REMARKS TO LOWER ESTIMATES FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

Myroslav SHEREMETA ${ }^{1}$, Markiyan DOBUSHOVSKYY ${ }^{2}$

${ }^{1}$ Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE
e-mail: m.m.sheremeta@gmail.com
${ }^{2}$ Jan Kochanowski University of Kielce, Żeromskiego 5, 25-369 Kielce, POLAND
e-mail: mdobush19@gmail.com

For the analytic in $\mathbb{D}_{R}=\{z:|z|<R\}$ characteristic function φ of a probability law F it is investigated conditions on $W_{F}(x)=1-F(x)+F(-x)$ $(x \geq 0)$ and a positive continuous function h increasing to $+\infty$, under which $h(\ln M(r, \varphi)) \geq(1+o(1)) /(R-r)$ or $\ln M(r, \varphi)) \geq(1+o(1)) h(1 /(R-r))$ as $r \uparrow R$, where $M(r, \varphi)=\max \{|\varphi(z)|:|z|=r<R\}$.

Key words: characteristic function, probability law, lower estimate.

1. Introduction

A non-decreasing function F continuous on the left on $(-\infty,+\infty)$ is said [1, p. 10] to be a probability law if $\lim _{x \rightarrow+\infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$, and the function

$$
\varphi(z)=\int_{-\infty}^{+\infty} e^{i z x} d F(x)
$$

defined for real z is called [1, p. 12] a characteristic function of this law. If φ has an analytic continuation on the disk $\mathbb{D}_{R}=\{z:|z|<R\}, 0<R \leq+\infty$, then we call φ an analytic in \mathbb{D}_{R} characteristic function of the law F. Further we always assume that \mathbb{D}_{R} is the maximal disk of the analyticity of φ. It is known [1, p. 37-38] that φ is an analytic in \mathbb{D}_{R} characteristic function of the law F if and only if

$$
W_{F}(x)=: 1-F(x)+F(-x)=O\left(e^{-r x}\right)
$$

[^0]as $0 \leq x \rightarrow+\infty$ for every $r \in[0, R)$. Hence it follows that
$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \ln \frac{1}{W_{F}(x)}=R .
$$

If we put

$$
M(r, \varphi)=\max \{|\varphi(z)|:|z|=r\} \quad \text { and } \quad \mu(r, \varphi)=\sup \left\{W_{F}(x) e^{r x}: x \geq 0\right\}
$$

for $0 \leq r<R$ then $[1$, p. 55] $\mu(r, \varphi) \leq 2 M(r, \varphi)$. Therefore, the estimates from below for $\ln M(r, \varphi)$ follow from such estimates for $\ln \mu(r, \varphi)$. Further we assume that $\ln \mu(r, \varphi) \uparrow$ $+\infty$ as $r \uparrow R$, i. e.

$$
\begin{equation*}
\varlimsup_{x \rightarrow+\infty} W_{F}(x) e^{R x}=+\infty \tag{1}
\end{equation*}
$$

By $L_{s i}$ we denote a class of positive continuous functions α on $(-\infty,+\infty)$ such that $\alpha(x)=\alpha\left(x_{0}\right)$ for $x \leq x_{0}, 0<\alpha(x) \uparrow+\infty$ and $\alpha(c x)=(1+o(1)) \alpha(x)$ as $x_{0} \leq x \uparrow+\infty$ for each $c \in(0,+\infty)$, i. e. α is a slowly increasing function. In [2] the following statements are proved.

Theorem A. Let $\alpha \in L_{s i}, \beta \in L_{s i}, \frac{d \ln \beta^{-1}(\alpha(x))}{d \ln x} \leq q<1$ for all x large enough and $\alpha\left(x / \beta^{-1}(\alpha(x))\right)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$, and φ be the analytic in $\mathbb{D}_{R}, 0<R<+\infty$, characteristic function of a probability law F, for which $\beta\left(\frac{x_{k}}{\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right)}\right) \leq \alpha\left(x_{k}\right)$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\beta^{-1}\left(\alpha\left(x_{k+1}\right)\right)=O\left(\beta^{-1}\left(\alpha\left(x_{k}\right)\right)\right)$ as $k \rightarrow \infty$. Then

$$
\begin{equation*}
\alpha(\ln \mu(r, f)) \geq(1+o(1)) \beta(1 /(R-r)), \quad r \uparrow R . \tag{2}
\end{equation*}
$$

