ON ENDOMORPHISMS OF THE INVERSE SEMIGROUP OF CONVEX ORDER ISOMORPHISMS OF THE SET ω OF A BOUNDED RANK WHICH ARE GENERATED BY REES CONGRUENCES

Olha POPADIUK
Ivan Franko National University of Lviv, Universytetska Str., 1, Lviv, 79000, Ukraine
e-mail: olha.popadiuk@lnu.edu.ua

Let $\mathscr{I}_{\omega}^{n}(\overrightarrow{\text { conv }})$ be the inverse semigroup of convex order isomorphisms of (ω, \leqslant) of the rank $\leqslant n$. Let $\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ be a subsemigroup of $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ which consists of $\mathfrak{a} \in \mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ such that the image $(\alpha) \mathfrak{a}$ is isomorphic to a subsemigroup of the semigroup of $\omega \times \omega$-matrix units for all $\alpha \in \mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$. We describe the semigroup $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ of all endomorphisms of the monoid $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ up to its ideal $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$.

Key words: bicyclic extension, inverse semigroup, endomorphism, automorphism, the semigroup of $\omega \times \omega$-matrix units.

We shall follow the terminology of $[1,2,9,10]$. By \mathbb{N} and ω we denote the set of all positive integers and the set of all non-negative integers, respectively.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω. For any $F \in \mathscr{P}(\omega)$ and $n, m \in \omega$ we put $n-m+F=\{n-m+k: k \in F\}$ if $F \neq \varnothing$ and $n-m+\varnothing=\varnothing$. A subfamily $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is called ω-closed if $F_{1} \cap\left(-n+F_{2}\right) \in \mathscr{F}$ for all $n \in \omega$ and $F_{1}, F_{2} \in \mathscr{F}$.

We denote $[0 ; 0]=\{0\}$ and $[0 ; k]=\{0, \ldots, k\}$ for any positive integer k. The set $[0 ; k], k \in \omega$, is called an initial interval of ω.

A nonempty set S with a binary associative operation is called a semigroup. By $(\omega,+)$ we denote the set ω with the usual addition $(x, y) \mapsto x+y$. We consider the following ideal $I_{n}=\{x \in \omega \mid x \geqslant n\}$ of $(\omega,+)$. Define $\left(\omega_{n}, \dot{+}\right)=(\omega,+) / I_{n}$.

A semigroup S is called inverse if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. The element x^{-1} is called the inverse of $x \in S$. If S is an inverse semigroup, then the mapping inv : $S \rightarrow S$ which assigns to every element x of S its inverse element x^{-1} is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by $E(S)$. If S is an inverse semigroup, then $E(S)$ is closed under multiplication and we shall refer to $E(S)$ as a band (or the band of S). Then the semigroup operation on S determines the following partial order \preccurlyeq on $E(S): e \preccurlyeq f$ if and only if $e f=f e=e$. This order is called the natural partial order on $E(S)$. A semilattice is a commutative semigroup of idempotents.

For semigroups S and T a map $\mathfrak{h}: S \rightarrow T$ is called:

- a homomorphism if $\mathfrak{h}\left(s_{1} \cdot s_{2}\right)=\mathfrak{h}\left(s_{1}\right) \cdot \mathfrak{h}\left(s_{2}\right)$ for all $s_{1}, s_{2} \in S$;
- an annihilating homomorphism if \mathfrak{h} is a homomorphism and $\mathfrak{h}\left(s_{1}\right)=\mathfrak{h}\left(s_{2}\right)$ for all $s_{1}, s_{2} \in S$;
- an isomorphism if $\mathfrak{h}: S \rightarrow T$ is a bijective homomorphism.

For a semigroup S a homomorphism (an isomorphism) $\mathfrak{h}: S \rightarrow S$ is called an endomorphi$s m$ (automorphism) of S. For simplicity of calculation, the image of $s \in S$ under an endomorphism \mathfrak{e} of a semigroup S we shall denote it by $(s) \mathfrak{e}$.

