probability law F . If

(8) ln
(
WF (xk)eRxk

)
≥ β(xk)

for some increasing to +∞ sequence (xk) of positive numbers such that

lim
k→∞

(β′(xk)/β′(xk+1)) < 2

then

(9) ln M(r, ϕ) ≥ (1 + o(1))β(1/(R− r)), r ↑ R.

Proof. We put xΨ(φ(x)) = Rx− β(x). Then (8) implies (3). Since

φ(x) = (xΨ(φ(x)))′ = R− β′(x),
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we have r = R− β′(Φ′(r)), i.e., Φ′(r) = B(R− r), where B is the function inverse to β′

and B(t) ↑ +∞ as t ↓ 0. Hence it follows that

Φ(r) =

r∫
r0

B(R− x)dx+ const =

= −
B(R−r)∫
t0

tdβ′(t) + const =

= −B(R− r)β′(B(R− r)) + β(B(R− r)) + const =

= (1 + o(1))β(B(R− r)), r ↑ R,

because B(R − r) ↑ +∞ as r ↑ R and xβ′(x)/β(x) → 0 as x → +∞. But the condition
β(1/β′(x)) = (1 + o(1))β(x) as x→ +∞ implies the equality β(t) = (1 + o(1))β(B(1/t))
as t → +∞ and, thus, β(B(R − r)) = (1 + o(1))β(1/(R − r)) as r ↑ R. Therefore,
Φ(r) = (1 + o(1))β(1/(R− r)) as r ↑ R.

Now if h(x) = a(R− φ(x)), where a ∈ (0, 1), then h(Φ′(r)) = a(R− r) and

Φ(r − h(Φ′(r))) = (1 + o(1))β

(
1

(1 + a)(R− r)

)
=

= (1 + o(1))β

(
1

R− r

)
, r ↑ R.

(10)

It is easy to see that φ(x)− h(x) ↑ R as as x→ +∞ and the condition

φ(xk+1)− φ(xk) ≤ h(xk+1)

is equivalent to the condition

β′(xk)− β′(xk+1) ≤ aβ′(xk+1),

that is β′(xk) ≤ (1 + a)β′(xk+1). Since a < 1 the last condition holds because

lim
k→∞

(β′(xk)/β′(xk+1)) < 2.

Therefore, by Lemma from (10) we obtain (9). Theorem 2 is proved. �

3. The case β(x) = %α(x)

Using Lemma we prove also the following theorem.

Theorem 3. Let α ∈ Lsi be a continuously di�erentiable function and ϕ be an analytic

in DR characteristic function of a probability law F . Suppose that one of the following

conditions holds:

1) 1<%<+∞, lim
x→+∞

d ln α−1(x)

d ln α−1(%x)
= q(%) < 1, α

(
α−1(%α(x))

x

)
= (1 + o(1))%α(x)

as x→ +∞ and

(11) α

(
xk

ln (WF (xk)eRxk)

)
≤ α(xk)

%
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for some increasing to +∞ sequence (xk) of positive numbers such that

α−1(α(xk+1)/%) = O(α−1(α(xk)/%)) as k →∞;

2) 0 < % < 1, lim
x→+∞

d ln α−1(%x)

d ln α−1(x)
= q(%) < 1,

dα−1(%α(x))

dx
=

1

f(x)
↓ 0,

α−1(%α(f(x))) = O(α−1(%α(x))) as x→ +∞ and

(12) α(ln
(
WF (xk)eRxk

)
≥ %α(xk)

for some increasing to +∞ sequence (xk) of positive numbers such that

lim
k→∞

f(xk+1)

f(xk)
< 2.

Then

(13) α(ln M(r, ϕ)) ≥ (1 + o(1))%α(1/(R− r)), r ↑ R.

Proof. At �rst let 1 < % < +∞. Then from (11) it follows that

ln
(
WF (xk)eRxk

)
≥ −Rxk +

xk
α−1(α(xk)/%)

.

Since lim
x→+∞

d ln α−1(x)

d ln α−1(%x)
= q(%) < 1, we have

d ln α−1(α(x)/%)

d ln x
≤ (1 + o(1))q(%) and

x

α−1(α(x)/%)
↑ +∞ as x0 ≤ x→ +∞. Therefore, using L'Hospital's rule we get

x

α−1(α(x)/%)
≥ (1 + o(1))(1− q(%))

x∫
x0

dt

α−1(α(t)/%)
, x→ +∞,

and, thus,

(14) ln
(
WF (xk)eRxk

)
≥ −Rxk + (1− q1)

xk∫
x0

dt

α−1(α(t)/%)

for each q1 ∈ (q(%), 1) and for all x large enough. We choose a function Φ ∈ Ω(R) so that
for r0 ≤ r < R

(15) Φ(r) =

r∫
r0

α−1
(
%α

(
1− q2
R− x

))
dx, q1 < q2 < 1.

Then

Φ′(r) = α−1
(
%α

(
1− q2
R− r

))
, φ(x) = R− 1− q2

α−1(α(x)/%))

and

xΨ(φ(x)) =

x∫
x0

φ(t)dt+ const = Rx− (1− q2)

x∫
x0

dt

α−1(α(t)/%)
+ const,

i.e., in view of (14) and the inequality q1 < q2 we get (3).
Since

α−1(α(xk+1)/%) ≤ Kα−1(α(xk)/%) (K > 1)
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for all k ≥ 1, we have

1

α−1(α(xk)/%)
− 1

α−1(α(xk+1)/%)
≤ K − 1

α−1(α(xk)/%)
≤

≤ K(K − 1)

α−1(α(xk+1)/%)
.

