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We show that every Hausdor� Baire topology τ on C=〈a, b | a2b = a, ab2 = b〉
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1. Introduction and preliminaries

In this paper all topological spaces are assumed to be Hausdor�. If Y is a subspace
of a topological space X and A ⊆ Y , then we shall denote the topological closure of A
in Y by clY (A). Further we shall follow the terminology of [7, 8, 10, 19].

For a topological space X, a family {As | s ∈ A } of subsets of X is called locally
�nite if for every point x ∈ X there exists an open neighbourhood U of x in X such that
the set {s ∈ A | U ∩As 6= ∅} is �nite. A subset A of X is said to be

• co-dense in X if X \A is dense in X;
• an Fσ-set in X if A is a union of a countable family of closed subsets in X.

2020 Mathematics Subject Classi�cation: 22A15, 20M20, 20M05, 54C25, 54E52.

c© Cencelj, M.; Gutik, O.; Repov�s, D., 2022



ON SOME GENERALIZATION OF THE BICYCLIC SEMIGROUP
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2022. Âèïóñê 94 57

We recall that a topological space X is said to be

• compact if each open cover of X has a �nite subcover;
• countably compact if each open countable cover of X has a �nite subcover;
• sequentially compact if each sequence in X has a convergent subsequence;
• pseudocompact if each locally �nite open cover of X is �nite;
• a Baire space if for each sequence A1, A2, . . . , Ai, . . . of nowhere dense subsets of

X the union

∞⋃
i=1

Ai is a co-dense subset of X;

• �Cech complete if X is Tychono� and for every compacti�cation cX of X, the
remainder cX \X is an Fσ-set in cX;

• locally compact if every point of X has an open neighbourhood with a compact
closure.

According to Theorem 3.10.22 of [10], a Tychono� topological space X is pseudocompact
if and only if each continuous real-valued function on X is bounded.

If S is a semigroup, then we shall denote the Green relations on S by R and L (see
Section 2.1 of [8]):

aRb if and only if aS1 = bS1; and aL b if and only if S1a = S1b.

A semigroup S is called simple if S does not contain any proper two-sided ideals.
A semitopological (resp. topological) semigroup is a topological space together with

a separately (resp. jointly) continuous semigroup operation.
An important theorem of Andersen [1] (see also [8, Theorem 2.54]) states that in any

[0-]simple semigroup which is not completely [0-]simple, each nonzero idempotent (if there
are any) is the identity element of a copy of the bicyclic semigroup B(a, b) = 〈a, b | ab =
1〉. The bicyclic semigroup is bisimple and every one of its congruences is either trivial or
a group congruence. Moreover, every non-annihilating homomorphism h of the bicyclic
semigroup is either an isomorphism or the image of B(a, b) under h is a cyclic group (see
Corollary 1.32 in [8]). Eberhart and Selden [9] showed that every Hausdor� semigroup
topology on the bicyclic semigroup B(a, b) is discrete. Bertman and West [6] proved that
every Hausdor� topology τ on B(a, b) such that (B(a, b), τ) is a semitopological semigroup
is also discrete. Neither stable nor Γ-compact topological semigroups can contain a copy
of the bicyclic semigroup [2, 13]. Also, the bicyclic semigroup cannot be embedded into
any countably compact topological inverse semigroup [11]. Moreover, the conditions were
given in [4] and [5] when a countably compact or pseudocompact topological semigroup
cannot contain the bicyclic semigroup, which is topological semigroup with a countably
compact square and with a pseudocompact square. However, Banakh, Dimitrova and
Gutik [5] have constructed (assuming the Continuum Hypothesis or the Martin Axiom)
an example of a Tychono� countably compact topological semigroup which contains the
bicyclic semigroup.

Jones [14] found semigroups A and C which play a role similar to the bicyclic semi-
group in Andersen's Theorem. Let

A = 〈a, b | a2b = a〉
and

C = 〈a, b | a2b = a, ab2 = b〉.
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It is obvious that the semigroup C is a homomorphic image of A, and the bicyclic semi-
group is a homomorphic image of C. Also, every non-injective homomorphic image of the
semigroup C contains an idempotent. Jones [14] showed that every [0-] simple idempotent-
free semigroup S on which R is nontrivial contains (a copy of) A or C. Moreover, if S is
also L -trivial and is not R-trivial then it must contain A (but not C), and if S is both
R- and L -nontrivial then S must contain either C or both A and its dual Ad.

In the general case, the countable compactness of topological semigroup S does not
guarantee that S contains an idempotent. By Theorem 8 of [4], a topological semigroup
S contains an idempotent if S satis�es one of the following conditions: 1) S is doubly
countably compact; 2) S is sequentially compact; 3) S is p-compact for some free ultra�-

lter p on ω; 4) S2c is countably compact; 5) Sκ
ω

is countably compact, where κ is the
minimal cardinality of a closed subsemigroup of S. This motivates the establishing of the
semigroups A and C as topological semigroups, in particular their semigroup topologi-
zations and the question of their embeddings into compact-like topological semigroups.

