THE MONOID OF ORDER ISOMORPHISMS BETWEEN PRINCIPAL FILTERS OF $\sigma \mathbb{N}^{\kappa}$

Taras MOKRYTSKYI
Ivan Franko National University of Lviv, Universytetska Str., 1, Lviv, 79000, Ukraine
e-mail: tmokrytskyi@gmail.com

Consider the following generalization of the bicyclic monoid. Let κ be any infinite cardinal and let $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ be the semigroup of all order isomorphisms between principal filters of the set $\sigma \mathbb{N}^{\kappa}$ with the product order. We shall study algebraic properties of the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$, show that it is bisimple, E unitary, F-inverse semigroup, describe Green's relations on $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$, describe the group of units $H(\mathbb{I})$ of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ and describe its maximal subgroups. We prove that the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is isomorphic to the semidirect product $\mathcal{S}_{\kappa} \ltimes \sigma \mathbb{B}^{\kappa}$ of the semigroup $\sigma \mathbb{B}^{\kappa}$ by the group \mathcal{S}_{κ}, show that every non-identity congruence \mathfrak{C} on the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is a group congruence and describe the least group congruence on $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$.

Key words: Semigroup, inverse semigroup, partial map, permutation group, least group congruence, bicyclic monoid, semidirect product

1. Introduction and preliminaries

In this paper, we shall denote the set of integers by \mathbb{Z}, the set of positive integers by \mathbb{N}, the set of all maps from cardinal κ to the set X by X^{κ} and the symmetric group of degree κ by \mathcal{S}_{κ}, i.e., \mathcal{S}_{κ} is the group of all bijections of the set κ. For set X, by $i d_{X}$ we denote the identity map $i d_{X}: X \rightarrow X, i d_{X}: x \mapsto x$ for any $x \in X$. For map $f: X \rightarrow Y$ and for subset $A \subset X$ we denote $(A) f=\{(x) f \mid x \in X\}$.

Let (X, \leqslant) be a partially ordered set (a poset). For an arbitrary $x \in X$ we denote

$$
\uparrow x=\{y \in X: x \leqslant y\} \quad \text { and } \quad \downarrow x=\{y \in X: y \leqslant x\} .
$$

The sets $\uparrow x$ and $\downarrow x$ are called the principal filter and the principal ideal, respectively, generated by the element $x \in X$. A map $\alpha:(X, \leqslant) \rightarrow(Y, \gtrless)$ from poset (X, \leqslant) into a poset (Y, \gtrless) is called monotone or order preserving if $x \leqslant y$ in (X, \leqslant) implies that

[^0]$x \alpha ₹ y \alpha$ in $(Y, ₹)$. A monotone map $\alpha:(X, \leqslant) \rightarrow(Y, \gtrless)$ is said to be order isomorphism if it is bijective and its converse $\alpha^{-1}:(Y, \gtrless) \rightarrow(X, \leqslant)$ is monotone.

An semigroup S is called inverse if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. The element x^{-1} is called the inverse of $x \in S$. If S is an inverse semigroup, then the function inv : $S \rightarrow S$ which assigns to every element x of S its inverse element x^{-1} is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by $E(S)$. If S is an inverse semigroup, then $E(S)$ is closed under multiplication. The semigroup operation on S determines the following partial order \preccurlyeq on $E(S): e \preccurlyeq f$ if and only if $e f=f e=e$. This order is called the natural partial order on $E(S)$. A semilattice is a commutative semigroup of idempotents.

If S is a semigroup, then we shall denote the Green relations on S by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} (see [9]). A semigroup S is called simple if S does not contain proper two-sided ideals and bisimple if S has only one \mathscr{D}-class.

Hereafter we shall assume that λ is an infinite cardinal. If $\alpha: \lambda \rightharpoonup \lambda$ is a partial map, then we shall denote the domain and the range of α by $\operatorname{dom} \alpha$ and $\operatorname{ran} \alpha$, respectively.

