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The paper is devoted to the investigation of the notion of a quasi-prime
subsemimodule of the differential semimodule, which generalizes the notion of
quasi-prime ideal of a ring. Some natural properties of quasi-prime sebsemi-
modules are investigated. The interrelation between quasi-prime subsemi-
modules and different types of differential subsemimodules of differential
semimodules is studied.
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1. INTRODUCTION

The notion of a derivation for semirings is defined in [3] as an additive map satisfying
the Leibnitz rule. Recently in [2], [11] the authors investigated some natural properties
of semiring and semimodule derivations, differential semirings, i.e. semirings considered
together with a derivation, and differential semimodules.

Keigher [6], [7] introduced and studied the notion of a quasi-prime ideal of diffe-
rential rings. Its generalizations to differential modules, semirings and semimodules were
investigated by different authors, e.g. [14], [13], [12], [11], [10].

A subsemimodule P of a subsemimodule M is called prime if for any ideal I of R
and any submodule N of M the inclusion IN C P implies N C Por I C (P : M).
Prime subsemimodules of semimodules over semirings were introduced and extensively
investigated in [1].

The concept of a differentially prime ideal of a differential ring was introduced in [§].
Differentially prime submodules of modules over associative rings were studied in [10].
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The development of semiring and semimodule theory over the years motivates a
further study into properties of differential semirings, differential semimodules, semiri-
ng ideals and subsemimodules defined by similar conditions. The aim of this paper is to
investigate quasi-prime subsemimodules of differential semimodules, and their interrelati-
on with other types of subsemimodules.

For the sake of completeness some definitions and properties used in the paper will
be given here. For more information see [3], [4], [9], [5].

Throughout the paper, N denotes the set of positive integers and Ny = N J{0} the
set of non-negative integers.

Let R be a nonempty set and let + and - be binary operations on R. An algebraic
system (R, +, -) is called a semiring if (R, +,0) is a commutative monoid, (R, -) is a semi-
group and multiplication distributes over addition from either side. A semiring (R, +, -)
is said to be commutative if - is commutative on R. A semiring which is not a ring is
called a proper semiring.

Zero Op € R is called (multiplicatively) absorbing if

a-0p=0r-a=0

for all a € R. Note that Og € R cannot be additively absorbing when R contains more
than one element. An element 1 € R is called identity if a-1r = 1gp-a =a for all a € R.
Suppose 1 # Og, otherwise R = {0} if zero is absorbing. If 1=0, then

a=a-1=a=-0=0

for any a € R.
A subset S of R closed under addition and multiplication is called a subsemiring of
R. The center of a semiring R is a set

Z(R)={r e R|rs=sr, Vs € R}.

It is a subsemiring of R. Since 0 € Z(R), Z(R) # @. An element r € Z(R) is called
central. A semiring R is commutative if Z(R) = R.

A left ideal of a semiring R is a nonempty set [ # R which is closed under +
and satisfying the following conditions ra € I for all @ € I, » € R. Similarly we can
define right ideal and two-sided ideal of a semiring. An ideal I of a semiring R is called
subtractive (or k-ideal) if a € I and a + b € I implies b € I.

An ideal I of the semiring R is called strong if a+b € I implies a € I and b € [ for
every a,b € R. Every strong ideal is subtractive.

Let R be a semiring with 1z # Ogr. A left semimodule over a semiring R (or left
R-semimodule) is a nonempty set M together with two operations +: M x M — M and
-2 R x M — M such that the following conditions hold:

(1) (M,+) is a commutative monoid with 0pz;

(2) (M,-) is a semigroup;

(3) (r+sym=rm+smforall r,s € R, m € M,

(4) r(my +ma) =rmy +rmsy for all r € R, my,ms € M;

(5) O -m =1-0p = 0p for all r € R and m € M;

(6) 1g-m=mfor all m e M.