A congruence on a semigroup S is an equivalence relation \mathfrak{C} on S such that $(s, t) \in \mathfrak{C}$ implies $(a s, a t),(s b, t b) \in \mathfrak{C}$ for all $a, b \in S$. Every congruence \mathfrak{C} on a semigroup S generates the associated natural homomorphism $\mathfrak{C}^{\natural}: S \rightarrow S / \mathfrak{C}$ which assigns to each element s of S its congruence class $[s]_{\mathfrak{C}}$ in the quotient semigroup S / \mathfrak{C}. Also every homomorphism $\mathfrak{h}: S \rightarrow T$ of semigroups S and T generates the congruence $\mathfrak{C}_{\mathfrak{h}}$ on S : $\left(s_{1}, s_{2}\right) \in \mathfrak{C}_{\mathfrak{h}}$ if and only if $\left(s_{1}\right) \mathfrak{h}=\left(s_{2}\right) \mathfrak{h}$.

A nonempty subset I of a semigroup S is called an ideal of S if

$$
S I S=\{a s b: s \in I, a, b \in S\} \subseteq I .
$$

Every ideal I of a semigroup S generates the congruence $\mathfrak{C}_{I}=(I \times I) \cup \Delta_{S}$ on S, which is called the Rees congruence on S. An endomorphism \mathfrak{r} of a semigroup S is said to be Rees if \mathfrak{r} generates a Rees congruence $\mathfrak{C}_{\mathfrak{r}}$ on S.

Let \mathscr{I}_{λ} denote the set of all partial one-to-one transformations of λ together with the following semigroup operation:

$$
x(\alpha \beta)=(x \alpha) \beta \quad \text { if } \quad x \in \operatorname{dom}(\alpha \beta)=\{y \in \operatorname{dom} \alpha: y \alpha \in \operatorname{dom} \beta\}, \quad \text { for } \quad \alpha, \beta \in \mathscr{I}_{\lambda} .
$$

The semigroup \mathscr{I}_{λ} is called the symmetric inverse semigroup over the cardinal λ (see [1]). For any $\alpha \in \mathscr{I}_{\lambda}$ the cardinality of $\operatorname{dom} \alpha$ is called the rank of α and it is denoted by rank α. The symmetric inverse semigroup was introduced by V. V. Wagner [11] and it plays a major role in the theory of semigroups.

Put $\mathscr{I}_{\lambda}^{n}=\left\{\alpha \in \mathscr{I}_{\lambda}: \operatorname{rank} \alpha \leqslant n\right\}$, for $n=1,2,3, \ldots$ Obviously, $\mathscr{I}_{\lambda}^{n}(n=1,2,3, \ldots)$ is an inverse semigroup, $\mathscr{I}_{\lambda}^{n}$ is an ideal of \mathscr{I}_{λ}, for each $n=1,2,3, \ldots$. The semigroup $\mathscr{I}_{\lambda}^{n}$ is called the symmetric inverse semigroup of finite transformations of the rank $\leqslant n$ [7]. By

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right)
$$

we denote a partial one-to-one transformation which maps x_{1} onto y_{1}, x_{2} onto y_{2}, \ldots, and x_{n} onto y_{n}. Obviously, in such case we have $x_{i} \neq x_{j}$ and $y_{i} \neq y_{j}$ for $i \neq j(i, j=$ $1,2,3, \ldots, n)$. The empty partial map $\varnothing: \lambda \rightharpoonup \lambda$ is denoted by $\mathbf{0}$. It is obvious that $\mathbf{0}$ is zero of the semigroup $\mathscr{I}_{\lambda}^{n}$.

For a partially ordered set (P, \leqq), a subset X of P is called order-convex, if $x \leqq z \leqq y$ and $\{x, y\} \subseteq X$ implies that $z \in X$, for all $x, y, z \in P[8]$. It is obvious that the set of all
partial order isomorphisms between convex subsets of (ω, \leqslant) under the composition of partial self-maps forms an inverse subsemigroup of the symmetric inverse semigroup \mathscr{I}_{ω} over the set ω. We denote this semigroup by $\mathscr{I}_{\omega}(\overrightarrow{\mathrm{conv}})$. We put $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})=\mathscr{I}_{\omega}(\overrightarrow{\mathrm{conv}}) \cap$ \mathscr{I}_{ω}^{n} and it is obvious that $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ is closed under the semigroup operation of \mathscr{I}_{ω}^{n}. The semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$ is called the inverse semigroup of convex order isomorphisms of (ω, \leqslant) of the rank $\leqslant n$. Obviously that every non-zero element of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$ of the rank $k \leqslant n$ has a form