Theorem B. Let $\alpha \in L_{s i}, \beta \in L_{s i}, \frac{d \ln \alpha^{-1}(\beta(x))}{d \ln x} \leq q<1$ for all x large enough, $\frac{d \alpha^{-1}(\beta(x))}{d x}=\frac{1}{f(x)} \downarrow 0$ and $\alpha^{-1}(\beta(f(x)))=O\left(\alpha^{-1}(\beta(x))\right)$ as $x \rightarrow+\infty$, and φ be an analytic in $\mathbb{D}_{R}, 0<R<+\infty$, characteristic function of a probability law F, for which $\alpha\left(\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right)\right) \geq \beta\left(x_{k}\right)$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\varlimsup_{k \rightarrow \infty}\left(f\left(x_{k+1}\right) / f\left(x_{k}\right)\right)<2$. Then asymptotical inequality (2) holds.

It is clear that if one of the functions α or β is a power function then the conditions of neither Theorem A nor Theorem B are satisfied. These conditions do not hold also if $\alpha(x) \asymp \beta(x)$ as $x \rightarrow+\infty$. Here we examine the cases when one of functions α or β is power. Without loss of generality we can assume that $\alpha(x) \equiv x$ or $\beta(x) \equiv x$ for $x \geq x_{0}$. Also we examine the case when $\beta(x)=\varrho \alpha(x)$ for all $x \geq x_{0}$, where $0<\varrho<+\infty$.

2. Cases of power functions

We use a result from [2]. Let $\Omega(R)$ be a class of positive unbounded on $(0, R)$ function Φ such that the derivative Φ^{\prime} is positive continuously differentiable and increasing to $+\infty$ on $(0, R)$. For $\Phi \in \Omega(R)$ we denote by ϕ the inverse function to Φ^{\prime}, and let $\Psi(r)=$ $r-\Phi(r) / \Phi^{\prime}(r)$ be the function associated with Φ in the sense of Newton.

Lemma [2]). Let $\Phi \in \Omega(R), 0<R<+\infty$, and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F, for which (1) holds and

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \geq-x_{k} \Psi\left(\phi\left(x_{k}\right)\right) \tag{3}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq$ $h\left(x_{k+1}\right)$, where h is positive continuous and non-increasing function on $\left[x_{0},+\infty\right)$ and $R>\phi(x)-h(x) \rightarrow R$ as $x \rightarrow+\infty$. Then

$$
\begin{equation*}
\ln \mu(r, \varphi) \geq \Phi\left(r-h\left(\Phi^{\prime}(r)\right)\right), \quad r_{0} \leq r<R . \tag{4}
\end{equation*}
$$

At first we consider the case when $\beta(x) \equiv x$ for $x \geq x_{0}$.
Theorem 1. Let $\alpha \in L_{s i}, \alpha(x / \alpha(x))=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F. If

$$
\begin{equation*}
\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq x_{k} / \alpha\left(x_{k}\right) \tag{5}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that

$$
\alpha\left(x_{k+1}\right)=(1+o(1)) \alpha\left(x_{k}\right) \quad \text { as } \quad k \rightarrow \infty
$$

then
(6)

$$
\alpha(\ln M(r, \varphi)) \geq(1+o(1)) /(R-r), \quad r \uparrow R .
$$

Proof. We can assume that the function α is continuously differentiable. Then $\alpha \in L_{s i}$ if and only if $x \alpha^{\prime}(x) / \alpha(x) \rightarrow 0$ as $x \rightarrow+\infty$. Therefore, using L'Hospital's rule we obtain

$$
\varlimsup_{x \rightarrow+\infty} \frac{1}{x / \alpha(x)} \int_{x_{0}}^{x_{k}} \frac{d t}{\alpha(t)} \leq \varlimsup_{x \rightarrow+\infty} \frac{\alpha(x)}{\alpha(x)-x \alpha^{\prime}(x)}=1
$$

i.e., $x / \alpha(x) \geq(1+o(1)) \int_{x_{0}}^{x_{k}} d t / \alpha(t)$ as $x \rightarrow+\infty$ and, therefore, in view of (5) the next result is obtained

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \geq-R x_{k}+(1+o(1)) \int_{x_{0}}^{x_{k}} \frac{d t}{\alpha(t)}, \quad k \rightarrow \infty \tag{7}
\end{equation*}
$$