A subset N of an R-semimodule M is called a subsemimodule of M if N itself is a
semimodule with respect to the operations for M, i. e. if m+n € N and rm € N for any
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m,n € N,and r € R. A subsemimodule N of an R-semimodule M is called subtractive or
k-subsemimodule if m; € N and m; +mg € N follow my € N. So {0y} is a subtractive
subsemimodule of M.

A subsemimodule N of the semimodule M is called strong if m; + mo € N implies
m1 € N and my € N for every my,mo € N. Every strong subsemimodule is clearly
subtractive.

Let R be a semiring. A map : R — R is called a derivation on R [3] if

d(a+b)=0d(a)+d(b) and d(ab) =05(a)b+ ad(b)

for any a,b € R.

A semiring R equipped with a derivation ¢ is called a differential semiring with
respect to the derivation 0 (or d-semiring), and denoted by (R, ) [2]. A derivation of a
semiring R is called trivial if it sends all a in R to Og. A semiring is called differentially
trivial if it has no non-trivial derivation.

For an element r € R denote by () = r v/ =5 (r), 7" =6 ('), r(™ =6 (r("_l)), for
any n € Ny. An ideal I of the semiring R is called differential if the set I is differentially
closed under §, i.e. §(r) € I for any r € I. The set (> = {r(™|n = 0,1,2,3...} of
all derivations of an element r € R is differentially closed. The ideal [r] = (7"(00)) =
(r,7’,r",...) of R, generated by the set 7(°°) is differentially generated by r € R; it is
the smallest differential ideal containing the element r € R [11].

Let M be a left semimodule over the semiring R. A map d: M — M is called a
derivation of the semimodule M, associated with the semiring derivation §: R — R (or
a d-derivation) if the following conditions hold:

(1) d(m+n)=d(m)+d(n) for any m,n € M;

(2) d(rm) =46 (r)m+rd(m) for any m € M, r € R.

A left R-semimodule M together with a derivation d: M — M is called a differential
semimodule (or d-6-semimodule) and denoted by (M, d).

A subsemimodule N of the R-semimodule M is called differential if d (N) C N. Any
differential semimodule has two trivial differential subsemimodules: {0y} and itself.

For an element m € M denote by m® = m, m’ = d(m), m" = d(m’), m™) =
d (m("’l)), for any n € No. Moreover, let m(*) = {m(|n € Ny}. It is easy to see that
the set m(°°) is differentially closed. The subsemimodule [m] = (m(>)) = (m,m’,m”,...)
is the smallest differential subsemimodule of M containing m € M.

2. QUASI-PRIME DIFFERENTIAL SEMIMODULES

For a subset X of M its differential X4 is defined to be the set
Xy = {a: eM ’ 2™ € X foralln € NO} .

Proposition 1. Let X, Y, X;, i € I, be subsets of M, let A be a subset of R. The
following properties hold:

(1) Xy CX;

(2) (Xp)y = Xp;

(8) Xy =X if and only if Vo € X d(z) € X;

(4) If X CY then Xu C Yu;
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(5) (ﬂ&) =) (Xi)us
#

i€l i€l

6) | J(Xi)uC (U XZ) ;
icl il

(7) Xy + Yy C(X+Y)y;

(8) Ay - Xy C (AX)#.
Proposition 2. Let My and My be differential semimodules, let f: My — My be a
differential semimodule homomorphism, and let X be a subset of My, Y be a subset of
Ms. The following properties are true:

(1) f(Xy) € (f (X))

(2) If f is a monomorphism, then f(Xy) = (f (X))y;

(3) If f is an epimorphism, then f=' (Yy) = (f~! (Y))#.

The proofs of Proposotions 1 and 2 are straightforward when using standard set-
theoretic technique and corresponding definitions, therefore are omitted.

Proposition 3. (1) If N is an subsemimodule of M, then Ny is a differential
subsemimodule of M.
(2) If N is a strong subsemimodule of M, then Ny is a differential strong semimodule
of M.
(3) If N is a subtractive subsemimodule of M, then Ny is a differential subtractive
subsemimodule of M.
(4) Ny = N if and only if N is a differential subsemimodule of M.