$$
\left(\begin{array}{cccc}
i & i+1 & \cdots & i+k-1 \\
j & j+1 & \cdots & j+k-1
\end{array}\right)
$$

for some $i, j \in \omega$.
The bicyclic monoid $\mathscr{C}(p, q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition $p q=1$. The semigroup operation on $\mathscr{C}(p, q)$ is determined as follows:

$$
q^{k} p^{l} \cdot q^{m} p^{n}=q^{k+m-\min \{l, m\}} p^{l+n-\min \{l, m\}}
$$

It is well known that the bicyclic monoid $\mathscr{C}(p, q)$ is a bisimple (and hence simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p, q)$ is a group congruence [1].

On the set $\boldsymbol{B}_{\omega}=\omega \times \omega$ we define the semigroup operation "." in the following way

$$
\left(i_{1}, j_{1}\right) \cdot\left(i_{2}, j_{2}\right)= \begin{cases}\left(i_{1}-j_{1}+i_{2}, j_{2}\right), & \text { if } j_{1} \leqslant i_{2} \\ \left(i_{1}, j_{1}-i_{2}+j_{2}\right), & \text { if } j_{1} \geqslant i_{2}\end{cases}
$$

It is well known that the semigroup \boldsymbol{B}_{ω} is isomorphic to the bicyclic monoid by the mapping $\mathfrak{h}: \mathscr{C}(p, q) \rightarrow \boldsymbol{B}_{\omega}, q^{k} p^{l} \mapsto(k, l)$ (see: [1, Section 1.12] or [10, Exercise IV.1.11(ii)]).

Next we shall describe the construction which is introduced in [4].
Let \boldsymbol{B}_{ω} be the bicyclic monoid and \mathscr{F} be an ω-closed subfamily of $\mathscr{P}(\omega)$. On the set $\boldsymbol{B}_{\omega} \times \mathscr{F}$ we define the semigroup operation "." in the following way

$$
\left(i_{1}, j_{1}, F_{1}\right) \cdot\left(i_{2}, j_{2}, F_{2}\right)= \begin{cases}\left(i_{1}-j_{1}+i_{2}, j_{2},\left(j_{1}-i_{2}+F_{1}\right) \cap F_{2}\right), & \text { if } j_{1} \leqslant i_{2} \\ \left(i_{1}, j_{1}-i_{2}+j_{2}, F_{1} \cap\left(i_{2}-j_{1}+F_{2}\right)\right), & \text { if } j_{1} \geqslant i_{2}\end{cases}
$$

In [4] is proved that if the family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ is ω-closed then $\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right)$ is a semigroup. Moreover, if an ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ contains the empty set \varnothing then the set $\boldsymbol{I}=\{(i, j, \varnothing): i, j \in \omega\}$ is an ideal of the semigroup $\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right)$. For any ω-closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$
\boldsymbol{B}_{\omega}^{\mathscr{F}}= \begin{cases}\left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right) / \boldsymbol{I}, & \text { if } \varnothing \in \mathscr{F} ; \\ \left(\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot\right), & \text { if } \varnothing \notin \mathscr{F}\end{cases}
$$

is defined in [4]. The semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [4] that $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is combinatorial inverse semigroup and Green's relations, the natural partial order on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. The criteria of simplicity, 0 -simplicity, bisimplicity, 0 -bisimplicity of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and when $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ has the identity, is isomorphic to the bicyclic semigroup or the countable semigroup of matrix units are given. In particularly in [4] is proved that the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigrpoup of $\omega \times \omega$-matrix units if and only if \mathscr{F} consists of a singleton set and the empty set.

The semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the case when the family \mathscr{F} consists of the empty set and some singleton subsets of ω is studied in [3]. It is proved that the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the subsemigroup $\mathscr{B}_{\omega}^{\upharpoonright}\left(\boldsymbol{F}_{\min }\right)$ of the Brandt ω-extension of the subsemilattice (\boldsymbol{F}, \min) of (ω, \min), where $\boldsymbol{F}=\bigcup \mathscr{F}$. Also topologizations of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its closure in semitopological semigroups are studied.