We choose a function $\Phi \in \Omega(R)$ so that

$$
\Phi(r)=\int_{r_{0}}^{r} \alpha^{-1}((1-\varepsilon) /(R-x)) d x
$$

for $r_{0}<r_{0}^{*} \leq r<R$, where $\varepsilon \in(0,1)$ is an arbitrary number. Then

$$
\Phi^{\prime}(r)=\alpha^{-1}((1-\varepsilon) /(R-x)), \quad \phi(x)=R-(1-\varepsilon) / \alpha(x)
$$

for $x \geq x^{*}$ and, since $(x \Psi(\phi(x)))^{\prime}=\phi(x)$, we have

$$
x \Psi(\phi(x))=R x-(1-\varepsilon) \int_{x_{0}}^{x} d t / \alpha(t)+\text { const. }
$$

Hence and from (7) the inequality (3) is being followed.
Putting $h(x)=\delta(1-\varepsilon) / \alpha(x)$, where $\delta \in(0,1)$ is an arbitrary number, we obtain $h\left(\Phi^{\prime}(r)\right)=\delta(R-r), \phi(x)-h(x) \uparrow R$ as $x \rightarrow+\infty$ and since $\alpha\left(x_{k+1}\right) \leq(1+\delta) \alpha\left(x_{k}\right)$ for all $k \geq k_{0}$ we have

$$
\begin{aligned}
\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) & =\frac{1-\varepsilon}{\alpha\left(x_{k}\right)}-\frac{1-\varepsilon}{\alpha\left(x_{k+1}\right)} \leq \\
& \leq(1-\varepsilon)\left(\frac{1+\delta}{\alpha\left(x_{k+1}\right)}-\frac{1}{\alpha\left(x_{k+1}\right)}\right)= \\
& =h\left(x_{k+1}\right) .
\end{aligned}
$$

Finally, for every $\eta \in(\delta, 1)$ and all $r \geq\left(r_{0}^{*}+\eta R\right) /(1+\eta)$ we have

$$
\begin{aligned}
\Phi\left(r-h\left(\Phi^{\prime}(r)\right)\right) & =\Phi(r-\delta(R-r)) \geq \\
& \geq \int_{r-\eta(R-r)}^{r-\delta(R-r)} \alpha^{-1}\left(\frac{1-\varepsilon}{R-x}\right) d x \geq \\
& \geq(\eta-\delta)(R-r) \alpha^{-1}\left(\frac{1-\varepsilon}{(1+\eta)(R-r)}\right) .
\end{aligned}
$$

Therefore, by Lemma in view of the conditions $\alpha \in L_{s i}$ and $\alpha(x / \alpha(x))=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ we obtain

$$
\begin{aligned}
\alpha(\ln \mu(r, \varphi)) & \geq \alpha\left((\eta-\delta)(R-r) \alpha^{-1}\left(\frac{1-\varepsilon}{(1+\eta)(R-r)}\right)\right)= \\
& =\frac{(1+o(1))(1-\varepsilon)}{(1+\eta)(R-r)}, \quad r \uparrow R .
\end{aligned}
$$

Since $\ln M(r, \varphi) \geq \ln \mu(r, \varphi)+\ln 2$ and $\alpha \in L_{s i}$, hence in view of the arbitrariness of ε and η we obtain (6). Theorem 1 is proved.

In the case when $\alpha(x) \equiv x$ for $x \geq x_{0}$ the following theorem is correct.
Theorem 2. Let $\beta \in L_{s i}, \beta^{\prime}(x) \downarrow 0, \beta\left(1 / \beta^{\prime}(x)\right)=(1+o(1)) \beta(x)$ as $x \rightarrow+\infty$ and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F. If

$$
\begin{equation*}
\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq \beta\left(x_{k}\right) \tag{8}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that

$$
\varlimsup_{k \rightarrow \infty}\left(\beta^{\prime}\left(x_{k}\right) / \beta^{\prime}\left(x_{k+1}\right)\right)<2
$$

then

$$
\begin{equation*}
\ln M(r, \varphi) \geq(1+o(1)) \beta(1 /(R-r)), \quad r \uparrow R . \tag{9}
\end{equation*}
$$