In this paper we study the semigroup C as a semitopological semigroup. We show
that every Hausdor� Baire topology τ on C such that (C, τ) is a semitopological semigroup
is discrete and we construct a nondiscrete Hausdor� semigroup topology on C. We also
discuss the closure of a semigroup C in a semitopological semigroup and prove that C
does not embed into a topological semigroup with a countably compact square.

2. Algebraic properties of the semigroup C

The semigroup C = 〈a, b | a2b = a, ab2 = b〉 was introduced by R�edei [18] and further
studied by Megyesi and Poll�ak [16] and by Rankin and Reis [17]. Its salient properties
are summarized here:

Proposition 1. (i) C is a 2-generated simple idempotent-free semigroup in which
aRa2 and bL b2, so that R and L are nontrivial; however H is trivial.

(ii) Each element of C is uniquely expressible as bk(ab)lam, k, l,m > 0, k+ l+m > 0.
(iii) The product of elements bk(ab)lam and bn(ab)paq in C is equal to

(1)


bk+n−m(ab)paq, if m < n;
bk(ab)l+p+1aq, if m = n 6= 0;
bk(ab)l+paq, if m = n = 0;
bk(ab)laq+m−n, if m > n.

(iv) The semigroup C is minimally idempotent-free (i.e., it is idempotent-free but each
of its proper quotients contains an idempotent).

De�nition 1 ([15]). A semigroup S is said to be stable if the following conditions hold:

(i) s, t ∈ S and Ss ⊆ Sst implies that Ss = Sst; and
(ii) s, t ∈ S and sS ⊆ tsS implies that sS = tsS.

By formula (1) we have that

b · bn(ab)paq = bn+1(ab)paq

and

a · b · bn(ab)paq =

{
(ab)p+1aq, if n = 0;
bn(ab)paq, if n > 1,



ON SOME GENERALIZATION OF THE BICYCLIC SEMIGROUP
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2022. Âèïóñê 94 59

for each bn(ab)paq ∈ C. Hence we get that b · C ⊆ a · b · C, but b · C 6= a · b · C. This yields
the following proposition:

Proposition 2. The semigroup C is not stable.

The following remark follows from formula (1) above:

Remark 1. The semigroup operation in C implies that the following assertions hold:

(i) The map ϕi,j : C → C de�ned by the formula ϕi,j(x) = bi · x · aj is injective for
all nonnegative integers i and j (for i = j = 0 we put that ϕ0,0(x) = x);

(ii) The subsemigroups Cab = 〈ab〉, Ca = 〈a〉 and Cb = 〈b〉 in C are in�nite cyclic
semigroups.

3. On topologizations of the semigroup C

Let X be a topological space. A continuous map f : X → X is called a retraction of
X if f ◦ f = f ; and the set of all values of a retraction of X is called a retract of X (cf.
[10]).

Proposition 3. If τ is a Hausdor� topology on C such that (C, τ) is a semitopological
semigroup then for every positive integer k the sets

Rk = {bn(ab)paq | n = k, k + 1, k + 2, . . . , p = 0, 1, 2, . . . , q = 0, 1, 2, . . .} ,

and

Lk = {bn(ab)paq | q = k, k + 1, k + 2, . . . , n = 0, 1, 2, . . . , p = 0, 1, 2, . . .}

are retracts in (C, τ) and hence closed subsets of (C, τ).

Proof. By formula (1) we have that

bm(ab)lam · bn(ab)paq =


bn(ab)paq, if m < n;
bn(ab)l+p+1aq, if m = n 6= 0;
(ab)l+paq, if m = n = 0;
bm(ab)laq+m−n, if m > n,

(2)

bi(ab)lam · bn(ab)pan =


bi+n−m(ab)pan, if m < n;
bi(ab)l+p+1an, if m = n 6= 0;
bi(ab)l+p, if m = n = 0;
bi(ab)lam, if m > n.

(3)

Then left and right translations of the element bk(ab)lak of the semigroup C are retractions
of the topological space (C, τ) and hence the sets Rk and Lk are retracts of the topological
space (C, τ) for every positive integer k. The last statement of the proposition follows
from Exercise 1.5.C of [10]. �

Proposition 4. If τ is a Hausdor� topology on C such that (C, τ) is a semitopological
semigroup then Cab is an open-and-closed subsemigroup of (C, τ).
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Proof. We observe that Cab = C \ (R1 ∪ L1) and hence by Proposition 3 we have that
Cab is an open subset of (C, τ). Also, formula (1) implies that

a · bn(ab)paq · b =

 bn−1(ab)paq · b, if n > 1;
(ab)p+laq · b, if n = 1;
aq+1 · b, if n = 0

=

=



bn, if n > 1 and q = 0;
bn−1(ab)p+1 if n > 1 and q = 1;
bn−1(ab)paq−1, if n > 1 and q > 1;
b, if n = 1 and q = 0;
(ab)p+2, if n = 1 and q = 1;
(ab)p+1aq−1, if n = 1 and q > 1;
ab, if n = 0 and q = 0;
a, if n = 0 and q = 1;
aq, if n = 0 and q > 1,