For any $n \in \omega$ we put $\mathscr{F}_{n}=\{[0 ; k]: k=0, \ldots, n\}$. It is obvious that \mathscr{F}_{n} is an ω-closed family of ω.

In the paper [5] we study the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$. It is shown that the Green relations \mathscr{D} and \mathscr{J} coincide in $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$, the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ is isomorphic to the semigroup $\mathscr{I}_{\omega}^{n+1}(\overrightarrow{\operatorname{conv}})$, and $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ admits only Rees congruences. Also in [5], we study shift-continuous topologies of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$. In particular, we prove that for any shift-continuous T_{1}-topology τ on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$, every non-zero element of $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ is an isolated point of $\left(\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}, \tau\right)$, $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ admits the unique compact shift-continuous T_{1}-topology, and every $\omega_{\mathcal{D}}$-compact shift-continuous T_{1}-topology is compact, where $\omega_{\mathfrak{O}}$ is the discrete infinite countable space. We describe the closure of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ in a Hausdorff semitopological semigroup and prove the criterium when a topological inverse semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ is H-closed in the class of Hausdorff topological semigroups.

In the paper [6] injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ for a positive integer $n \geqslant 2$ are desribed. In particular, it is proved that for $n \geqslant 1$, the semigroup of injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ is isomorphic to $(\omega,+)$. Also, there the structure of the semigroup $\mathfrak{E n d}\left(\mathscr{B}_{\lambda}\right)$ of all endomorphisms of the semigroup of $\lambda \times \lambda$-matrix units \mathscr{B}_{λ} is described.

This paper is a continuations of the investigation which are presented in [5, 6]. Let $\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ be a subsemigroup of $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ which consists of $\mathfrak{a} \in$ $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ such that the image $(\alpha) \mathfrak{a}$ is isomorphic to a subsemigroup of the semigroup of $\omega \times \omega$-matrix units for all $\alpha \in \mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$. We describe the semigroup $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ of all endomorphisms of the monoid $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ up to its ideal $\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$.

By Theorem 1 of [5], for any $n \in \omega$ the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ is isomorphic to the semigroup $\mathscr{I}_{\omega}^{n+1}(\overrightarrow{\operatorname{conv}})$ by the mapping $\mathfrak{I}: \boldsymbol{B}_{\omega}^{\mathscr{F}_{n}} \rightarrow \mathscr{I}_{\omega}^{n+1}(\overrightarrow{\operatorname{conv}})$, defined by the formulae (0) $\mathfrak{I}=\mathbf{0}$ and

$$
(i, j,[0 ; k]) \mathfrak{I}=\left(\begin{array}{cccc}
i & i+1 & \cdots & i+k \\
j & j+1 & \cdots & j+k
\end{array}\right) .
$$

Later we study endomorphisms of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$.
By Theorem 2 of [5] for an arbitrary $n \in \omega$ the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ (and hence the semigroup $\left.\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ admits only Rees congruences. Moreover, by Theorem 3 of [5] for any homomorphism \mathfrak{h} from $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ into a semigroup S the image $\left(\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}\right) \mathfrak{h}$ is either isomorphic to $\boldsymbol{B}_{\omega}^{\mathscr{F}_{k}}$ for some $k=0,1, \ldots, n$, or is a singleton. Also, Lemma 1 of [6] states that if n is any positive integer and \mathfrak{a} is an arbitrary non-annihilating endomorphism of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ then (0) $\mathfrak{a}=\mathbf{0}$.

By Proposition 3 of [5] for any non-negative integer n the map $\mathfrak{h}_{0}: \boldsymbol{B}_{\omega}^{\mathscr{F}_{n}} \rightarrow \boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ defined by the formulae $(\mathbf{0}) \mathfrak{h}_{0}=\mathbf{0}$ and

$$
(i, j,[0 ; k]) \mathfrak{h}_{0}=\left\{\begin{array}{cl}
\mathbf{0}, & \text { if } k=0 \\
(i, j,[0 ; k-1]), & \text { if } k=1, \ldots, n
\end{array}\right.
$$