Proof. (1) Let x,y € Ng. Then (™ € N and y™ € N for any n € Ny, thus (z + y)(") =
™ 4y € N. Hence z +y € Ny. If x € Ny and r € R then z®) € N for any k € N,.

By the Leibnitz rule (rz)™ = Z Chr(n=kz*) ¢ N, which follows 7z € Ny4. Hence Ny

k=
is a subsemimodule of M. The sulf?semimodule Ny is differential since Ny is differentially
closed for any subset N of M.

(2) Suppose x +y € Ng. Then (2 +y)™ = 2 + y(™ € N for any n € Ny. The
subsemimodule N being strong follows that z(™ € N and y™) € N. Thus z € Ny and
Yy € Ny, so Ny is strong.

(3) Follows from (2) since every strong subsemimodule is subtractive. (4) Follows
from (1). (5) follows from Proposition 1. O

Proposition 4. Let N be an arbitrary subtractive subsemimodule of M and let K be a
differential subsemimodule of M. Then the following equality holds:

(N : K)# = (N# : K)
Proof. Suppose r € (N : K)x. Then (") € (N : K) for all n € Ny, so r(™m € N for all
m € K. Since K is differentially closed, then rm’ € N. Therefore (rm)’ = r'm+rm/ € N.
By induction we obtain that (rm)(™ € N for all n € Ny. Hence r € (Ny : K).
Conversely, let » € (Ng : K). Then (rm)™ € N for all m € K, n € Ny, ie.,
rm € N, (rm)’ = r'm +rm’ € N, (rm)" = "m + 2r'm’ +rm” € N, ..., (rm)™ =
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Z C’;r("*k)m(k) € N. Since K is differentially closed, by subtractiveness of N, (rm)’ €
k=0

N and rm’ € N follow 7'm € N. We may infer by induction that »("m € N for all
m € K, n € Ny. It follows that (™ € (N : K), i.e., r € (N : K)4. O

Proposition 5. Let N be an arbitrary subtractive subsmimodule of M and let I be a
differential ideal of R. Then the following equality holds:

(N : I)# = (N# . I)

Proof. Take m € (N : I)y. Then m(™ € (N : I) for all n € Ny, so am(™ € N for all
a € I. We obtain that (am)™ € N for all n € Ny. Hence m € (Ny : I).

If m € (Ng : I), then (am)™ € N for all a € I, n € Nyp. We conclude that
am(™ € N for all a € I, n € Ny. Therefore, m™) € (N : I),i.e. m € (N : I)4. O

Corollary 1. If N is a subtractive subsemimodule of M and A is a differentially closed
subset of R, then (Ny : A) is a differential subtractive subsemimodule of M.

Corollary 2. Let N be an arbitrary subtractive subsemimodule of M and a € R. Then
(N : a(w))# = (N# : a(oo)).

A non-empty subset S of the semiring R is called an m-system of R if for every
s,t € S there exists r € R such that srt € S.

Let S be an m-system in R. A non-empty subset T of the semimodule M is called
an Sm-system of M if for every s € S and t € T there exists r € R such that srt € T.
A non-empty subset T" of the semimodule M is called an Smd-system in M if for every
s € S and k € T there exist r € R and n € Ny such that srt(™) e T.

A differential subsemimodule N of the left differential semimodule M is called quasi-
prime if there exists an Sm-system T of M such that N is maximal differential subsemi-
module satisfying NNT = @.

For instance, every prime differential subsemimodule is quasi-prime, since the
complement of the prime subsemimodule is an Sm-system, where the role of S is played
by the set {1}.

In the case of a regular semimodule, we obtain the notion of a quasi-prime semiring
ideal. For differential semiring ideals it is known that every maximal among differential
ideals not meeting some m-system is quasi-prime. The following lemma establishes the
analogue of this fact for differential semimodules:

Proposition 6. Let M be a differential semimodule. If Q) is a maximal differential
subsemimodule of M, then Q is quasi-prime.

