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Let .#”(conv) be the inverse semigroup of convex order isomorphi-
sms of (w,<) of the rank < n. Let €nd'(.#7(conV)) be a subsemigroup of
¢nd(.# (conv)) which consists of a € End(.£7(conv)) such that the image
(a)a is isomorphic to a subsemigroup of the semigroup of w X w-matrix uni-
ts for all o € .77 (conv). We describe the semigroup €nd(.#2(conv)) of all
endomorphisms of the monoid .# (conv) up to its ideal End' (.7 (conv)).

Key words:  bicyclic extension, inverse semigroup, endomorphism, auto-
morphism, the semigroup of wXxw-matrix units.

We shall follow the terminology of [1, 2, 9, 10]. By N and w we denote the set of all
positive integers and the set of all non-negative integers, respectively.

Let &#(w) be the family of all subsets of w. For any F' € & (w) and n,m € w we put
n—-m+F={n-m+k: k€ F}if F# @ and n—m+ & = &. A subfamily . C £ (w)
is called w-closed if Fy N (—n+ Fy) € .F for all n € w and Fy, F» € Z.

We denote [0;0] = {0} and [0;k] = {0,...,k} for any positive integer k. The set
[0; k], k € w, is called an initial interval of w.

A nonempty set S with a binary associative operation is called a semigroup. By
(w,+) we denote the set w with the usual addition (z,y) — x + y. We consider the
following ideal I, = {x € w | = n} of (w,+). Define (wy,,+) = (w,+)/I,-

A semigroup S is called inverse if for any element x € S there exists a unique
x~! € Ssuch that zz~'x = z and 7 'z2z~! = 2~ 1. The element 2~ is called the inverse
of x € S. If S is an inverse semigroup, then the mapping inv: S — S which assigns to
every element x of S its inverse element 2! is called the inversion.
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If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S).
If S is an inverse semigroup, then F(S) is closed under multiplication and we shall refer
to E(S) as a band (or the band of S). Then the semigroup operation on S determines
the following partial order < on E(S): e < f if and only if ef = fe = e. This order is
called the natural partial order on E(S). A semilattice is a commutative semigroup of
idempotents.

For semigroups S and T"a map h: S — T is called:

o a homomorphism if h(s1 - s2) = b(s1) - h(s2) for all s1, 82 € S;

e an annihilating homomorphism if h is a homomorphism and h(s1) = h(s2) for all

81,89 € S

e an isomorphism if h: S — T is a bijective homomorphism.

For a semigroup S a homomorphism (an isomorphism) h: S — S is called an endomorphi-
sm (automorphism) of S. For simplicity of calculation, the image of s € S under an
endomorphism ¢ of a semigroup S we shall denote it by (s)e.

A congruence on a semigroup S is an equivalence relation € on S such that (s,t) € €
implies (as,at), (sb,tb) € € for all a,b € S. Every congruence € on a semigroup S
generates the associated natural homomorphism €%: S — S/¢€ which assigns to each
element s of S its congruence class [s]¢ in the quotient semigroup S/€. Also every
homomorphism h: S — T of semigroups S and T generates the congruence €, on S:
(s1,82) € € if and only if (s1)h = (s2)b.

A nonempty subset I of a semigroup S is called an ideal of S if

SIS ={asb:s€l, a,be S} CI.

Every ideal I of a semigroup S generates the congruence €; = (I x I) U Ag on S, which
is called the Rees congruence on S. An endomorphism t of a semigroup S is said to be
Rees if v generates a Rees congruence €, on S.

Let ., denote the set of all partial one-to-one transformations of A together with
the following semigroup operation:

z(af) = (za)f if x € dom(af) ={y € doma: ya € dom S}, for «,B € A

The semigroup %y is called the symmetric inverse semigroup over the cardinal \ (see
[1]). For any a € .#) the cardinality of dom « is called the rank of o and it is denoted
by rank . The symmetric inverse semigroup was introduced by V. V. Wagner [11] and
it plays a major role in the theory of semigroups.

Put &) = {a € #: ranka < n},forn=1,2,3,.... Obviously, & (n =1,2,3,...)
is an inverse semigroup, .#;* is an ideal of %y, for each n = 1,2,3,.... The semigroup
S is called the symmetric inverse semigroup of finite transformations of the rank < n
[7]. By

(o1 w2 = )

we denote a partial one-to-one transformation which maps z; onto y;, x2 onto yso, ...,
and z, onto y,. Obviously, in such case we have z; # z; and y; # y; for i # j (i,j =
1,2,3,...,n). The empty partial map @: A — X is denoted by 0. It is obvious that O is
zero of the semigroup #".