is an endomorphism of $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$. Using the isomorphism $\mathfrak{I}: \boldsymbol{B}_{\omega}^{\mathscr{F}_{n}} \rightarrow \mathscr{I}_{\omega}^{n+1}(\overrightarrow{\operatorname{conv}})$ we get that the endomorphism \mathfrak{h}_{0} of $\boldsymbol{B}_{\omega}^{\mathscr{F}_{n}}$ generates the following endomorphism $\mathfrak{r}_{1}: \mathscr{I}_{\omega}^{m+1}(\overrightarrow{\operatorname{conv}}) \rightarrow$ $\mathscr{I}_{\omega}^{m}(\overrightarrow{\operatorname{conv}})(m \in \mathbb{N})$ which is defined by the formulae
$(\mathbf{0}) \mathfrak{r}_{1}=\mathbf{0}, \quad\binom{i}{j} \mathfrak{r}_{1}=\mathbf{0}, \quad\left(\begin{array}{cc}i & i+1 \\ j & j+1\end{array}\right) \mathfrak{r}_{1}=\binom{i}{j}, \quad \cdots, \quad\left(\begin{array}{cccc}i & \cdots & i+k-1 & i+k \\ j & \cdots & j+k-1 & j+k\end{array}\right) \mathfrak{r}_{1}=\left(\begin{array}{ccc}i & \cdots & i+k-1 \\ j & \cdots & j+k-1\end{array}\right)$
for all $i, j \in \omega$ and $k=1, \ldots, m$. It is obvious that so defined endomorphism \mathfrak{r}_{1} of $\mathscr{I}_{\omega}^{m}(\overrightarrow{\operatorname{conv}})$ generates the Rees congruence $\mathfrak{C}_{\mathfrak{r}_{1}}$ which is generated by the ideal $\mathscr{I}_{\omega}^{1}(\overrightarrow{\mathrm{conv}})$. Also for $p=1, \ldots, m$ the mapping $\mathfrak{r}_{p}=\underbrace{\mathfrak{r}_{1} \circ \cdots \circ \mathfrak{r}_{1}}_{p-\text { times }}$ is an endomorphism of $\mathscr{I}_{\omega}^{m}(\overrightarrow{\operatorname{conv}})$ and \mathfrak{r}_{p} generates the Rees congruence $\mathfrak{C}_{\mathfrak{r}_{p}}$ which is generated by the ideal $\mathscr{I}_{\omega}^{p}(\overrightarrow{\text { conv }})$ of the semigroup $\mathscr{I}_{\omega}^{m}(\overrightarrow{\operatorname{conv}})$. Later for $p=1, \ldots, m$ the above determined endomorphism \mathfrak{r}_{p} we call the p-canonical Rees endomorphism of the semigroup $\mathscr{I}_{\omega}^{m}(\overrightarrow{\operatorname{conv}})$.

Later we study endomorphisms of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ for any positive integer n.

By Corollary 1 of [6] for any positive integer n and arbitrary $i_{0} \in \omega$ the map $\mathfrak{e}_{i_{0}}: \mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}}) \rightarrow \mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$ defined by the formulae $(\mathbf{0}) \mathfrak{e}_{i_{0}}=\mathbf{0}$ and

$$
\left(\begin{array}{ccc}
i & i+1 & \cdots
\end{array}\right)
$$

is an endomorphism of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$, and moreover it is injective. It is obvious for any $i_{0} \in \omega$ the endomorphism $\mathfrak{e}_{i_{0}}$ generates the identity congruence on the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$. Also, by Theorem 1 of [6] for any positive integer $n \geqslant 2$ for every injective endomorphism $\mathfrak{a}: \mathscr{I}_{\omega}^{n}(\overrightarrow{\text { conv }}) \rightarrow \mathscr{I}_{\omega}^{n}(\overrightarrow{\text { conv }})$ there exists $i_{0} \in \omega$ such that $\mathfrak{a}=\mathfrak{e}_{i_{0}}$.