(4)

for nonnegative integers n, p and q. By formula (4),

C0,0 =
{

(ab)i | i = 1, 2, 3, . . .
}

is the set of solutions of the equation a ·X · b = ab. Then the Hausdor�ness of the space
(C, τ) and the separate continuity of the semigroup operation in C imply that Cab = C0,0
is a closed subset of (C, τ). �

We observe that formula (4) implies that

bk(ab)lam · b =

 bk+1, if m = 0;
bk(ab)l+1, if m = 1;
bk(ab)lam−1, if m > 1,

(5)

a · bn(ab)paq =

 bn−1(ab)paq, if n > 1;
(ab)p+1aq, if n = 1;
aq+1, if n = 0,

(6)

for nonnegative integers k, l,m, n, p and q.

Proposition 5. If τ is a Hausdor� topology on C such that (C, τ) is a semitopological
semigroup then

C0,i =
{

(ab)pai | p = 0, 1, 2, 3, . . .
}

and
Ci,0 =

{
bi(ab)p | p = 0, 1, 2, 3, . . .

}
are open subsets of (C, τ) for any positive integer i.

Proof. By Proposition 4, C0,0 is an open subset (C, τ) and by Hausdor�ness of (C, τ)
the set C0,0 \ {ab} is open in (C, τ), too. Then formula (5) implies that the equation
X ·b = (ab)p+2, where p = 0, 1, 2, 3, . . ., has a unique solution X = (ab)pa, and hence since
all right translations in (C, τ) are continuous maps we get that C0,1 is an open subset of the
topological space (C, τ). Also, formula (4) implies that the equation a·X = (ab)p+2, where
p = 0, 1, 2, 3, . . ., has a unique solution X = b(ab)p, and hence since all left translations
in (C, τ) are continuous maps we get that C1,0 is an open subset of the topological space
(C, τ).
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By formula (5), the equation X · b = (ab)lam−1, where l− 1 and m− 1 are positive
integers, has a unique solution X = (ab)lam. Then the separate continuity of the semi-
group operation in (C, τ) implies that if C0,m−1 is an open subset of (C, τ) then C0,m is
open in (C, τ), too. Similarly, formula (6) implies that the equation a · X = bn−1(ab)p,
where n−1 and p−1 are positive integers, has a unique solution X = bn(ab)p, and hence
the separate continuity of the semigroup operation in (C, τ) and openess of the set Cn−1,0
in (C, τ) imply that the set Cn,0 is an open subset of the topological space (C, τ). Next,
we complete the proof of the proposition by induction. �

Proposition 6. If τ is a Hausdor� topology on C such that (C, τ) is a semitopological
semigroup then

Ci,j =
{
bi(ab)paj | p = 0, 1, 2, 3, . . .

}
is an open subset of (C, τ) for all positive integers i and j.

Proof. First we observe that Proposition 5 and Hausdor�ness of (C, τ) imply that Ck,0 \{
bk(ab)

}
is an open subset of (C, τ) for every positive integer k. Then formula (5) implies

that the equation X · b = bk(ab)p+1, where p = 0, 1, 2, 3, . . ., has a unique solution
X = bk(ab)pa, and hence since all right and left translations in (C, τ) are continuous
maps we get that Ck,1 is an open subset of the topological space (C, τ).

Also, by formula (5) we have that the equation X · b = bk(ab)pal has a unique
solution X = bk(ab)pal+1. Then the openess of the set Ck,l implies that the set Ck,l+1 is
open in (C, τ). Then induction implies the assertion of the proposition. �

Propositions 4, 5 and 6 imply Theorem 1, which describes all Hausdor� topologies
τ on C such that (C, τ) is a semitopological semigroup.

Theorem 1. If τ is a Hausdor� topology on C such that (C, τ) is a semitopological
semigroup then Ci,j is an open-and-closed subset of (C, τ) for all nonnegative integers i
and j.

Since the bicyclic semigroup B(a, b) admits only the discrete topology which turns
B(a, b) into a Hausdor� semitopological semigroup [6], Theorem 1 implies the following:

Corollary 1. If C is a semitopological semigroup then the homomorphism h : C → B(a, b),
de�ned by the formula h

(
bk(ab)lam

)
= bkam, is continuous.

Later we shall need the following lemma.

Lemma 1. Every Hausdor� Baire topology on the in�nite cyclic semigroup S such that
(S, τ) is a semitopological semigroup is discrete.

Proof. Since every in�nite cyclic semigroup is isomorphic to the additive semigroup of
positive integers (N,+) we assume without loss of generality that S = (N,+).

