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The paper is devoted to the investigation of the notion of a quasi-prime
subsemimodule of the di�erential semimodule, which generalizes the notion of
quasi-prime ideal of a ring. Some natural properties of quasi-prime sebsemi-
modules are investigated. The interrelation between quasi-prime subsemi-
modules and di�erent types of di�erential subsemimodules of di�erential
semimodules is studied.
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1. Introduction

The notion of a derivation for semirings is de�ned in [3] as an additive map satisfying
the Leibnitz rule. Recently in [2], [11] the authors investigated some natural properties
of semiring and semimodule derivations, di�erential semirings, i.e. semirings considered
together with a derivation, and di�erential semimodules.

Keigher [6], [7] introduced and studied the notion of a quasi-prime ideal of diffe-
rential rings. Its generalizations to di�erential modules, semirings and semimodules were
investigated by di�erent authors, e.g. [14], [13], [12], [11], [10].

A subsemimodule P of a subsemimodule M is called prime if for any ideal I of R
and any submodule N of M the inclusion IN ⊆ P implies N ⊆ P or I ⊆ (P : M).
Prime subsemimodules of semimodules over semirings were introduced and extensively
investigated in [1].

The concept of a di�erentially prime ideal of a di�erential ring was introduced in [8].
Di�erentially prime submodules of modules over associative rings were studied in [10].
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The development of semiring and semimodule theory over the years motivates a
further study into properties of di�erential semirings, di�erential semimodules, semiri-
ng ideals and subsemimodules de�ned by similar conditions. The aim of this paper is to
investigate quasi-prime subsemimodules of di�erential semimodules, and their interrelati-
on with other types of subsemimodules.

For the sake of completeness some de�nitions and properties used in the paper will
be given here. For more information see [3], [4], [9], [5].

Throughout the paper, N denotes the set of positive integers and N0 = N
⋃
{0} the

set of non-negative integers.
Let R be a nonempty set and let + and · be binary operations on R. An algebraic

system (R,+, ·) is called a semiring if (R,+, 0) is a commutative monoid, (R, ·) is a semi-
group and multiplication distributes over addition from either side. A semiring (R,+, ·)
is said to be commutative if · is commutative on R. A semiring which is not a ring is
called a proper semiring.

Zero 0R ∈ R is called (multiplicatively) absorbing if

a · 0R = 0R · a = 0

for all a ∈ R. Note that 0R ∈ R cannot be additively absorbing when R contains more
than one element. An element 1R ∈ R is called identity if a ·1R = 1R ·a = a for all a ∈ R.
Suppose 1R 6= 0R, otherwise R = {0} if zero is absorbing. If 1=0, then

a = a · 1 = a = ·0 = 0

for any a ∈ R.
A subset S of R closed under addition and multiplication is called a subsemiring of

R. The center of a semiring R is a set

Z(R) = {r ∈ R | rs = sr, ∀s ∈ R}.
It is a subsemiring of R. Since 0 ∈ Z(R), Z(R) 6= ∅. An element r ∈ Z(R) is called
central. A semiring R is commutative if Z(R) = R.

A left ideal of a semiring R is a nonempty set I 6= R which is closed under +
and satisfying the following conditions ra ∈ I for all a ∈ I, r ∈ R. Similarly we can
de�ne right ideal and two-sided ideal of a semiring. An ideal I of a semiring R is called
subtractive (or k-ideal) if a ∈ I and a+ b ∈ I implies b ∈ I.

An ideal I of the semiring R is called strong if a+ b ∈ I implies a ∈ I and b ∈ I for
every a, b ∈ R. Every strong ideal is subtractive.

Let R be a semiring with 1R 6= 0R. A left semimodule over a semiring R (or left
R-semimodule) is a nonempty set M together with two operations +: M ×M →M and
· : R×M →M such that the following conditions hold:

(1) (M,+) is a commutative monoid with 0M ;
(2) (M, ·) is a semigroup;
(3) (r + s)m = rm+ sm for all r, s ∈ R, m ∈M ;
(4) r(m1 +m2) = rm1 + rm2 for all r ∈ R, m1,m2 ∈M ;
(5) 0R ·m = r · 0M = 0M for all r ∈ R and m ∈M ;
(6) 1R ·m = m for all m ∈M .

A subset N of an R-semimodule M is called a subsemimodule of M if N itself is a
semimodule with respect to the operations for M , i. e. if m+n ∈ N and rm ∈ N for any
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m,n ∈ N , and r ∈ R. A subsemimodule N of an R-semimoduleM is called subtractive or
k-subsemimodule if m1 ∈ N and m1 +m2 ∈ N follow m2 ∈ N . So {0M} is a subtractive
subsemimodule of M .