Fix an arbitrary $i_{0} \in \omega$. Then we have that

$$
\begin{aligned}
& \left((\mathbf{0}) \mathfrak{r}_{1}\right) \mathfrak{e}_{i_{0}}=(\mathbf{0}) \mathfrak{e}_{i_{0}}=\mathbf{0}, \\
& \left(\binom{i}{j} \mathfrak{r}_{1}\right) \mathfrak{e}_{i_{0}}=(\mathbf{0}) \mathfrak{e}_{i_{0}}=\mathbf{0}, \\
& \left(\left(\begin{array}{cc}
i & i+1 \\
j & j+1
\end{array}\right) \mathfrak{r}_{1}\right) \mathfrak{e}_{i_{0}}=\binom{i}{j} \mathfrak{e}_{i_{0}}=\binom{i+i_{0}}{j+i_{0}}, \\
& \left(\left(\begin{array}{cccc}
i & \cdots & i+k-1 & i+k \\
j & \cdots & j+k-1 & k+k
\end{array}\right) \mathfrak{r}_{1}\right) \mathfrak{e}_{i_{0}}=\left(\begin{array}{ccc}
i & \cdots & i+k-1 \\
j & \cdots & j+k-1
\end{array}\right) \mathfrak{e}_{i_{0}}=\left(\begin{array}{ccc}
i+i_{0} & \cdots & i+k-1+i_{0} \\
j+i_{0} & \cdots & j+k-1+i_{0}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left((\mathbf{0}) \mathfrak{e}_{i_{0}}\right) \mathfrak{r}_{1}=(\mathbf{0}) \mathfrak{r}_{1}=\mathbf{0} \text {, } \\
& \left(\binom{i}{j} \mathfrak{e}_{i_{0}}\right) \mathfrak{r}_{1}=\binom{i+i_{0}}{j+i_{0}} \mathfrak{r}_{1}=\mathbf{0}, \\
& \left(\left(\begin{array}{cc}
i & i+1 \\
j & j+1
\end{array}\right) \mathfrak{e}_{i_{0}}\right) \mathfrak{r}_{1}=\left(\begin{array}{cc}
i+i_{0} & i+1+i_{0} \\
j+i_{0} & j+1+i_{0}
\end{array}\right) \mathfrak{r}_{1}=\binom{i+i_{0}}{j+i_{0}}, \\
& \left(\left(\begin{array}{cccc}
i & \cdots & i+k-1 & i+k \\
j & \cdots & j+k-1 & k+k
\end{array}\right) \mathfrak{e}_{i_{0}}\right) \mathfrak{r}_{1}=\left(\begin{array}{cccc}
i+i_{0} & \cdots & i+k-1+i_{0} & i+k+i_{0} \\
j+i_{0} & \cdots & j+k-1+i_{0} & k+k+i_{0}
\end{array}\right) \mathfrak{r}_{1}=\left(\begin{array}{ccc}
i+i_{0} & \cdots & i+k-1+i_{0} \\
j+i_{0} & \cdots & j+k-1+i_{0}
\end{array}\right)
\end{aligned}
$$

for all $i, j \in \omega$ and $k=1, \ldots, n$. This implies that $\mathfrak{e}_{i_{0}} \circ \mathfrak{r}_{1}=\mathfrak{r}_{1} \circ \mathfrak{e}_{i_{0}}$. Then the definition of the p-canonical Rees endomorphism \mathfrak{r}_{1} of the semigroup $\mathscr{I}_{\omega}^{n+1}(\overrightarrow{\operatorname{conv}})$ implies the following lemma.

Lemma 1. Let n be a positive integer $\geqslant 2$. Then for any $p=1, \ldots, n-1$ and $i_{0} \in \omega$ the p-canonical Rees endomorphism \mathfrak{r}_{1} and injective endomorphism $\mathfrak{e}_{i_{0}}$ of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ commute, i.e., $\mathfrak{e}_{i_{0}} \circ \mathfrak{r}_{p}=\mathfrak{r}_{p} \circ \mathfrak{e}_{i_{0}}$.

By $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ we denote the semigroup of all endomorphisms of the monoid $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$. We define

$$
\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)=\left\{\mathfrak{a} \in \mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mid\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{a} \subseteq \mathscr{I}_{\omega}^{1}(\overrightarrow{\operatorname{conv}})\right\} .
$$

Observe that the set $\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ is an ideal of $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$. Indeed, let $\mathfrak{b} \in \mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ and $\mathfrak{a} \in \mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$. Then for any $\alpha \in \mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ the definition of the monoid $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ implies that

$$
(\alpha)(\mathfrak{a} \circ \mathfrak{b}) \in\left(\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{a}\right) \mathfrak{b} \subseteq\left(\mathscr{I}_{\omega}^{1}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{b} \subseteq \mathscr{I}_{\omega}^{1}(\overrightarrow{\operatorname{conv}}),
$$

and

$$
(\alpha)(\mathfrak{b} \circ \mathfrak{a}) \in\left(\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{b}\right) \mathfrak{a} \subseteq\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{a} \subseteq \mathscr{I}_{\omega}^{1}(\overrightarrow{\operatorname{conv}}) .
$$