For a partially ordered set (P, <), a subset X of P is called order-convez,if x < z S y
and {z,y} C X implies that z € X, for all x,y, z € P [8]. It is obvious that the set of all
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partial order isomorphisms between convex subsets of (w, <) under the composition of
partial self-maps forms an inverse subsemigroup of the symmetric inverse semigroup .7,
over the set w. We denote this semigroup by .7, (conv). We put £ (conv) = .7, (conv) N
" and it is obvious that .#”(con¥) is closed under the semigroup operation of ..
The semigroup fﬁ(m) is called the inverse semigroup of convex order isomorphisms
of (w,<) of the rank < n. Obviously that every non-zero element of the semigroup

Z"(conv) of the rank k < n has a form
i il e itk—1
JIHL e k-1
for some i, 7 € w.
The bicyclic monoid €'(p, q) is the semigroup with the identity 1 generated by two

elements p and q subjected only to the condition pg = 1. The semigroup operation on
% (p, q) is determined as follows:

qkpl . qmpn — qk+m—min{l,m}pl—i-n—min{l,m}.
It is well known that the bicyclic monoid € (p, ¢) is a bisimple (and hence simple) combi-
natorial E-unitary inverse semigroup and every non-trivial congruence on %(p,q) is a
group congruence [1].

On the set B, = w X w we define the semigroup operation

“»

in the following way
. . (i1 — j1 + 42, 42), if j1 < io;
i1,71) - (i2,J2) = ST : e .
(i1,1) - (B2, 72) { (i1,J1 —i2 +j2), if j1 > ia.
It is well known that the semigroup B, is isomorphic to the bicyclic monoid by the mappi-
ng bh: €(p,q) = B, ¢*p' — (k,1) (see: [1, Section 1.12] or [10, Exercise IV.1.11(i7)]).
Next we shall describe the construction which is introduced in [4].

Let B, be the bicyclic monoid and .# be an w-closed subfamily of &(w). On the
set B, X .# we define the semigroup operation “-” in the following way

(i1, 1 — 2+ jo, F1 N (i2 — j1 + F2)), if j1 > do.

In [4] is proved that if the family .# C & (w) is w-closed then (B, x .Z,-) is a semigroup.
Moreover, if an w-closed family % C &?(w) contains the empty set & then the set
I={(i,4,9): i,j € w} is an ideal of the semigroup (B, x %, ). For any w-closed family
F C P(w) the following semigroup

g7 _ [ (Bux 7)1, ifoeZ;
© =\ (BuxZ,), ifo¢F

(il jl F1)'(i2 j2 FQ):{ (il_jl +i2,j2,(j1—i2+F1)ﬂF2), lfjl <i2;

is defined in [4]. The semigroup Bf generalizes the bicyclic monoid and the countable
semigroup of matrix units. It is proven in [4] that Biz is combinatorial inverse semigroup
and Green’s relations, the natural partial order on Bf and its set of idempotents are
described. The criteria of simplicity, 0-simplicity, bisimplicity, O-bisimplicity of the semi-
group B“? and when Bf has the identity, is isomorphic to the bicyclic semigroup or the
countable semigroup of matrix units are given. In particularly in [4] is proved that the
semigroup Bf is isomorphic to the semigrpoup of wXxw-matrix units if and only if .#
consists of a singleton set and the empty set.
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The semigroup B;:? in the case when the family .% consists of the empty set and some
singleton subsets of w is studied in [3]. It is proved that the semigroup Biz is isomorphic
to the subsemigroup %" (F i) of the Brandt w-extension of the subsemilattice (F, min)
of (w, min), where F = [J.Z. Also topologizations of the semigroup B and its closure
in semitopological semigroups are studied.

For any n € w we put %, = {[0;k]: k=0,...,n}. It is obvious that .%, is an
w-closed family of w.

In the paper [5] we study the semigroup Bf". It is shown that the Green relations 2
and _¢Z coincide in Bf", the semigroup Bf" is isomorphic to the semigroup .# ! (m),
and Bf " admits only Rees congruences. Also in [5], we study shift-continuous topologies
of the semigroup B;j}". In particular, we prove that for any shift-continuous 7;-topology 7
on the semigroup Bf ", every non-zero element of Bf ™ is an isolated point of (Bf",r),
B;jj " admits the unique compact shift-continuous 73-topology, and every wy-compact
shift-continuous 7T;-topology is compact, where wy is the discrete infinite countable space.
We describe the closure of the semigroup Bf" in a Hausdorff semitopological semigroup
and prove the criterium when a topological inverse semigroup Bf is H-closed in the
class of Hausdorff topological semigroups.