Fix an arbitrary n0 ∈ N. Then Hausdor�ness of (N,+) implies that {1, . . . , n0}
is a closed subset of (N,+), and hence by Proposition 1.14 of [12] we get that Nn0

=
N \ {1, . . . , n0} with the induced topology from (N, τ) is a Baire space.

If no point in Nn0
is isolated, then since (N, τ) is Hausdor�, it follows that {n} is

nowhere dense in Nn0 for all n > n0. But, if this is the case, then since the space (N, τ) is
countable we conclude that Nn0 cannot be a Baire space. Hence Nn0 contains an isolated
point n1 in Nn0

. Then the separate continuity of the semigroup operation in (N,+, τ)
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implies that n0 is an isolated point in (N, τ), because n1 = n0 + ( 1 + . . .+ 1︸ ︷︷ ︸
(n1−n0)-times

). This

completes the proof of the lemma. �

Theorem 2. Every Hausdor� Baire topology τ on C such that (C, τ) is a semitopological
semigroup is discrete.

Proof. By Proposition 4, Cab is an open-and-closed subsemigroup of (C, τ). Then by
Proposition 1.14 of [12] we have that Cab is a Baire space and hence Lemma 1 implies
that every element of Cab is an isolated point of the topological space (C, τ).

Now, by formula (4), the equation a · X · b = (ab)p+2 has a unique solution X =
b(ab)pa for every nonnegative integer p, and since the semigroup operation in (C, τ) is
separately continuous we conclude that b(ab)pa is an isolated point in (C, τ) for every
integer p > 0. Similarly, formula (4) implies that the equation a ·X · b = bn(ab)pan has
the unique solution X = bn−1(ab)pan−1 for every nonnegative integer p and every integer
n > 1. Then by induction we get that the separate continuity of the semigroup operation
in (C, τ) implies that bn+1(ab)pan+1 is an isolated point in the topological space (C, τ)
for all nonnegative integers n and p.

We �x arbitrary distinct nonnegative integers n and m. We can assume without
loss of generality that n < m. In the case when m < n the proof is similar. Since by
Remark 1(i) we have that the map ϕm−n,0 : C → C de�ned by the formula ϕm−n,0(x) =
bm−n ·x is injective and by the previous part of the proof, the point bm(ab)pam is isolated
in (C, τ) for every nonnegative integer p, we conclude that the separate continuity of the
semigroup operation in (C, τ) implies that bn(ab)pam is an isolated point in the topological
space (C, τ) for every nonnegative integer p. �

Since every �Cech complete space (and hence every locally compact space) is Baire,
Theorem 2 implies Corollaries 2 and 3.

Corollary 2. Every Hausdor� �Cech complete (locally compact) topology τ on C such
that (C, τ) is a Hausdor� semitopological semigroup is discrete.

Corollary 3. Every Hausdor� Baire topology (and hence �Cech complete or locally
compact topology) τ on C such that (C, τ) is a Hausdor� topological semigroup is
discrete.

The following example implies that there exists a Tychono� nondiscrete topology
τp on the semigroup C such that (C, τp) is a topological semigroup.

Example 1. Let p be a �xed prime number. We de�ne a topology τp on the semigroup
C by the base

Bp

(
bi(ab)kaj

)
=
{
Uα
(
bi(ab)kaj

)
| α = 1, 2, 3, . . .

}
at every point bi(ab)kaj ∈ C, where

Uα
(
bi(ab)kaj

)
=
{
bi(ab)k+λ·p

α

aj | λ = 1, 2, 3, . . .
}
.

Simple veri�cations show that the topology τp on C is generated by the following metric:

d
(
bi1(ab)k1aj1 , bi2(ab)k2aj2

)
=

 0, if i1 = i2, k1 = k2 and j1 = j2;
2s, if i1 = i2, k1 6= k2 and j1 = j2;
1, otherwise,
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where s is the largest of p which divides |k1−k2|. This implies that (C, τp) is a Tychono�
space. Also, it is easy to see that Uα

(
bi(ab)kaj

)
is a closed subset of the topological

space (C, τp), for every bi(ab)kaj ∈ C and every positive integer α, and hence (C, τp)
is a 0-dimensional topological space (i.e., (C, τp) has a base which consists of open-and-
closed subsets). We observe that the topological space (C, τp) doesn't contain any isolated
points.

For every positive integer α and arbitrary elements bk(ab)lam and bn(ab)taq of the
semigroup C, formula (1) implies that the following conditions hold:

(i) if m < n then Uα
(
bk(ab)lam

)
· Uα(bn(ab)taq) ⊆ Uα

(
bk+n−m(ab)taq

)
;

(ii) if m = n 6= 0 then Uα
(
bk(ab)lam

)
· Uα(bn(ab)taq) ⊆ Uα

(
bk(ab)l+t+1aq

)
;

(iii) if m = n = 0 then Uα
(
bk(ab)lam

)
· Uα(bn(ab)taq) ⊆ Uα

(
bk(ab)l+taq

)
; and

(iv) if m > n then Uα
(
bk(ab)lam

)
· Uα(bn(ab)taq) ⊆ Uα

(
bk(ab)laq+m−n

)
.