Proof. We put $x \Psi(\phi(x))=R x-\beta(x)$. Then (8) implies (3). Since

$$
\phi(x)=(x \Psi(\phi(x)))^{\prime}=R-\beta^{\prime}(x)
$$

we have $r=R-\beta^{\prime}\left(\Phi^{\prime}(r)\right)$, i.e., $\Phi^{\prime}(r)=B(R-r)$, where B is the function inverse to β^{\prime} and $B(t) \uparrow+\infty$ as $t \downarrow 0$. Hence it follows that

$$
\begin{aligned}
\Phi(r) & =\int_{r_{0}}^{r} B(R-x) d x+\text { const }= \\
& =-\int_{t_{0}}^{B(R-r)} t d \beta^{\prime}(t)+\mathrm{const}= \\
& =-B(R-r) \beta^{\prime}(B(R-r))+\beta(B(R-r))+\mathrm{const}= \\
& =(1+o(1)) \beta(B(R-r)), \quad r \uparrow R,
\end{aligned}
$$

because $B(R-r) \uparrow+\infty$ as $r \uparrow R$ and $x \beta^{\prime}(x) / \beta(x) \rightarrow 0$ as $x \rightarrow+\infty$. But the condition $\beta\left(1 / \beta^{\prime}(x)\right)=(1+o(1)) \beta(x)$ as $x \rightarrow+\infty$ implies the equality $\beta(t)=(1+o(1)) \beta(B(1 / t))$ as $t \rightarrow+\infty$ and, thus, $\beta(B(R-r))=(1+o(1)) \beta(1 /(R-r))$ as $r \uparrow R$. Therefore, $\Phi(r)=(1+o(1)) \beta(1 /(R-r))$ as $r \uparrow R$.

Now if $h(x)=a(R-\phi(x))$, where $a \in(0,1)$, then $h\left(\Phi^{\prime}(r)\right)=a(R-r)$ and

$$
\begin{align*}
\Phi\left(r-h\left(\Phi^{\prime}(r)\right)\right) & =(1+o(1)) \beta\left(\frac{1}{(1+a)(R-r)}\right)= \tag{10}\\
& =(1+o(1)) \beta\left(\frac{1}{R-r}\right), \quad r \uparrow R .
\end{align*}
$$

It is easy to see that $\phi(x)-h(x) \uparrow R$ as as $x \rightarrow+\infty$ and the condition

$$
\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq h\left(x_{k+1}\right)
$$

is equivalent to the condition

$$
\beta^{\prime}\left(x_{k}\right)-\beta^{\prime}\left(x_{k+1}\right) \leq a \beta^{\prime}\left(x_{k+1}\right)
$$

that is $\beta^{\prime}\left(x_{k}\right) \leq(1+a) \beta^{\prime}\left(x_{k+1}\right)$. Since $a<1$ the last condition holds because

$$
\varlimsup_{k \rightarrow \infty}\left(\beta^{\prime}\left(x_{k}\right) / \beta^{\prime}\left(x_{k+1}\right)\right)<2 .
$$

Therefore, by Lemma from (10) we obtain (9). Theorem 2 is proved.

3. The Case $\beta(x)=\varrho \alpha(x)$

Using Lemma we prove also the following theorem.
Theorem 3. Let $\alpha \in L_{s i}$ be a continuously differentiable function and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F. Suppose that one of the following conditions holds:

1) $1<\varrho<+\infty, \varlimsup_{x \rightarrow+\infty} \frac{d \ln \alpha^{-1}(x)}{d \ln \alpha^{-1}(\varrho x)}=q(\varrho)<1, \alpha\left(\frac{\alpha^{-1}(\varrho \alpha(x))}{x}\right)=(1+o(1)) \varrho \alpha(x)$ as $x \rightarrow+\infty$ and

$$
\begin{equation*}
\alpha\left(\frac{x_{k}}{\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right)}\right) \leq \frac{\alpha\left(x_{k}\right)}{\varrho} \tag{11}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that

$$
\alpha^{-1}\left(\alpha\left(x_{k+1}\right) / \varrho\right)=O\left(\alpha^{-1}\left(\alpha\left(x_{k}\right) / \varrho\right)\right) \quad \text { as } \quad k \rightarrow \infty ;
$$