Proof. Let @ be a maximal amongst differential subsemimodules of M, S = U(R) be the
group of units of R and T'= M\Q . Then T is an Sm-system and @ is a maximal amongst
differential submodules disjoint from 7. Hence @ is a quasi-prime submodule. O

Corollary 3. Let M be a differential semimodule. If P is a prime subsemimodule of M
then the differential subsemimodule Py is quasi-prime.

A differential subtractive subsemimodule P of M is called differentially prime if for
any differential subtractive ideal I of R and any differential subtractive subsemimodule
Nof M, IN C P follows NCPorlIC(P:M).
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Theorem 1. Let R be a differential semiring, S be and m-system in R, and let M be a
differential semimodule over R, let T be an Sdm-system of M, and let N be a differential
submodule of M such that N NT = &. Then the mazimal differential subsemimodule P
among differential subsemimodules of M not meeting T and containing N ezists and is
differentially prime.

Proof. The existence follows from Zorn’s lemma. Let I be a differential ideal of R, K be
a differential subsemimodule of M such that K C P. Then K CPor I C (P: M). P
being maximal follows the existence of s € S and x € M such that s€ (I+(P: M))NS
and z € (K +P)NT. Then there exist » € R and n € Ny such that srz(™) € T. Moreover,
s=a+bforsomea €I, be (P: M) and x = k+1 for some k € K, € P. Then
srx™ = (a4 b)r(k +1)™ € N. Contradiction. O

Dually we can obtain the following

Theorem 2. Let N be a differential submodule of M such that N N'T = & for some
Sdm-system Tof M. Then T is contained in some mazimal Sdm-system T’ such that
NNT' =w@.

Let P be a differentially prime subsemimodule, K be any differential subsemimodule.
P will be called minimal over K if K C N C P follows N = P for any differentially
prime subsemimodule N of M.

Theorem 3. Let K be any differential subsemimodule pf M. A subset P # & is minimal
over K if and only if M C P is a mazimal Sdm-system not meeting K.

Proof. Follows from Theorems 1 and 2. O

Theorem 4. Let M be a differential semimodule satisfying the ascending chain condition
for differential subsemimodules. For every differential substractive subsemimodule N of
M the following conditions are equivalent:

(1) N is a differentially prime subtractive subsemimodule;
(2) N is a quasi-prime subtractive subsemimodule;
(3) N = Py for some prime subtractive subsemimodule P of M.

Proof. (1) = (2) Let N be some differentially prime subtractive subsemimodule of M.
Then the set M\N is a Sdm-system for some dm-system S of the semiring R. Since N
is maximal differential subtractive subsemimodule disjoint from T = M\N, then it is
quasi-prime.

(2) = (3) Let N be a subsemimodule of M, maximal among differential subsemi-
modules disjoint from the Sm-system X, and let K be maximal subsemimodule disjoint
from X and containing N. Then K is a prime subsemimodule in M. Since N is a differenti-
al subsemimodule of M, then N C K. The converse inclusion implies due to maximality
of the differential subsemimodule N among those disjoint from X. Therefore, N = K.

(3) = (1) Let N = Py for some prime subtractive subsemimodule R of M. Then
N is maximal amongst differential subsemimodules of M contained in P. Let T'= M\P.
Clearly, T is an Sm-system for some m-system of the semiring R. Denote by K the
intersection of all Sdm-systems of the semimodule M, which contain 7. Then K is the
least Sdm-system of those containing T'. Hence N is a differentially prime subsemimodule
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of M. It remains to verify that N = M\ K. Since M\ K is disjoint from 7', then M\ K C P,
and due to the fact that M\ K is a differential subsemimodule of M, we have the inclusion
M\K C N. Taking into consideration the minimality of the set /&, we obtain that the set
M\K is a maximal subsemimodule among the differential subsemimodules of N. Thus,
M\K = N. O
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