A subsemimodule N of the semimodule M is called strong if m1 +m2 ∈ N implies
m1 ∈ N and m2 ∈ N for every m1,m2 ∈ N . Every strong subsemimodule is clearly
subtractive.

Let R be a semiring. A map δ : R→ R is called a derivation on R [3] if

δ (a+ b) = δ (a) + δ (b) and δ (ab) = δ (a) b+ aδ (b)

for any a, b ∈ R.
A semiring R equipped with a derivation δ is called a di�erential semiring with

respect to the derivation δ (or δ-semiring), and denoted by (R, δ) [2]. A derivation of a
semiring R is called trivial if it sends all a in R to 0R. A semiring is called di�erentially

trivial if it has no non-trivial derivation.
For an element r ∈ R denote by r(0) = r, r′ = δ (r), r′′ = δ (r′), r(n) = δ

(
r(n−1)

)
, for

any n ∈ N0. An ideal I of the semiring R is called di�erential if the set I is di�erentially
closed under δ, i.e. δ(r) ∈ I for any r ∈ I. The set r(∞) = {r(n)|n = 0, 1, 2, 3 . . .} of
all derivations of an element r ∈ R is di�erentially closed. The ideal [r] =

(
r(∞)

)
=

(r, r′, r′′, . . .) of R, generated by the set r(∞), is di�erentially generated by r ∈ R; it is
the smallest di�erential ideal containing the element r ∈ R [11].

Let M be a left semimodule over the semiring R. A map d : M → M is called a
derivation of the semimodule M , associated with the semiring derivation δ : R → R (or
a δ-derivation) if the following conditions hold:

(1) d (m+ n) = d (m) + d (n) for any m,n ∈M ;
(2) d (rm) = δ (r)m+ rd (m) for any m ∈M , r ∈ R.
A left R-semimoduleM together with a derivation d : M →M is called a di�erential

semimodule (or d-δ-semimodule) and denoted by (M,d).
A subsemimodule N of the R-semimoduleM is called di�erential if d (N) ⊆ N . Any

di�erential semimodule has two trivial di�erential subsemimodules: {0M} and itself.
For an element m ∈ M denote by m(0) = m, m′ = d (m), m′′ = d (m′), m(n) =

d
(
m(n−1)), for any n ∈ N0. Moreover, let m(∞) = {m(n)|n ∈ N0}. It is easy to see that

the setm(∞) is di�erentially closed. The subsemimodule [m] =
(
m(∞)

)
= (m,m′,m′′, . . .)

is the smallest di�erential subsemimodule of M containing m ∈M .

2. Quasi-prime differential semimodules

For a subset X of M its di�erential X# is de�ned to be the set

X# =
{
x ∈M

∣∣∣ x(n) ∈ X for alln ∈ N0

}
.

Proposition 1. Let X, Y , Xi, i ∈ I, be subsets of M , let A be a subset of R. The
following properties hold:

(1) X# ⊆ X;

(2) (X#)# = X#;

(3) X# = X if and only if ∀x ∈ X d(x) ∈ X;

(4) If X ⊆ Y then X# ⊆ Y#;
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(5)

(⋂
i∈I

Xi

)
#

=
⋂
i∈I

(Xi)#;

(6)
⋃
i∈I

(Xi)# ⊆

(⋃
i∈I

Xi

)
#

;

(7) X# + Y# ⊆ (X + Y )#;

(8) A# ·X# ⊆ (AX)#.

Proposition 2. Let M1 and M2 be di�erential semimodules, let f : M1 → M2 be a

di�erential semimodule homomorphism, and let X be a subset of M1, Y be a subset of

M2. The following properties are true:

(1) f (X#) ⊆ (f (X))#;

(2) If f is a monomorphism, then f (X#) = (f (X))#;

(3) If f is an epimorphism, then f−1 (Y#) =
(
f−1 (Y )

)
#
.

The proofs of Proposotions 1 and 2 are straightforward when using standard set-
theoretic technique and corresponding de�nitions, therefore are omitted.

Proposition 3. (1) If N is an subsemimodule of M , then N# is a di�erential

subsemimodule of M .

(2) If N is a strong subsemimodule ofM , then N# is a di�erential strong semimodule

of M .

(3) If N is a subtractive subsemimodule of M , then N# is a di�erential subtractive

subsemimodule of M .