Let \mathscr{I}_{λ} be the set of all partial one-to-one transformations of a cardinal λ together with the following semigroup operation:

$$
x(\alpha \beta)=(x \alpha) \beta \quad \text { if } \quad x \in \operatorname{dom}(\alpha \beta)=\{y \in \operatorname{dom} \alpha \mid y \alpha \in \operatorname{dom} \beta\}, \quad \text { for } \alpha, \beta \in \mathscr{I}_{\lambda} .
$$

The semigroup \mathscr{I}_{λ} is called the symmetric inverse semigroup over the cardinal λ (see [9, Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [29] and it plays a major role in the theory of semigroups.

The bicyclic semigroup (or the bicyclic monoid) $\mathscr{C}(p, q)$ is the semigroup with the identity 1 generated by elements p and q subject only to the condition $p q=1$.

The bicyclic semigroup plays an important role in the algebraic theory of semigroups and the theory of topological semigroups. For instance, a well-known Andersen's result [1] states that a (0 -) simple semigroup with an idempotent is completely (0 -) simple if and only if it does not contain an isomorphic copy of the bicyclic semigroup.

The bicyclic monoid admits only the discrete semigroup topology. Bertman and West in [7] extended this result for the case of semitopological semigroups. Stable and Γ-compact topological semigroups do not contain the bicyclic monoid [2, 22]. The problem of an embedding of the bicyclic monoid into compact-like topological semigroups was studied in [3, 4, 19]. The study of various generalizations of the bicyclic monoid, their algebraic and topological properties, like topologizations, shift-continuous topologizations and embedding into compact-like topological semigroups was conducted in several publications, including $[5,6,8,10,11,12,13,14,15,16,17,20,21,25,18]$.
Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup $\mathscr{C}_{\mathbb{N}}(\alpha, \beta)$ which is generated by partial transformations α and β of the set of positive integers \mathbb{N}, defined as follows: $(n) \alpha=n+1$ if $n \geqslant 1$ and $(n) \beta=n-1$ if $n>1$ (see Exercise IV.1.11(ii) in [27]).

Taking into account this remark, we shall consider the following generalization of the bicyclic semigroup. For an arbitrary positive integer $n \geqslant 2$ by $\left(\mathbb{N}^{n}, \leqslant\right)$ we denote the n-th power of the set of positive integers \mathbb{N} with the product order:

$$
\left(x_{1}, \ldots, x_{n}\right) \leqslant\left(y_{1}, \ldots, y_{n}\right) \quad \text { if and only if } \quad x_{i} \leqslant y_{i} \text { for all } i=1, \ldots, n .
$$

It is obvious that the set of all order isomorphisms between principal filters of the poset $\left(\mathbb{N}^{n}, \leqslant\right)$ with the operation of the composition of partial maps forms a semigroup. Denote this semigroup by $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$. The structure of the semigroup $\mathcal{I P F}\left(\mathbb{N}^{n}\right)$ was introduced and studied in [15]. There was shown that $\mathcal{I P F}\left(\mathbb{N}^{n}\right)$ is a bisimple, E-unitary, F-inverse monoid, described Green's relations on $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$ and its maximal subgroups. It was proved that $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$ is isomorphic to the semidirect product of the direct n-th power of the bicyclic monoid $\mathscr{C}^{n}(p, q)$ by the group of permutation \mathcal{S}_{n}, every non-identity congruence on $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$ is group and was described the least group congruence on $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$. It was shown that every shift-continuous topology on $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$ is discrete and discussed embedding of the semigroup $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$ into compact-like topological semigroups. In [25] it was proved that a Hausdorff locally compact semitopological semigroup $\operatorname{IPF}\left(\mathbb{N}^{n}\right)$ with an adjoined zero is either compact or discrete. In this paper we shall extend this generalization from \mathbb{N}^{n} to $\sigma \mathbb{N}^{\kappa}$ for any infinite cardinal κ.

For any infinite cardinal κ consider the subset $\sigma \mathbb{N}^{\kappa}$ of \mathbb{N}^{κ} which contains all maps a such that the set $\{x \in \kappa \mid(x) a \neq 1\}$ is finite, i.e.,

$$
\sigma \mathbb{N}^{\kappa}=\left\{a \in \mathbb{N}^{\kappa} \mid\{x \in \kappa \mid(x) a \neq 1\} \text { is finite }\right\}
$$

Similarly define $\sigma \mathbb{Z}^{\kappa}$ as the subset of \mathbb{Z}^{κ} which contains all maps a such that the set $\{x \in \kappa \mid(x) a \neq 0\}$ is finite.