2) $0<\varrho<1, \varlimsup_{x \rightarrow+\infty} \frac{d \ln \alpha^{-1}(\varrho x)}{d \ln \alpha^{-1}(x)}=q(\varrho)<1, \frac{d \alpha^{-1}(\varrho \alpha(x))}{d x}=\frac{1}{f(x)} \downarrow 0$,

$$
\alpha^{-1}(\varrho \alpha(f(x)))=O\left(\alpha^{-1}(\varrho \alpha(x))\right) \text { as } x \rightarrow+\infty \text { and }
$$

$$
\begin{equation*}
\alpha\left(\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq \varrho \alpha\left(x_{k}\right)\right. \tag{12}
\end{equation*}
$$

for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\varlimsup_{k \rightarrow \infty} \frac{f\left(x_{k+1}\right)}{f\left(x_{k}\right)}<2$.
Then

$$
\begin{equation*}
\alpha(\ln M(r, \varphi)) \geq(1+o(1)) \varrho \alpha(1 /(R-r)), \quad r \uparrow R . \tag{13}
\end{equation*}
$$

Proof. At first let $1<\varrho<+\infty$. Then from (11) it follows that

$$
\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq-R x_{k}+\frac{x_{k}}{\alpha^{-1}\left(\alpha\left(x_{k}\right) / \varrho\right)}
$$

Since $\varlimsup_{x \rightarrow+\infty} \frac{d \ln \alpha^{-1}(x)}{d \ln \alpha^{-1}(\varrho x)}=q(\varrho)<1$, we have $\frac{d \ln \alpha^{-1}(\alpha(x) / \varrho)}{d \ln x} \leq(1+o(1)) q(\varrho)$ and $\frac{x}{\alpha^{-1}(\alpha(x) / \varrho)} \uparrow+\infty$ as $x_{0} \leq x \rightarrow+\infty$. Therefore, using L'Hospital's rule we get

$$
\frac{x}{\alpha^{-1}(\alpha(x) / \varrho)} \geq(1+o(1))(1-q(\varrho)) \int_{x_{0}}^{x} \frac{d t}{\alpha^{-1}(\alpha(t) / \varrho)}, \quad x \rightarrow+\infty
$$

and, thus,

$$
\begin{equation*}
\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq-R x_{k}+\left(1-q_{1}\right) \int_{x_{0}}^{x_{k}} \frac{d t}{\alpha^{-1}(\alpha(t) / \varrho)} \tag{14}
\end{equation*}
$$

for each $q_{1} \in(q(\varrho), 1)$ and for all x large enough. We choose a function $\Phi \in \Omega(R)$ so that for $r_{0} \leq r<R$

$$
\begin{equation*}
\Phi(r)=\int_{r_{0}}^{r} \alpha^{-1}\left(\varrho \alpha\left(\frac{1-q_{2}}{R-x}\right)\right) d x, \quad q_{1}<q_{2}<1 \tag{15}
\end{equation*}
$$

Then

$$
\Phi^{\prime}(r)=\alpha^{-1}\left(\varrho \alpha\left(\frac{1-q_{2}}{R-r}\right)\right), \quad \phi(x)=R-\frac{1-q_{2}}{\left.\alpha^{-1}(\alpha(x) / \varrho)\right)}
$$

and

$$
x \Psi(\phi(x))=\int_{x_{0}}^{x} \phi(t) d t+\text { const }=R x-\left(1-q_{2}\right) \int_{x_{0}}^{x} \frac{d t}{\alpha^{-1}(\alpha(t) / \varrho)}+\text { const },
$$

i.e., in view of (14) and the inequality $q_{1}<q_{2}$ we get (3).

Since

$$
\alpha^{-1}\left(\alpha\left(x_{k+1}\right) / \varrho\right) \leq K \alpha^{-1}\left(\alpha\left(x_{k}\right) / \varrho\right) \quad(K>1)
$$

for all $k \geq 1$, we have

$$
\begin{aligned}
\frac{1}{\alpha^{-1}\left(\alpha\left(x_{k}\right) / \varrho\right)}-\frac{1}{\alpha^{-1}\left(\alpha\left(x_{k+1}\right) / \varrho\right)} & \leq \frac{K-1}{\alpha^{-1}\left(\alpha\left(x_{k}\right) / \varrho\right)} \leq \\
& \leq \frac{K(K-1)}{\alpha^{-1}\left(\alpha\left(x_{k+1}\right) / \varrho\right)}
\end{aligned}
$$