(4) N# = N if and only if N is a di�erential subsemimodule of M .

Proof. (1) Let x, y ∈ N#. Then x
(n) ∈ N and y(n) ∈ N for any n ∈ N0, thus (x+ y)

(n)
=

x(n) + y(n) ∈ N . Hence x+ y ∈ N#. If x ∈ N# and r ∈ R then x(k) ∈ N for any k ∈ N0.

By the Leibnitz rule (rx)
(n)

=

n∑
k=0

Ck
nr

(n−k)x(k) ∈ N , which follows rx ∈ N#. Hence N#

is a subsemimodule ofM . The subsemimodule N# is di�erential since N# is di�erentially
closed for any subset N of M .

(2) Suppose x + y ∈ N#. Then (x + y)(n) = x(n) + y(n) ∈ N for any n ∈ N0. The

subsemimodule N being strong follows that x(n) ∈ N and y(n) ∈ N . Thus x ∈ N# and
y ∈ N#, so N# is strong.

(3) Follows from (2) since every strong subsemimodule is subtractive. (4) Follows
from (1). (5) follows from Proposition 1. �

Proposition 4. Let N be an arbitrary subtractive subsemimodule of M and let K be a

di�erential subsemimodule of M . Then the following equality holds:

(N : K)# = (N# : K).

Proof. Suppose r ∈ (N : K)#. Then r
(n) ∈ (N : K) for all n ∈ N0, so r

(n)m ∈ N for all
m ∈ K. Since K is di�erentially closed, then rm′ ∈ N . Therefore (rm)′ = r′m+rm′ ∈ N .
By induction we obtain that (rm)(n) ∈ N for all n ∈ N0. Hence r ∈ (N# : K).

Conversely, let r ∈ (N# : K). Then (rm)(n) ∈ N for all m ∈ K, n ∈ N0, i.e.,

rm ∈ N , (rm)′ = r′m + rm′ ∈ N , (rm)′′ = r′′m + 2r′m′ + rm′′ ∈ N , . . . , (rm)(n) =
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n∑
k=0

Ck
nr

(n−k)m(k) ∈ N . Since K is di�erentially closed, by subtractiveness of N , (rm)′ ∈

N and rm′ ∈ N follow r′m ∈ N . We may infer by induction that r(n)m ∈ N for all
m ∈ K, n ∈ N0. It follows that r

(n) ∈ (N : K), i.e., r ∈ (N : K)#. �

Proposition 5. Let N be an arbitrary subtractive subsmimodule of M and let I be a

di�erential ideal of R. Then the following equality holds:

(N : I)# = (N# : I).

Proof. Take m ∈ (N : I)#. Then m
(n) ∈ (N : I) for all n ∈ N0, so am

(n) ∈ N for all

a ∈ I. We obtain that (am)(n) ∈ N for all n ∈ N0. Hence m ∈ (N# : I).

If m ∈ (N# : I), then (am)(n) ∈ N for all a ∈ I, n ∈ N0. We conclude that

am(n) ∈ N for all a ∈ I, n ∈ N0. Therefore, m
(n) ∈ (N : I), i. e. m ∈ (N : I)#. �

Corollary 1. If N is a subtractive subsemimodule of M and A is a di�erentially closed

subset of R, then (N# : A) is a di�erential subtractive subsemimodule of M .

Corollary 2. Let N be an arbitrary subtractive subsemimodule of M and a ∈ R. Then(
N : a(∞)

)
#
=
(
N# : a(∞)

)
.

A non-empty subset S of the semiring R is called an m-system of R if for every
s, t ∈ S there exists r ∈ R such that srt ∈ S.

Let S be an m-system in R. A non-empty subset T of the semimodule M is called
an Sm-system of M if for every s ∈ S and t ∈ T there exists r ∈ R such that srt ∈ T .
A non-empty subset T of the semimodule M is called an Smd-system in M if for every
s ∈ S and k ∈ T there exist r ∈ R and n ∈ N0 such that srt(n) ∈ T .

A di�erential subsemimodule N of the left di�erential semimoduleM is called quasi-

prime if there exists an Sm-system T of M such that N is maximal di�erential subsemi-
module satisfying N ∩ T = ∅.

For instance, every prime di�erential subsemimodule is quasi-prime, since the
complement of the prime subsemimodule is an Sm-system, where the role of S is played
by the set {1}.