By 1 we shall denote the element of the \mathbb{N}^{κ} such that $(x) \mathbf{1}=1$ for any $x \in \kappa$.
On the set \mathbb{Z}^{κ} consider the product order \leqslant :

$$
a \leqslant b \quad \text { if and only if } \quad(x) a \leqslant(x) b \quad \text { for all } \quad x \in \kappa
$$

Also, consider the pointwise operations,,$+- \max$ and min on the set \mathbb{Z}^{κ}. For any $a, b \in \mathbb{Z}^{\kappa}$ define

$$
\begin{aligned}
& (x)(a+b)=(x) a+(x) b, \\
& (x)(a-b)=(x) a-(x) b, \\
& (x)(\max \{a, b\})=\max \{(x) a,(x) b\}, \\
& (x)(\min \{a, b\})=\min \{(x) a,(x) b\}
\end{aligned}
$$

for any $x \in \kappa$. It is obvious that the set $\sigma \mathbb{Z}^{\kappa}$ is closed under these operations. The set $\sigma \mathbb{N}^{\kappa}$ is also closed under the operation max and min but not for + and - . Moreover

$$
a+b, a-b \notin \sigma \mathbb{N}^{\kappa} \quad \text { for any } \quad a, b \in \sigma \mathbb{N}^{\kappa} .
$$

But

$$
a+b-\mathbf{1} \in \sigma \mathbb{N}^{\kappa} \quad \text { for any } \quad a, b \in \sigma \mathbb{N}^{\kappa}
$$

and

$$
a-b+\mathbf{1} \in \sigma \mathbb{N}^{\kappa} \quad \text { for any } \quad a \in \sigma \mathbb{N}^{\kappa} \quad \text { and } \quad b \in \downarrow a .
$$

Let κ by any infinite cardinal. Define the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ as the set of all order isomorphisms between principal filters of the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right)$ with the operation of the composition of partial maps, i.e.,

$$
\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)=\left(\left\{\alpha: \uparrow a \rightarrow \uparrow b \mid a, b \in \sigma \mathbb{N}^{\kappa} \text { and } \alpha \text { is an order isomorphism }\right\}, \circ\right)
$$

Consider the following notation. For any $\alpha \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ by d_{α} and r_{α} we denote the elements of $\sigma \mathbb{N}^{\kappa}$ such that $\operatorname{dom} \alpha=\uparrow d_{\alpha}$ and $\operatorname{ran} \alpha=\uparrow r_{\alpha}$

```
Also we define the maps \(\lambda_{\alpha}, \rho_{\alpha} \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)\) in the following way:
```

```
\[
\begin{aligned}
& \operatorname{dom} \rho_{\alpha}=\operatorname{dom} \alpha=\uparrow d_{\alpha}, \quad \operatorname{ran} \rho_{\alpha}=\sigma \mathbb{N}^{\kappa}, \quad(a) \rho_{\alpha}=a-d_{\alpha}+1 \quad \text { for } a \in \operatorname{dom} \rho_{\alpha} ; \\
& \operatorname{ran} \lambda_{\alpha}=\operatorname{ran} \alpha=\uparrow r_{\alpha}, \quad \operatorname{dom} \lambda_{\alpha}=\sigma \mathbb{N}^{\kappa}, \quad \text { (a) } \lambda_{\alpha}=a+r_{\alpha}-\mathbf{1} \quad \text { for } a \in \operatorname{dom} \lambda_{\alpha} .
\end{aligned}
\]
```

Since $a+r_{\alpha}-\mathbf{1} \in \sigma \mathbb{N}^{\kappa}$ for any $a \in \operatorname{dom} \lambda_{\alpha}$ we have that λ_{α} is well-defined. Similarly, $a-d_{\alpha}+\mathbf{1} \in \sigma \mathbb{N}^{\kappa}$ for any $a \in \operatorname{dom} \rho_{\alpha}$, so ρ_{α} is well-defined too. We note that the definition of $\lambda_{\alpha}, \rho_{\alpha}$ implies that $\lambda_{\lambda_{\alpha}}=\lambda_{\alpha}$ and $\rho_{\rho_{\alpha}}=\rho_{\alpha}$.