Therefore (C, τp) is a topological semigroup.

4. On the closure and embedding of the semitopological

semigroup C

In the case of the bicyclic semigroup B(a, b) we have that if a topological semigroup
S contains B(a, b) then the nonempty remainder of B(a, b) under the closure in S is an
ideal in clS(B(a, b)) (see [9]). This immediately follows from that facts that the bicyclic
semigroup B(a, b) admits only the discrete topology which turns B(a, b) into a Hausdor�
semitopological semigroup and that the equations A ·X = B and X ·A = B have �nitely
many solutions in B(a, b) (see [6, Proposition 1] and [9, Lemma I.1]).

The following example shows that the semigroup C with the discrete topology does
not have similar �properties of the closure� as the bicyclic semigroup.

Example 2. It well known that each element of the bicyclic semigroup B(a, b) is uniquely
expressible as biaj , where i and j are nonnegative integers. Since all elements of the
semigroup have similar expressibility we shall denote later the elements of the bicyclic
semigroup by underlining biaj .

We de�ne a map π : C → B(a, b) by the formula π(bi(ab)kaj) = biaj . Simple veri�-
cations and formula (1) show that thus de�ned map π is a homomorphism. We extend
the semigroup operation from the semigroups C and B(a, b) on S = C t B(a, b) in the
following way:

bk(ab)lam ? bnaq =

 bk+n−maq, if m < n;
bkaq, if m = n;
bk(ab)laq+m−n, if m > n

and

bkam ? bn(ab)paq =

 bk+n−m(ab)paq, if m < n;
bkaq, if m = n;
bkaq+m−n, if m > n.

A routine check of all 118 cases and their compatibility shows that such a binary operation
is associative.

Now, we de�ne the topology τ on the semigroup S in the following way:

(i) all elements of the semigroup C are isolated points in (S, τ); and
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(ii) the family B
(
biaj

)
=
{
Un
(
biaj

)
| n = 1, 2, 3, . . .

}
, where

Un
(
biaj

)
=
{
biaj

}
∪
{
bi(ab)kaj ∈ C | k = n, n+ 1, n+ 2, . . .

}
,

is a base of the topology τ at the point biaj ∈ B(a, b).

Simple veri�cations show that (S, τ) is a Hausdor� 0-dimensional scattered locally
compact metrizable space.

Proposition 7. (S, τ) is a topological semigroup.

Proof. The de�nition of the topology τ on S implies that it su�ces to show that the
semigroup operation in (S, τ) is continuous in the following three cases:

1) biak ? bmap;
2) biak ? bm(ab)nap; and
3) bi(ab)lak ? bmap.

In case 1) we get that

biak ? bmap =

 bi−k+map, if k < m;
biap, if k = m;
biak−m+p, if , k > m,

and for every positive integer u the following statements hold:

a) if k < m then Uu
(
biak

)
? Uu(bmap) ⊆ Uu

(
bi−k+map

)
;

b) if k = m then Uu
(
biak

)
? Uu(bmap) ⊆ Uu

(
biap

)
;

c) if k > m then Uu
(
biak

)
? Uu(bmap) ⊆ Uu

(
biak−m+p

)
.

In case 2) we have that

biak ? bm(ab)nap =

 bi−k+m(ab)nap, if k < m;
biap, if k = m;
biak−m+p, if , k > m,

and hence for every positive integer u the following statements hold:

a) if k < m then

Uu
(
biak

)
? {bm(ab)nap} =

{
bi−k+m(ab)nap

}
;

b) if k = m then

Uu
(
biak

)
? {bm(ab)nap} ⊆ Uu

(
biap

)
;

c) if k > m then

Uu
(
biak

)
? {bm(ab)nap} ⊆ Uu

(
biak−m+p

)
.

In case 3) we have that

bi(ab)lak ? bmap =

 bi−k+map, if k < m;
biap, if k = m;
bi(ab)lak−m+p, if , k > m.

Then for every positive integer u the following statements hold:

a) if k < m then{
bi(ab)lak

}
? Uu(bmap) ⊆

{
bi−k+m(ab)nap

}
;
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b) if k = m then {
bi(ab)lak

}
? Uu(bmap) ⊆ Uu

(
biap

)
;

c) if k > m then{
bi(ab)lak

}
? Uu(bmap) =

{
bi(ab)lak−m+p

}
.

This completes the proof of the proposition. �

The following example shows that the semigroup C with the discrete topology may
has similar closure in a topological semigroup as the bicyclic semigroup.