In the case of a regular semimodule, we obtain the notion of a quasi-prime semiring
ideal. For di�erential semiring ideals it is known that every maximal among di�erential
ideals not meeting some m-system is quasi-prime. The following lemma establishes the
analogue of this fact for di�erential semimodules:

Proposition 6. Let M be a di�erential semimodule. If Q is a maximal di�erential

subsemimodule of M , then Q is quasi-prime.

Proof. Let Q be a maximal amongst di�erential subsemimodules ofM , S = U(R) be the
group of units of R and T =M\Q . Then T is an Sm-system and Q is a maximal amongst
di�erential submodules disjoint from T . Hence Q is a quasi-prime submodule. �

Corollary 3. Let M be a di�erential semimodule. If P is a prime subsemimodule of M
then the di�erential subsemimodule P# is quasi-prime.

A di�erential subtractive subsemimodule P of M is called di�erentially prime if for
any di�erential subtractive ideal I of R and any di�erential subtractive subsemimodule
N of M , IN ⊆ P follows N ⊆ P or I ⊆ (P :M).
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Theorem 1. Let R be a di�erential semiring, S be and m-system in R, and let M be a

di�erential semimodule over R, let T be an Sdm-system of M , and let N be a di�erential

submodule of M such that N ∩ T = ∅. Then the maximal di�erential subsemimodule P
among di�erential subsemimodules of M not meeting T and containing N exists and is

di�erentially prime.

Proof. The existence follows from Zorn's lemma. Let I be a di�erential ideal of R, K be
a di�erential subsemimodule of M such that IK ⊆ P . Then K ⊆ P or I ⊆ (P : M). P
being maximal follows the existence of s ∈ S and x ∈M such that s ∈ (I +(P :M))∩S
and x ∈ (K+P )∩T . Then there exist r ∈ R and n ∈ N0 such that srx(n) ∈ T . Moreover,
s = a + b for some a ∈ I, b ∈ (P : M), and x = k + l for some k ∈ K, l ∈ P . Then
srx(n) = (a+ b)r(k + l)(n) ∈ N . Contradiction. �

Dually we can obtain the following

Theorem 2. Let N be a di�erential submodule of M such that N ∩ T = ∅ for some

Sdm-system Tof M . Then T is contained in some maximal Sdm-system T ′ such that

N ∩ T ′ = ∅.

Let P be a di�erentially prime subsemimodule,K be any di�erential subsemimodule.
P will be called minimal over K if K ⊆ N ⊆ P follows N = P for any di�erentially
prime subsemimodule N of M .

Theorem 3. Let K be any di�erential subsemimodule pf M . A subset P 6= ∅ is minimal

over K if and only if M ⊆ P is a maximal Sdm-system not meeting K.

Proof. Follows from Theorems 1 and 2. �

Theorem 4. LetM be a di�erential semimodule satisfying the ascending chain condition

for di�erential subsemimodules. For every di�erential substractive subsemimodule N of

M the following conditions are equivalent:

(1) N is a di�erentially prime subtractive subsemimodule;

(2) N is a quasi-prime subtractive subsemimodule;

(3) N = P# for some prime subtractive subsemimodule P of M .

Proof. (1) =⇒ (2) Let N be some di�erentially prime subtractive subsemimodule of M .
Then the set M\N is a Sdm-system for some dm-system S of the semiring R. Since N
is maximal di�erential subtractive subsemimodule disjoint from T = M\N , then it is
quasi-prime.

(2) =⇒ (3) Let N be a subsemimodule of M , maximal among di�erential subsemi-
modules disjoint from the Sm-system X, and let K be maximal subsemimodule disjoint
fromX and containingN . ThenK is a prime subsemimodule inM . SinceN is a di�erenti-
al subsemimodule ofM , then N ⊆ K#. The converse inclusion implies due to maximality
of the di�erential subsemimodule N among those disjoint from X. Therefore, N = K#.

(3) =⇒ (1) Let N = P# for some prime subtractive subsemimodule R of M . Then
N is maximal amongst di�erential subsemimodules of M contained in P . Let T =M\P .
Clearly, T is an Sm-system for some m-system of the semiring R. Denote by K the
intersection of all Sdm-systems of the semimodule M , which contain T . Then K is the
least Sdm-system of those containing T . Hence N is a di�erentially prime subsemimodule
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ofM . It remains to verify thatN =M\K. SinceM\K is disjoint from T , thenM\K ⊆ P ,
and due to the fact thatM\K is a di�erential subsemimodule ofM , we have the inclusion
M\K ⊆ N . Taking into consideration the minimality of the set K, we obtain that the set
M\K is a maximal subsemimodule among the di�erential subsemimodules of N . Thus,
M\K = N . �
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