For any infinite cardinal κ and for any bijection $g \in \mathcal{S}_{\kappa}$ define the selfmap $\mathcal{F}_{g}: \mathbb{Z}^{\kappa} \rightarrow$ \mathbb{Z}^{κ} by formula:

$$
(x)(a) \mathcal{F}_{g}=\left((x) g^{-1}\right) a, a \in \mathbb{Z}^{\kappa}, x \in \kappa .
$$

2. Algebraic properties of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$

Proposition 1. For any infinite cardinal κ the following statements hold:
(i) $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is an inverse semigroup;
(ii) the semilattice $E\left(\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)\right)$ is isomorphic to the semilattice $\left(\sigma \mathbb{N}^{\kappa}, \max \right)$ by the mapping $\varepsilon \mapsto d_{\varepsilon}$;
(iii) $\alpha \mathscr{L} \beta$ in $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ if and only if $\operatorname{dom} \alpha=\operatorname{dom} \beta$;
(iv) $\alpha \mathscr{R} \beta$ in $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ if and only if $\operatorname{ran} \alpha=\operatorname{ran} \beta$;
(v) $\alpha \mathscr{H} \beta$ in $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ if and only if $\operatorname{dom} \alpha=\operatorname{dom} \beta$ and $\operatorname{ran} \alpha=\operatorname{ran} \beta$;
(vi) for any idempotents $\varepsilon, \iota \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ there exist elements $\alpha, \beta \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\alpha \beta=\varepsilon$ and $\beta \alpha=\iota$, hence $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is bisimple which implies that it is simple.

Proof. (i) The definition of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ implies that $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is an inverse subsemigroup of the symmetric inverse monoid $\mathcal{I}_{\sigma \mathbb{N}^{\kappa}}$ over the set $\sigma \mathbb{N}^{\kappa}$.
(ii) implies from statement (i).
(iii)-(v) follow from statement (i) and Proposition 3.2.11(1)-(3) of [23].
(vi) Fix arbitrary idempotents $\varepsilon, \iota \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$. Define a partial map $\alpha: \sigma \mathbb{N}^{\kappa} \rightharpoonup$ $\sigma \mathbb{N}^{\kappa}$ in the following way:
$\operatorname{dom} \alpha=\operatorname{dom} \varepsilon, \quad \operatorname{ran} \alpha=\operatorname{dom} \iota \quad$ and $\quad(z) \alpha=z-d_{\varepsilon}+d_{\iota}, \quad$ for any $\quad z \in \operatorname{dom} \alpha$.
Since $\varepsilon, \iota \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$, the partial map α is well-defined and $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Then $\alpha \alpha^{-1}=\varepsilon$ and $\alpha^{-1} \alpha=\iota$ and hence we put $\beta=\alpha^{-1}$. Lemma 1.1 from [26] implies that $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ is bisimple and hence simple.

For any positive integer $k \geqslant 2$ and for any $x \in \kappa$, consider the map $k_{x}: \kappa \rightarrow \mathbb{N}$ defined by

$$
(t) k_{x}= \begin{cases}k, & \text { if } t=x \\ 1, & \text { otherwise }\end{cases}
$$