Let $\mathfrak{a} \in \mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$. By Theorems 1 and 3 of [5] the image $\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}}) \mathfrak{a}\right.$ is isomorphic to the semigroup $\mathscr{I}_{\omega}^{1}(\overrightarrow{\text { conv }})$, which is isomorphic to the semigroup of $\omega \times \omega$-matrix units \boldsymbol{B}_{ω}. This implies that there exists an isomorphism $\mathfrak{e}: \mathscr{I}_{\omega}^{1}(\overrightarrow{\operatorname{conv}}) \rightarrow$ $\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{a}$. Then we have that $\mathfrak{a}=\mathfrak{r}_{n-1} \circ \mathfrak{e}$, where \mathfrak{r}_{n-1} is the $(n-1)$-canonical Rees endomorphism of $\mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$.

We denote

$$
\mathfrak{E n d}^{*}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)=\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \backslash \mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) .
$$

It is obvious that $\mathfrak{a} \in \mathfrak{E n d}{ }^{*}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ if and only if

$$
\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{a} \cap\left(\mathscr{I}_{\omega}^{2}(\overrightarrow{\operatorname{conv}}) \backslash \mathscr{I}_{\omega}^{1}(\overrightarrow{\operatorname{conv}})\right) \neq \varnothing
$$

Let $\mathfrak{b} \in \mathfrak{E n d}^{*}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$. Theorems 1 and 3 of [5], and an equality $|\operatorname{ran} \mathfrak{b}|=k$, implies that the image $\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{b}$ is isomorphic to the semigroup $\mathscr{I}_{\omega}^{k}(\overrightarrow{\mathrm{conv}})$ for any $k \in\{2,3, \ldots, n\}$. Then there exists an isomorphism $\mathfrak{e}_{i_{0}}: \mathscr{I}_{\omega}^{k}(\overrightarrow{\operatorname{conv}}) \rightarrow\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{b}$ such that $\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{b}=\left(\mathscr{I}_{\omega}^{k}(\overrightarrow{\operatorname{conv}})\right) \mathfrak{e}_{i_{0}}$. Hence, $\mathfrak{b}=\mathfrak{e}_{i_{0}} \circ \mathfrak{r}_{n-k}$, where \mathfrak{r}_{n-k} is $(n-k)$-canonical Rees endomorphism of the monoid $\mathscr{I}_{\omega}^{n}(\overrightarrow{\text { conv }})$.

The above arguments imply the following theorem.
Theorem 1. The semigroup $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ of all endomorphisms of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ is the disjoint union of the set $\mathfrak{E n d}^{*}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ and the ideal $\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$. Moreover,

- for any $\mathfrak{a} \in \mathfrak{E n d}^{*}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ we have that $\mathfrak{a}=\mathfrak{r}_{n-1} \circ \mathfrak{e}$, and
- for any $\mathfrak{b} \in \mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ we have that $\mathfrak{b}=\mathfrak{e}_{i_{0}} \circ \mathfrak{r}_{n-k}$.

Simple verifications show that for any $p_{1^{-}}$and p_{2}-canonical Rees endomorphisms $\mathfrak{r}_{p_{1}}$ and $\mathfrak{r}_{p_{2}}$ we have that

$$
\mathfrak{r}_{p_{1}} \circ \mathfrak{r}_{p_{2}}=\mathfrak{r}_{p_{1}+p_{2}}=\mathfrak{r}_{p_{2}} \circ \mathfrak{r}_{p_{1}},
$$

and moreover, in the case when $p_{1}+p_{2} \geqslant n, \mathfrak{r}_{p_{1}} \circ \mathfrak{r}_{p_{2}}$ is the annihilating endomorphisms of the monoid $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$, i.e., $(\alpha)\left(\mathfrak{r}_{p_{1}} \circ \mathfrak{r}_{p_{2}}\right)=\mathbf{0}$, for all $\alpha \in \mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$. This implies the following proposition.