Therefore, putting

$$
h(x)=\frac{K(K-1)\left(1-q_{2}\right)}{\alpha^{-1}(\alpha(x) / \varrho)},
$$

we get

$$
\begin{gathered}
\phi(x)-h(x)=R-\frac{\left(K^{2}+1-K\right)\left(1-q_{2}\right)}{\alpha^{-1}(\alpha(x) / \varrho)} \uparrow R, \quad x \rightarrow+\infty, \\
h\left(\Phi^{\prime}(r)\right)=K(K-1)(R-r) \quad \text { and } \quad \phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq h\left(x_{k+1}\right)
\end{gathered}
$$

for all $k \geq 1$.
Finally, for all $r \in[R / 2, R$) from (15) follows that

$$
\begin{aligned}
\Phi(r) & \geq \int_{2 r-R}^{r} \alpha^{-1}\left(\varrho \alpha\left(\frac{1-q_{2}}{R-x}\right)\right) d x \geq \\
& \geq(R-r) \alpha^{-1}\left(\varrho \alpha\left(\frac{1-q_{2}}{2(R-r)}\right)\right)
\end{aligned}
$$

Therefore, by Lemma

$$
\begin{aligned}
\ln \mu(r, \varphi) & \geq\left(R-r+h\left(\Phi^{\prime}(r)\right)\right) \alpha^{-1}\left(\varrho \alpha\left(\frac{1-q_{2}}{2\left(R-r+h\left(\Phi^{\prime}(r)\right)\right)}\right)\right)= \\
& \left.=\left(K^{2}+1-K\right)(R-r)\right) \alpha^{-1}\left(\varrho \alpha\left(\frac{1-q_{2}}{\left.2\left(K^{2}+1-K\right)(R-r)\right)}\right)\right)
\end{aligned}
$$

whence in view of conditions $\alpha \in L_{s i}$ and

$$
\alpha\left(\frac{\alpha^{-1}(\varrho \alpha(x))}{x}\right)=(1+o(1)) \varrho \alpha(x)
$$

as $x \rightarrow+\infty$ we get

$$
\alpha(\ln M(r, \varphi)) \geq(1+o(1)) \alpha(\ln \mu(r, \varphi)) \geq(1+o(1)) \varrho \alpha(1 /(R-r))
$$

as $r \uparrow R$, i.e., (13) is proved.
Now let $0<\varrho<1$. If we put

$$
x \Psi(\phi(x))=R x-\alpha^{-1}(\varrho \alpha(x))
$$

then (12) implies (3),

$$
\phi(x)=R-1 / f(x), \quad \Phi^{\prime}(r)=f^{-1}(1 /(R-r))
$$

and since

$$
\frac{d \ln \alpha^{-1}(\varrho x)}{d \ln x} \leq(1+o(1)) q(\varrho)
$$

as $x \rightarrow+\infty$, we have

$$
\begin{aligned}
\Phi(r) & =\int_{r_{0}}^{r} f^{-1}\left(\frac{1}{R-x}\right) d x+\text { const }= \\
& =\int_{f^{-1}\left(1 /\left(R-r_{0}\right)\right)}^{f^{-1}(1 /(R-r))} t d\left(\frac{-1}{f(t)}\right)+\mathrm{const}= \\
& =-(R-r) f^{-1}\left(\frac{1}{R-r}\right)+\alpha^{-1}\left(\varrho \alpha\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right)+\text { const }= \\
& =\alpha^{-1}\left(\varrho \alpha\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right)\left\{1-\frac{(R-r) f^{-1}\left(\frac{1}{R-r}\right)+\text { const }}{\alpha^{-1}\left(\varrho \alpha\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right)}\right\} \geq \\
& \geq(1-q) \alpha^{-1}\left(\varrho \alpha\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right)
\end{aligned}
$$

for each $q \in(q(\varrho), 1)$ and all $r \in\left[r_{0}(q), R\right)$. Since the condition

$$
\alpha^{-1}(\varrho \alpha(f(x)))=O\left(\alpha^{-1}(\varrho \alpha(x))\right) \quad \text { as } \quad x \rightarrow+\infty
$$

implies the inequality

$$
\alpha^{-1}\left(\varrho \alpha\left(\frac{1}{R-r}\right)\right) \leq K \alpha^{-1}\left(\varrho \alpha\left(f^{-1}\left(\frac{1}{R-r}\right)\right)\right), \quad K=\text { const }>0
$$

we have $\Phi(r) \geq \frac{1-q}{K} \alpha^{-1}\left(\varrho \alpha\left(\frac{1}{R-r}\right)\right)$. Therefore, if we put $h(x)=a(R-\phi(x))$, $0<a<1$, then

$$
\begin{equation*}
\Phi\left(r-h\left(\Phi^{\prime}(r)\right) \geq \frac{1-q}{K} \alpha^{-1}\left(\varrho \alpha\left(\frac{1}{(1+a)(R-r)}\right)\right) .\right. \tag{16}
\end{equation*}
$$