In the paper [6] injective endomorphisms of the semigroup Bf" for a positive integer

> 2 are desribed. In particular, it is proved that for n > 1, the semigroup of injective
endomorphisms of the semigroup B " is isomorphic to (w,+). Also, there the structure
of the semigroup ¢nd(%,) of all endomorphisms of the semigroup of AxA-matrix units
A is described.

This paper is a continuations of the investigation which are presented in [5, 6].
Let €nd'(.#”(conv)) be a subsemigroup of €nd(.£(conv)) which consists of a €
End (L) ﬁ such that the image (a)a is isomorphic to a subsemigroup of the
semigroup of w X w-matrix units for all a € .#7(conv). We describe the semi-
group €nd(.#(conv)) of all endomorphisms of the monoid .#7(con¥) up to its ideal
¢nd' (77 (conv)).

By Theorem 1 of [5], for any n € w the semigroup B " is isomorphic to the semi-
group #71(conv) by the mapping J: BZ" — .#7!(conv), defined by the formulae
(0)3 =0 and

(i, [0 kD3 = (3 k).
Later we study endomorphisms of the semigroup .#”(conv).

By Theorem 2 of [5] for an arbitrary n € w the semigroup B " (and hence the
semigroup .#(conv)) admits only Rees congruences. Moreover, by Theorem 3 of [5]
for any homomorphism b from Bf" into a semigroup S the image (Bf,z)b is either
isomorphic to Bff’“ for some k = 0,1,...,n, or is a singleton. Also, Lemma 1 of [6] states
that if n is any positive integer and a is an arbitrary non-annihilating endomorphism of
the semigroup .#(con¥) then (0)a = 0.

By Proposition 3 of [5] for any non-negative integer n the map ho: Bf" — Bf”
defined by the formulae (0)hy = 0 and

o 0, if k=0;
w$mw%={@%mm—myﬁkzhnm
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is an endomorphism of Bf Using the isomorphism J: Bf" — S (conv) we get that
the endomorphism by of BZ " generates the following endomorphism t; : .#+1(conv) —
" (con¥) (m € N) which is defined by the formulae

_ j _ i1 _ (i i itk—1 itk . _ (i itk—1
Ou=0. (Ju=0, (;)a=0). - (5o ghiim)e=( )
for all 4,j € w and k£ = 1,...,m. It is obvious that so defined endomorphism tv; of
7" (cony) generates the Rees congruence €, which is generated by the ideal .#}(conv).
Also for p = 1,...,m the mapping v, = t;0---ot; is an endomorphism of f:]’(corﬁ)

—_——
p—times

and v, generates the Rees congruence €., which is generated by the ideal .7 (conv) of
the semigroup J‘f}”(corﬁ). Later for p = 1,...,m the above determined endomorphism
t, we call the p-canonical Rees endomorphism of the semigroup I (Comy)).

Later we study endomorphisms of the semigroup .#(conv) for any positive integer
n.

By Corollary 1 of [6] for any positive integer n and arbitrary iy € w the map
¢i, 1 F(conv) — £ (conv) defined by the formulae (0)e;, = 0 and

il e itk _ (io+i dotitl - dotitk _
(; JZ'+1 ;’+k) iy = (iﬁﬂ i§+j+1 i§+j+k:> ) k=0,....,n—1,

is an endomorphism of the semigroup .# (¢on¥ ), and moreover it is injective. It is obvious
for any iy € w the endomorphism ¢;, generates the identity congruence on the semigroup
77 (con¥). Also, by Theorem 1 of [6] for any positive integer n > 2 for every injective
endomorphism a: .#(conv) — .#(conv) there exists 7y € w such that a = ¢;,.

Fix an arbitrary 79 € w. Then we have that

((0)r1)e;, = (0)e;, = O,
((;) tl) ¢iy = (0)ej, =0,
(i) ) e =(5) e = (G10),
i itk—1 itk (i itk=1Y,  _ [ itio - itk—1+ig
((j e k-1 k+k> tl) Cip = (j j+k71) Cip = <j+z'o j+k—1+io>
and
((0)ei,)t1 = (0)v1 = 0,
(5) ) va = (52) 1 =0,
(1) e ) vy = ((FHio HHltio o — (Hio)

Jj g+1 J+io j+1+1i0 J+io
*
i ibk—litk )\ o ((idio o ibk—Laio ithdio | o ((itio - i+k—1+io
G k=1 ktk ) G0 ) TU T\ i o k4o ktktio ) T T jtio o jtk—14io
for all i,j € wand k= 1,...,n. This implies that ¢;, ovy = vy o¢;,. Then the definition of

the p-canonical Rees endomorphism t; of the semigroup .#"*!(con¥) implies the following
lemma.
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Lemma 1. Let n be a positive integer > 2. Then for any p =1,...,n—1 and ig € w
the p-canonical Rees endomorphism vy and injective endomorphzsm em of the semigroup
F7(Conv) commute, i.e., e, 0T, =T, 0 e, .