Lemma 1. For any infinite cardinal κ and for any bijection $g \in \mathcal{S}_{\kappa}$, the following statements hold:
(i) The selfmap \mathcal{F}_{g} is an order automorphism of the poset $\left(\mathbb{Z}^{\kappa}, \leqslant\right)$, and $\left(\mathcal{F}_{g}\right)^{-1}=$ $\mathcal{F}_{g^{-1}}$.
(ii) $\left(\sigma \mathbb{N}^{\kappa}\right) \mathcal{F}_{g}=\sigma \mathbb{N}^{\kappa}$.
(iii) $\left(\sigma \mathbb{Z}^{\kappa}\right) \mathcal{F}_{g}=\sigma \mathbb{Z}^{\kappa}$.
(iv) $\mathcal{F}_{g h}=\mathcal{F}_{g} \mathcal{F}_{h}$ for any $h \in \mathcal{S}_{\kappa}$.
(v) For any $k \in \mathbb{N}$ and for any $x \in \kappa:\left(k_{x}\right) \mathcal{F}_{g}=k_{(x) g}$.
(vi) $(\mathbf{1}) \mathcal{F}_{g}=\mathbf{1}$.
(vii) For any $h \in \mathcal{S}_{\kappa}: g \neq h \Longrightarrow \mathcal{F}_{g} \neq \mathcal{F}_{h}$.
(viii) For any $a, b \in \mathbb{Z}^{\kappa}:(a+b) \mathcal{F}_{g}=(a) \mathcal{F}_{g}+(b) \mathcal{F}_{g}$.
(ix) For any $a, b \in \mathbb{Z}^{\kappa}:(a-b) \mathcal{F}_{g}=(a) \mathcal{F}_{g}-(b) \mathcal{F}_{g}$.
(x) For any $a, b \in \mathbb{Z}^{\kappa}:(\max \{a, b\}) \mathcal{F}_{g}=\max \left\{(a) \mathcal{F}_{g},(b) \mathcal{F}_{g}\right\}$.
(xi) For any $a, b \in \mathbb{Z}^{\kappa}:(\min \{a, b\}) \mathcal{F}_{g}=\min \left\{(a) \mathcal{F}_{g},(b) \mathcal{F}_{g}\right\}$.

Proof. (i) Show that \mathcal{F}_{g} is an order isomorphism. Fix distinct $a, b \in \mathbb{Z}^{\kappa}$. Then there exists $x \in \kappa$ such that $(x) a \neq(x) b$. For $y=(x) g$, we have that $x=(y) g^{-1}$, then $\left((y) g^{-1}\right) a \neq\left((y) g^{-1}\right) b$ implies that $(a) \mathcal{F}_{g} \neq(b) \mathcal{F}_{g}$, so \mathcal{F}_{g} is injective.

For any $a \in \mathbb{Z}^{\kappa}$, consider the map $b:(x) b=((x) g) a$ for any $x \in \kappa$, then

$$
(x)(b) \mathcal{F}_{g}=\left((x) g^{-1}\right) b=\left(\left((x) g^{-1}\right) g\right) a=(x) a
$$

for any $x \in \kappa$, so \mathcal{F}_{g} is surjective and moreover its converse $\left(\mathcal{F}_{g}\right)^{-1}$ is equals to the $\mathcal{F}_{g^{-1}}$.
Let $a, b \in \mathbb{Z}^{\kappa}$ and $a \leqslant b$. For any $x \in \kappa$ we have that $\left((x) g^{-1}\right) a \leqslant\left((x) g^{-1}\right) b$ which implies that $(x)(a) \mathcal{F}_{g} \leqslant(x)(b) \mathcal{F}_{g}$, i.e., $(a) \mathcal{F}_{g} \leqslant(b) \mathcal{F}_{g}$, so \mathcal{F}_{g} is monotone and such is \mathcal{F}_{g}^{-1}, therefore \mathcal{F}_{g} is an order isomorphism.
(ii) Fix an element $a \in \sigma \mathbb{N}^{\kappa}$. Since $(x)(a) \mathcal{F}_{g}=\left((x) g^{-1}\right) a \in \mathbb{N}$ for any $x \in \kappa$ we have that $(a) \mathcal{F}_{g} \in \mathbb{N}^{\kappa}$. Consider the set $A=\{x \in \kappa \mid(x) a \neq 1\}$ and suppose that $(x)(a) \mathcal{F}_{g} \neq 1$ for some $x \in \kappa$, then $\left((x) g^{-1}\right) a \neq 1$ and therefore $(x) g^{-1} \in A$, so $x \in(A) g$. Since the set A is finite and g is a bijection, we have that the set $(A) g$ is finite as well. So $(a) \mathcal{F}_{g} \in \sigma \mathbb{N}^{\kappa}$, therefore $\left(\sigma \mathbb{N}^{\kappa}\right) \mathcal{F}_{g} \subset \sigma \mathbb{N}^{\kappa}$. By proved above, we have that $(a) \mathcal{F}_{g^{-1}} \in \sigma \mathbb{N}^{\kappa}$, then $\left((a) \mathcal{F}_{g^{-1}}\right) \mathcal{F}_{g}=a$ implies that $\sigma \mathbb{N}^{\kappa} \subset\left(\sigma \mathbb{N}^{\kappa}\right) \mathcal{F}_{g}$.
(iii) The proof is similar to the proof of (ii).
(iv) For any $h \in \mathcal{S}_{\kappa}, a \in \mathbb{Z}^{\kappa}$ and $x \in \kappa$ we have that