Example 3. Let S be the semigroup C with adjoined zero 0. We determine the topology
τ on the semigroup S in the following way:

(i) All elements of the semigroup C are isolated points in (S, τ); and
(ii) The family B(0) = {Un(0) | n = 1, 2, 3, . . .}, where

Un(0) = {0} ∪
{
bi(ab)kaj ∈ C | i, j > n

}
,

is a base of the topology τ at the zero 0.

Simple veri�cations show that (S, τ) is a Hausdor� 0-dimensional scattered space.
Since all elements of the semigroup C are isolated points in (S, τ) we conclude that it

is su�cient to show that the semigroup operation in (S, τ) is continuous in the following
cases:

0 · 0, 0 · bm(ab)nap, and bm(ab)nap · 0.
Since the following assertions hold for each positive integer i:

(i) Ui(0) · Ui(0) ⊆ Ui(0);
(ii) Ui+m(0) · {bm(ab)nap} ⊆ Ui(0);

(iii) {bm(ab)nap} · Ui+p(0) ⊆ Ui(0),

we conclude that (S, τ) is a topological semigroup.

Remark 2. We observe that we can show that for the discrete semigroup C cases of
closure of C in topological semigroups proposed in [9] for the bicyclic semigroup can be
realized in the following way: we identify the element biaj of the bicyclic semigroup with
the subset Ci,j of the semigroup C.

We don't know the answer to the following question: Does there exist a topological
semigroup S which contains C as a dense subsemigroup such that S \ C 6= ∅ and C is an
ideal of S?

The following proposition describes the closure of the semigroup C in an arbitrary
semitopological semigroup.

Proposition 8. Let S be a Hausdor� semitopological semigroup which contains C as a
dense subsemigroup. Then there exists a countable family U =

{
UCi,j | i, j = 0, 1, 2, 3, . . .

}
of open disjunctive subsets of the topological space S such that Ci,j ⊆ UCi,j for all
nonnegative integers i and j.

Proof. When S = C the statement of the proposition follows from Theorem 1. Hence we
can assume that S 6= C.
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First, we observe that formulae (5) and (6) imply that for left and right translations
λab : S → S : x 7→ ab ·x and ρab : S → S : x 7→ x ·ab of the semigroup S their sets of �xed
points Fix(λab) and Fix(ρab) are non-empty and moreover⋃

{Ci,j | i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . .} ⊆ Fix(ρab);

and ⋃
{Ci,j | i = 1, 2, 3, . . . , j = 0, 1, 2, 3, . . .} ⊆ Fix(λab).

Also, formulae (2) and (3) imply that for every positive integer n the left and right
translations λbnan : S → S : x 7→ bnan ·x and ρbnan : S → S : x 7→ x·bnan of the semigroup
S have non-empty sets of �xed points Fix(λbnan) and Fix(ρbnan), and moreover⋃

{Ci,j | i = 0, 1, 2, 3, . . . , j = n+ 1, n+ 2, n+ 3, . . .} ⊆ Fix(ρbnan);

and ⋃
{Ci,j | i = n+ 1, n+ 2, n+ 3, . . . , j = 0, 1, 2, 3, . . .} ⊆ Fix(λbnan).

Then the Hausdor�ness of S, separate continuity of the semigroup operation on S
and Exercise 1.5.C of [10] imply that Fix(λab), Fix(ρab), Fix(λbnan) and Fix(ρbnan) are
closed non-empty subset of S, for every positive integer n, and hence are retracts of S.

Now, since C0,0 ⊆ S \ (Fix(λab) ∪ Fix(ρab)) we conclude that there exists an open
subset UC0,0 = S \ (Fix(λab) ∪ Fix(ρab)) which contains the set C0,0 and Ci,j ∩ UC0,0 = ∅
for all nonnegative integers i, j such that i+ j > 0.

Since the semigroup operation in S is separately continuous we conclude that the
map λa : S → S : x 7→ a · x is continuous, and hence

UC1,0 = λ−1a
(
UC0,0

)
\ (Fix(ρab) ∪ Fix(λba))

is an open subset of S. It is obvious that C1,0 ⊆ UC1,0 . We claim that UC1,0 ∩ UC0,0 = ∅.
Suppose to the contrary that there exists x ∈ S such that x ∈ UC1,0∩UC0,0 . Since Fix(λba)

and Fix(ρba) are closed subsets of S we conclude that there exists (ab)i ∈ UC1,0 ∩ UC0,0 .
Then we have that

λa((ab)i) = a · (ab)i = a /∈ UC0,0 ,
a contradiction. The obtained contradiction implies that UC1,0 ∩ UC0,0 = ∅.

Also, the continuity of the right shift ρb : S → S : x 7→ x · b implies that

UC0,1 = ρ−1b
(
UC0,0

)
\ (Fix(λab) ∪ Fix(ρba))

is an open neighbourhood of the set C0,1 in S. Similar arguments as in the previous case
imply that UC0,1 ∩ UC0,0 = ∅.