By €nd(.#"(conv)) we denote the semigroup of all endomorphisms of the monoid
7 (conv). We define

end' (S (con¥)) = {a € End (7 (conv))|(# (conv))a C ¥} (comv) } .

Observe that the set End' ( (conv)) is an ideal of €nd(.#7(cony)). Indeed, let
b € ¢nd(.£"(conv)) and a € End' (£ (Conv)). Then for any o € £ (conv) the definition
of the monoid .#"(con¥) implies that

(a)(aob) € (S (conv))a)b C (£} (conv))b C 75 (conv),
and
(a)(boa) e ((£7(con¥))b)a C (£ (conv))a C 7} (cony)).

Let a € ¢nd'(#"(conv)). By Theorems 1 and 3 of [5] the image (.#(con¥)a
is isomorphic to the semigroup .#!(con¥), which is isomorphic to the semigroup of
w X w-matrix units B,,. This implies that there exists an isomorphism ¢ : .#! (con%) —
(#(con¥))a. Then we have that a = t,,_; o ¢, where t,_; is the (n — 1)-canonical Rees

endomorphism of .#" (conv).
We denote

End* (£ (conv)) = End(F(conv)) \ End' (£ (conv)).
It is obvious that a € End* (£ (conv)) if and only if
(A (conv))a N (£2(conv) \ £ (conv)) # 2.

Let b € €nd*(#*(conv)). Theorems 1 and 3 of [5], and an equality |ranb| = k,
implies that the image (.#(conv))b is isomorphic to the semigroup 7% (con@; for any
k€ {2,3,...,n}. Then there exists an isomorphism ¢;, : .7 (conv) — (.#(conv))b such
that (£ (con¥))b = (£ (conv))e;,. Hence, b = ¢;, 0t,,_1, where t,_ is (n—k)-canonical
Rees endomorphism of the monoid .7 (conv).

The above arguments imply the following theorem.

Theorem 1. The semigroup @nb(ﬂj(m)) of all endomorphisms of the semigroup
7 (conv) is the disjoint union of the set €nd* (.77 (conv)) and the ideal E€nd* (.7 (conv)).
Moreover,

e for any a € End"(F(conv)) we have that a = v,_1 oe, and

e for any b € End' (£ (conv)) we have that b = ¢;, o t,_p.

Simple verifications show that for any p;- and ps-canonical Rees endomorphisms t,,
and t,, we have that
Tp, Otpy = Tpidpy = Upy Otpys
and moreover, in the case when p; +pa 2> n, tvp, ot,, is the annihilating endomorphisms
of the monoid .7 (conv), i.e., (a a)(tp, otp,) =0, for all a € #(conv). This implies the
following proposition.

Proposition 1. For any positive integer n, the semigroup of p-canonical Rees endomorphi-
sms of the semigroup ﬂﬁ(con@) is isomorphic to the semigroup (wy,+).
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By Theorem 2 of [6] for n > 2 the semigroup of injective endomorphisms of the
semigroup " (conv) is isomorphic to the semigroup (w, +).

Let I° = {(0,5)|j € w} be a subset of the direct product of the semigroups
(wn—1,+) and (w, +). It is obvious that I? is an ideal of the semigroup (w,_1,+) % (w, +)-

This implies the following theorem.

Theorem 2. For any positive integer n the semigroup €nd(.#7(cony))/End* (£ (conv))

1
is isomorphic to the Rees quotient semigroup ((wn—1,+) x (w,+))/I5.
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Hexait .7} (m) — IHBEpCHA HAIIBrpya MOPsiIKOBO OMYKJIUX i30Mopdizmin
JiniiiHo BrOpsAKOBaHOl MHOZKKHY (w, <) panry < n. Hexait ¢nd' (£ (conv)) —
i gHamBrpyma Hanisrpymm End(.77 (Conv)), ska CKIAJAETHCS 3 TAKAX eJIeMeH-
TiB 0 € End(F2 (Cony)), mo o6pas (a)a izomopduit mi qHAIIBrPy I HATBrPy I
W X W-MaTPUYHUX OJMHHUIL /I BCIX o € Z) (m) Mu oumucyemo HaiiBrpy-
my End (. (conv)) yeix emmomopdizmin Monoina £ (CONV) 3a MOmyseM ineasa
end! (.47 (conv)).

Karomosi crosa: OGinmKIidHe PO3NMINPEHHS, IHBEPCHA HAIBIPYIIA, €HIOMOP-
di3m, aBToMOpdi3M, HAMBIPYIa A X A-MATPUIHUX OJUHHUIID.