It is clear that $\phi\left(x_{k+1}\right)-\phi\left(x_{k}\right) \leq h\left(x_{k+1}\right)$ if and only if $f\left(x_{k+1}\right) \leq(1+a) f\left(x_{k}\right)$ and the last condition follows from the condition $\varlimsup_{k \rightarrow \infty} \frac{f\left(x_{k+1}\right)}{f\left(x_{k}\right)}<2$. Therefore, by Lemma from (16) in view of conditions $\alpha \in L_{s i}$ we get
$\alpha(\ln M(r, \varphi)) \geq(1+o(1)) \alpha(\ln \mu(r, \varphi)) \geq(1+o(1)) \varrho \alpha(1 /(R-r)) \quad$ as $\quad r \uparrow R$,
i.e., (13) is proved again. The proof of Theorem 3 is completed.

Choosing $\alpha(x)=\ln x$ for $x \geq e$ from Theorem 3 we obtain the following statement.
Corollary 1. Let φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F. Suppose that one of the following conditions holds:

1) $1<\varrho<+\infty$ and $\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq x_{k}^{(\varrho-1) / \varrho}$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $x_{k+1}=O\left(x_{k}\right)$ as $k \rightarrow \infty$;
2) $0<\varrho<1$ and $\ln \left(W_{F}\left(x_{k}\right) e^{R x_{k}}\right) \geq x_{k}^{\varrho}$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\varlimsup_{k \rightarrow \infty}\left(\frac{x_{k+1}}{x_{k}}\right)^{1-\varrho}<2$.

Then $\ln \ln M(r, \varphi) \geq(1+o(1)) \varrho \ln (1 /(R-r))$ as $r \uparrow R$.

References

1. Ju. V. Linnik and I. V. Ostrovskii, Decompositon of random variables and vectors, Nauka, Moscow, 1972 (in Russian).
2. M. I. Parola and M. M. Sheremeta, Estimates from below for characteristic functions of probability laws, Mat. Stud. 39 (2013), no. 1, 54-66.

Статтл: надійшла до редколегї 01.08.2022 прийнята до друку 22.12.2022

ЗАУВАЖЕННЯ ДО ОЦІНОК ЗНИЗУ ХАРАКТЕРИСТИЧНИХ ФУНКЦІЙ З ЙМОВІРНІСНОГО РОЗПОДІЛУ

Мирослав ШЕРЕМЕТА ${ }^{1}$, Маркіян ДОБУШОВСЂКИЙ ${ }^{2}$
${ }^{1}$ Лъвівський начіональний університет імені Івана Франка, вул. Університетська 1, 79000, м. Львів
e-mail: m.m.sheremeta@gmail.com
${ }^{2}$ Jan Kochanowski University of Kielce, Żeromskiego 5, 25-369 Kielce, POLAND
e-mail: mdobush19@gmail.com

Для аналітичної в $\mathbb{D}_{R}=\{z:|z|<R\}$ характеристичної функції φ ймовірнісного розподілу F досліджені умови на $W_{F}(x)=1-F(x)+F(-x)$ $(x \geq 0)$ і додатної неперервної функції h зростаючої до $+\infty$ такої, що $h(\ln M(r, \varphi)) \geq(1+o(1)) /(R-r)$ або $\ln M(r, \varphi)) \geq(1+o(1)) h(1 /(R-r))$ при $r \uparrow R$, де $M(r, \varphi)=\max \{|\varphi(z)|:|z|=r<R\}$.

Ключові слова: характерестична функція, ймовірнісний закон, оцінка знизу.

[^0]: 2020 Mathematics Subject Classification: 30A10, 30J99, 60E10
 (C) Sheremeta, M., Dobushovskyy, M., 2022