Suppose that there exists x ∈ S such that x ∈ UC1,0 ∩UC0,1 . If x ∈ C then x = b(ab)p

for some nonnegative integer p. Then we have that

ρb(x) = x · b = b(ab)p · b = b2 /∈ UC0,0 .

If x ∈ UC1,0 \ C then every open neighbourhood V (x) of the point x in the topological
space S contains in�nitely many points of the form b(ab)p ∈ C. Then we have that
ρb(V (x)) 3 b2. The obtained contradiction implies that UC1,0 ∩ UC0,1 = ∅.

We put

UC1,1 =
(
ρ−1b

(
UC1,0

)
∩ λ−1a

(
UC0,1

))
\ (Fix(λba) ∪ Fix(ρba)) .
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Then UC1,1 is an open subset of the topological space S such that C1,1 ⊆ UC1,1 . Similar
arguments as in the previous cases imply that

UC1,1 ∩ UC0,1 = UC1,0 ∩ UC1,1 = UC1,1 ∩ UC0,0 = ∅.

Next, we use induction for constructing the family U . Suppose that for some positive
integer n > 1 we have already constructed the family

Un =
{
U ′Ci,j | i, j = 0, 1, . . . , n

}
of open disjunctive subsets of the topological space S with the property Ci,j ⊆ UCi,j , for
all i, j = 0, 1, . . . , n. We shall construct the family

Un+1 =
{
UCi,j | i, j = 0, 1, . . . , n, n+ 1

}
in the following way. For all i, j 6 n we put UCi,j = U ′Ci,j ∈ Un and

UC0,n+1 = ρ−1b
(
UC0,n

)
\ (Fix(λab) ∪ Fix(ρbn+1an+1)) ;

UC1,n+1 = ρ−1b
(
UC1,n

)
\ (Fix(λba) ∪ Fix(ρbn+1an+1)) ;

· · · · · · · · · · · · · · · · · · · · ·
UCn,n+1

= ρ−1b
(
UCn−1,n

)
\ (Fix(λbnan) ∪ Fix(ρbn+1an+1)) ;

UCn+1,0
= λ−1a

(
UCn,0

)
\ (Fix(ρab) ∪ Fix(λbn+1an+1)) ;

UCn+1,1 = λ−1a
(
UCn,1

)
\ (Fix(ρba) ∪ Fix(λbn+1an+1)) ;

· · · · · · · · · · · · · · · · · · · · ·
UCn+1,n

= λ−1a
(
UCn,n

)
\ (Fix(ρbnan) ∪ Fix(λbn+1an+1)) ;

UCn+1,n+1
=
(
ρ−1b

(
UCn+1,n

)
∩ λ−1a

(
UCn,n+1

))
\ (Fix(ρbn+1an+1) ∪ Fix(λbn+1an+1)) .

Similar arguments as in previous case imply that Un+1 is a family of open disjunctive
subsets of the topological space S with the property Ci,j ⊆ UCi,j , for all i, j = 0, 1, . . . , n+
1.

Next, we put U =

∞⋃
n=0

Un. It is easy to see that the family U is as required. This

completes the proof of the proposition. �

It well known that if a topological semigroup S is a continuous image of a topological
semigroup T such that T is embeddable into a compact topological semigroup, then the
semigroup S is not necessarily embeddable into a compact topological semigroup. For
example, the bicyclic semigroup B(a, b) does not embed into any compact topological
semigroup, but B(a, b) admits only discrete semigroup topology and B(a, b) is a conti-
nuous image of the free semigroup F2 of the rank 2 (i.e., generated by two elements)
with the discrete topology. Moreover, the semigroup F2 with adjoined zero 0 admits a
compact Hausdor� semigroup topology τc: all elements of F2 are isolated points and the
family B0 = {Un | n = 1, 2, 3, . . .}, where the set Un consists of zero 0 and all words
of length > n. Therefore it is natural to ask the following: Does there exist a Hausdor�
compact topological semigroup S which contains the semigroup C? The following theorem
gives a negative answer to this question.
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Theorem 3. There does not exist a Hausdor� topological semigroup S with a countably
compact square S × S such that S contains C as a subsemigroup.

Proof. Suppose to the contrary that there exists a Hausdor� topological semigroup S
with a countably compact square S×S which contains C as a subsemigroup. Then since
the closure of a subsemigroup C in a topological semigroup S is a subsemigroup of S (see
[7, Vol. 1, p. 9]) we conclude that Theorem 3.10.4 from [10] implies that without loss of
generality we can assume that C is a dense subsemigroup of the topological semigroup
S. We consider the sequence {(an, bn)}∞n=1 in C × C ⊆ S × S. Since S × S is countably
compact we conclude that this sequence has an accumulation point (x; y) ∈ S ×S. Since
anbn = ab, the continuity of the semigroup operation in S implies that xy = ab. By
Proposition 8 there exists an open neighbourhood U(ab) of the point ab in S such that
U(ab) ∩ C ⊆ C0,0. Then the continuity of the semigroup operation in S implies that
there exist open neighbourhoods U(x) and U(y) of the points x and y in S such that
U(x) ·U(y) ⊆ U(ab). Next, by the countable compactness of S×S we conclude that S is
countably compact, too, as a continuous image of S × S under the projection, and this
implies that x and y are accumulation points of the sequences {an}∞n=1 and {bn}∞n=1 in
S, respectively. Then there exist positive integers i and j such that ai ∈ U(x), bj ∈ U(y)
and j > i. Therefore we get that