Proposition 1. For any positive integer n, the semigroup of p-canonical Rees endomorphisms of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\mathrm{conv}})$ is isomorphic to the semigroup $\left(\omega_{n}, \dot{+}\right)$.

By Theorem 2 of [6] for $n \geqslant 2$ the semigroup of injective endomorphisms of the semigroup $\mathscr{I}_{\omega}^{n}(\overrightarrow{\text { conv }})$ is isomorphic to the semigroup $(\omega,+)$.

Let $I_{\omega}^{0}=\{(0, j) \mid j \in \omega\}$ be a subset of the direct product of the semigroups $\left(\omega_{n-1}, \dot{+}\right)$ and $(\omega,+)$. It is obvious that I_{ω}^{0} is an ideal of the semigroup $\left(\omega_{n-1}, \dot{+}\right) \times(\omega,+)$.

This implies the following theorem.
Theorem 2. For any positive integer n the semigroup $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right) / \mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ is isomorphic to the Rees quotient semigroup $\left(\left(\omega_{n-1}, \dot{+}\right) \times(\omega,+)\right) / I_{\omega}^{0}$.

Acknowledgements

The author acknowledges Oleg Gutik and the referee for their useful comments and suggestions.

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1967
3. O. Gutik and O. Lysetska, On the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ which is generated by the family \mathscr{F} of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021), 34-50. DOI: $10.30970 / \mathrm{vmm}$.2021.92.034-050
4. O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
5. O. Gutik and O. Popadiuk, On the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}^{n}}$ which is generated by the family \mathscr{F}_{n} of finite bounded intervals of ω, arXiv:2208.09155, 2022, preprint.
6. O. Gutik and O. Popadiuk, On the semigroup of injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}{ }_{n}}$ which is generated by the family \mathscr{F}_{n} of finite bounded intervals of ω, Mat. Metody Fiz.-Mekh. Polya 65 (2022), no. 1-2, 42-57.
7. O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite rank $\leqslant n$, Mat. Metody Fiz.-Mekh. Polya 52 (2009), no. 3, 7-14; reprinted version: J. Math. Sc. 171 (2010), no. 4, 425-432. DOI: 10.1007/s10958-010-0147-z
8. E. Harzheim, Ordered sets, Springer, New-York, Advances in Math. 7, 2005.
9. M. Lawson, Inverse semigroups. The theory of partial symmetries, Singapore, World Scientific, 1998.
10. M. Petrich, Inverse semigroups, John Wiley \& Sons, New York, 1984.
11. V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

ПРО ЕНДОМОРФІЗМИ ІНВЕРСНОЇ НАПІВГРУПИ ПОРЯДКОВО ОПУКЛИХ ІЗОМОРФІЗМІВ МНОЖИНИ ω ОБМЕЖЕНОГО РАНГУ, ЯКІ ПОРОДЖЕНІ КОНГРУЕНЦІЯМИ РІСА

Ольга ПОПАДЮК
Лъвівсъкий націоналъний університет імені Івана Франка, вул. Університетська, 1, 79000, Лъвів
e-mail: olha.popadiuk@lnu.edu.ua

Нехай $\mathscr{I}_{\omega}^{n}(\overrightarrow{\text { conv }})$ - інверсна напівгрупа порядково опуклих ізоморфізмів лінійно впорядкованої множини (ω, \leqslant) рангу $\leqslant n$. Нехай End ${ }^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ піднапівгрупа напівгрупи $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$, яка складається з таких елементів $\mathfrak{a} \in \mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$, що образ $(\alpha) \mathfrak{a}$ ізоморфний піднапівгрупі напівгрупи $\omega \times \omega$-матричних одиниць для всіх $\alpha \in \mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$. Ми описуємо напівгрупу $\mathfrak{E n d}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$ усіх ендоморфізмів моноїда $\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})$ за модулем ідеала $\mathfrak{E n d}^{1}\left(\mathscr{I}_{\omega}^{n}(\overrightarrow{\operatorname{conv}})\right)$.

Ключові слова: біциклічне розширення, інверсна напівгрупа, ендоморфізм, автоморфізм, напівгрупа $\lambda \times \lambda$-матричних одиниць.