Therefore, putting

h(x) =
K(K − 1)(1− q2)

α−1(α(x)/%)
,

we get

φ(x)− h(x) = R− (K2 + 1−K)(1− q2)

α−1(α(x)/%)
↑ R, x→ +∞,

h(Φ′(r)) = K(K − 1)(R− r) and φ(xk+1)− φ(xk) ≤ h(xk+1)

for all k ≥ 1.
Finally, for all r ∈ [R/2, R) from (15) follows that

Φ(r) ≥
r∫

2r−R

α−1
(
%α

(
1− q2
R− x

))
dx ≥

≥ (R− r)α−1
(
%α

(
1− q2

2(R− r)

))
.

Therefore, by Lemma

ln µ(r, ϕ) ≥ (R− r + h(Φ′(r)))α−1
(
%α

(
1− q2

2(R− r + h(Φ′(r)))

))
=

= (K2 + 1−K)(R− r))α−1
(
%α

(
1− q2

2(K2 + 1−K)(R− r))

))
,

whence in view of conditions α ∈ Lsi and

α

(
α−1(%α(x))

x

)
= (1 + o(1))%α(x)

as x→ +∞ we get

α(ln M(r, ϕ)) ≥ (1 + o(1))α(ln µ(r, ϕ)) ≥ (1 + o(1))%α(1/(R− r))

as r ↑ R, i.e., (13) is proved.
Now let 0 < % < 1. If we put

xΨ(φ(x)) = Rx− α−1(%α(x))

then (12) implies (3),

φ(x) = R− 1/f(x), Φ′(r) = f−1(1/(R− r))

and since
d ln α−1(%x)

d ln x
≤ (1 + o(1))q(%)
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as x→ +∞, we have

Φ(r) =

r∫
r0

f−1
(

1

R− x

)
dx+ const =

=

f−1(1/(R−r))∫
f−1(1/(R−r0))

td

(
−1

f(t)

)
+ const =

= −(R− r)f−1
(

1

R− r

)
+ α−1

(
%α

(
f−1

(
1

R− r

)))
+ const =

= α−1
(
%α

(
f−1

(
1

R− r

)))1−
(R− r)f−1

(
1

R−r

)
+ const

α−1
(
%α
(
f−1

(
1

R−r

)))
 ≥

≥ (1− q)α−1
(
%α

(
f−1

(
1

R− r

)))
for each q ∈ (q(%), 1) and all r ∈ [r0(q), R). Since the condition

α−1(%α(f(x))) = O(α−1(%α(x))) as x→ +∞
implies the inequality

α−1
(
%α

(
1

R− r

))
≤ Kα−1

(
%α

(
f−1

(
1

R− r

)))
, K = const > 0,

we have Φ(r) ≥ 1− q
K

α−1
(
%α

(
1

R− r

))
. Therefore, if we put h(x) = a(R − φ(x)),

0 < a < 1, then

(16) Φ(r − h(Φ′(r)) ≥ 1− q
K

α−1
(
%α

(
1

(1 + a)(R− r)

))
.

It is clear that φ(xk+1)− φ(xk) ≤ h(xk+1) if and only if f(xk+1) ≤ (1 + a)f(xk) and the

last condition follows from the condition lim
k→∞

f(xk+1)

f(xk)
< 2. Therefore, by Lemma from

(16) in view of conditions α ∈ Lsi we get
α(ln M(r, ϕ)) ≥ (1 + o(1))α(ln µ(r, ϕ)) ≥ (1 + o(1))%α(1/(R− r)) as r ↑ R,

i.e., (13) is proved again. The proof of Theorem 3 is completed. �

Choosing α(x) = ln x for x ≥ e from Theorem 3 we obtain the following statement.

Corollary 1. Let ϕ be an analytic in DR characteristic function of a probability law F .
Suppose that one of the following conditions holds:

1) 1 < % < +∞ and ln
(
WF (xk)eRxk

)
≥ x

(%−1)/%
k for some increasing to +∞

sequence (xk) of positive numbers such that xk+1 = O(xk) as k →∞;

2) 0 < % < 1 and ln
(
WF (xk)eRxk

)
≥ x%k for some increasing to +∞ sequence (xk)

of positive numbers such that lim
k→∞

(
xk+1

xk

)1−%

< 2.
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Then ln ln M(r, ϕ) ≥ (1 + o(1))% ln (1/(R− r)) as r ↑ R.
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Äëÿ àíàëiòè÷íî¨ â DR = {z : |z| < R} õàðàêòåðèñòè÷íî¨ ôóíêöi¨ ϕ
éìîâiðíiñíîãî ðîçïîäiëó F äîñëiäæåíi óìîâè íà WF (x) = 1−F (x)+F (−x)
(x ≥ 0) i äîäàòíî¨ íåïåðåðâíî¨ ôóíêöi¨ h çðîñòàþ÷î¨ äî +∞ òàêî¨, ùî
h(ln M(r, ϕ)) ≥ (1 + o(1))/(R − r) àáî ln M(r, ϕ)) ≥ (1 + o(1))h(1/(R − r))
ïðè r ↑ R, äå M(r, ϕ) = max{|ϕ(z)| : |z| = r < R}.

Êëþ÷îâi ñëîâà: õàðàêòåðåñòè÷íà ôóíêöiÿ, éìîâiðíiñíèé çàêîí, îöiíêà
çíèçó.