ai · bj = bj−i ∈ (U(x) · U(y)) ∩ C ⊆ (U(ab)) ∩ C ⊆ C0,0,

which is a contradiction. The obtained contradiction implies the statement of the
theorem. �

Theorem 3 implies the following corollaries:

Corollary 4. There does not exist a Hausdor� compact topological semigroup which
contains C as a subsemigroup.

Corollary 5. There does not exist a Hausdor� sequentially compact topological semi-
group which contains C as a subsemigroup.

We recall that the Stone-�Cech compacti�cation of a Tychono� space X is a compact
Hausdor� space βX containing X as a dense subspace so that each continuous map
f : X → Y to a compact Hausdor� space Y extends to a continuous map f : βX → Y
[10].

Theorem 4. There does not exist a Tychono� topological semigroup S with the
pseudocompact square S × S which contains C as subsemigroup.

Proof. By Theorem 1.3 from [3], for any topological semigroup S with the pseudocompact
square S × S the semigroup operation µ : S × S → S extends to a continuous semigroup
operation βµ : βS × βS → βS, so S is a subsemigroup of the compact topological semi-
group βS. Therefore if S contains the semigroup C then βS also contains the semigroup
C which contradicts Corollary 4. �

Theorem 5. The discrete semigroup C does not embed into a Hausdor� pseudocompact
semitopological semigroup S such that C is a dense subsemigroup of S and S \ C is a left
(right, two-sided) ideal of S.
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Proof. Suppose to the contrary that there exists a Hausdor� pseudocompact semi-
topological semigroup S which contains C as a dense discrete subsemigroup and I = S \C
is a left ideal of S. Then the set of solutions S of the equations x · ba = ba in S is a
subset of C and hence by the formula

bk(ab)lam · ba =

 bk+1a, if m = 0;
bk(ab)l+1a, if m = 1;
bk(ab)lam, if m > 1,

we get that S = C0,0. Since ba is an isolated point in S and I is a left ideal of
S we conclude that the separate continuity of the semigroup operation of S implies
that the space S contains a discrete open-and-closed subspace C0,0. This contradicts
the pseudocompactness of S. The obtained contradiction implies the statement of the
theorem. In the case of a right or a two-sided ideal the proof is similar. �

Theorem 6. The semigroup C does not embed into a Hausdor� countably compact semi-
topological semigroup S such that C is a dense subsemigroup of S and S\C is a left (right,
two-sided) ideal of S.

Proof. Suppose to the contrary that there exists a Hausdor� countably compact semi-
topological semigroup S which contains C as a dense subsemigroup and I = S \C is a left
ideal of S. Then the arguments presented in the proof of Theorem 5 imply that C0,0 is a
closed subset of S, and hence by Theorem 3.10.4 of [10] is countably compact. Since C0,0
is countable we have that the space C0,0 is compact. Since every compact space is Baire,
Lemma 1 implies that C0,0 is a discrete subspace of S. Then similar arguments as in the
proof of Theorem 2 imply that C, with the topology induced from S, is a discrete semi-
group, which contradicts Theorem 5. The obtained contradiction implies the statement
of the theorem. �
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Äîâîäèìî, ùî êîæíà ãàóñäîðôîâà áåðiâñüêà òîïîëîãiÿ τ íà íàïiâãðóïi
C = 〈a, b | a2b = a, ab2 = b〉 òàêà, ùî (C, τ) � íàïiâòîïîëîãi÷íà íàïiâãðóïà ¹
äèñêðåòíîþ òà áóäó¹ìî íåäèñêðåòíó ãàóñäîðôîâó íàïiâãðóïîâó òîïîëîãiþ
íà C. Äîñëiäæåíî çàìèêàííÿ íàïiâãðóïè C ó íàïiâòîïîëîãi÷íié íàïiâãðóïi
òà äîâåäåíî, ùî C íå çàíóðþ¹òüñÿ â òîïîëîãi÷íó íàïiâãðóïó çi çëi÷åííî
êîìïàêòíèì êâàäðàòîì.

Êëþ÷îâi ñëîâà: òîïîëîãi÷íà íàïiâãðóïà, íàïiâòîïîëîãi÷íà íàïiâãðóïà,
áiöèêëi÷íà íàïiâãðóïà, çàìèêàííÿ, çàíóðåííÿ, áåðiâñüêèé ïðîñòið.