$$
\begin{aligned}
(x)(a) \mathcal{F}_{g h} & =\left((x)(g h)^{-1}\right) a= \\
& =\left((x)\left(h^{-1} g^{-1}\right)\right) a= \\
& =\left(\left((x) h^{-1}\right) g^{-1}\right) a= \\
& =\left((x) h^{-1}\right)(a) \mathcal{F}_{g}= \\
& =(x)\left((a) \mathcal{F}_{g}\right) \mathcal{F}_{h}= \\
& =(x)(a)\left(\mathcal{F}_{g} \mathcal{F}_{h}\right) .
\end{aligned}
$$

(v) Let $k \in \mathbb{N}$ and $x \in \kappa$. Then for any $t \in \kappa$ we have that

$$
\begin{aligned}
(t)\left(k_{x}\right) \mathcal{F}_{g} & =\left((t) g^{-1}\right) k_{x}= \\
& =\left\{\begin{array}{ll}
k, & \text { if }(t) g^{-1}=x \\
1, & \text { otherwise }
\end{array}=\right. \\
& =\left\{\begin{array}{ll}
k, & \text { if } t=(x) g \\
1, & \text { otherwise }
\end{array}=\right. \\
& =(t) k_{(x) g}
\end{aligned}
$$

(vi) For any $t \in \kappa$ we have that $(t)(\mathbf{1}) \mathcal{F}_{g}=\left((t) g^{-1}\right) \mathbf{1}=1$.
(vii) Let $h \in \mathcal{S}_{\kappa}$ and $g \neq h$. Then there exists $x \in \kappa$ such that $(x) g^{-1} \neq(x) h^{-1}$. Consider the image of $2_{(x) g^{-1}}$ under the maps \mathcal{F}_{g} and \mathcal{F}_{h}. Statement (v) and the inequality $(x) g^{-1} \neq(x) h^{-1}$ imply that:

$$
\left(2_{(x) g^{-1}}\right) \mathcal{F}_{g}=2_{x} \neq 2_{\left((x) g^{-1}\right) h}=\left(2_{(x) g^{-1}}\right) \mathcal{F}_{h} .
$$

(viii) For any $a, b \in \mathbb{Z}^{\kappa}$ and for any $x \in \kappa$ we have that

$$
\begin{aligned}
(x)(a+b) \mathcal{F}_{g} & =\left((x) g^{-1}\right)(a+b)= \\
& =\left((x) g^{-1}\right) a+\left((x) g^{-1}\right) b= \\
& =(x)(a) \mathcal{F}_{g}+(x)(b) \mathcal{F}_{g} .
\end{aligned}
$$

Proof of statements (ix) and (xi) are similar to the proof of (viii).
For any infinite cardinal κ and for any bijection $g \in \mathcal{S}_{\kappa}$ define the map $\mathcal{F}_{g}^{\circ}: \sigma \mathbb{N}^{\kappa} \rightarrow$ $\sigma \mathbb{N}^{\kappa}$ as the restriction of the map \mathcal{F}_{g} to the set $\sigma \mathbb{N}^{\kappa}$. By statement (ii) of Lemma 1, the map \mathcal{F}_{g}° is well-defined and \mathcal{F}_{g}° is a bijection. This and statement (i) of Lemma 1 imply that the map \mathcal{F}_{g}° is an order isomorphism of the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right)$. Similarly, define the map $\mathcal{F}_{g}^{\diamond}: \sigma \mathbb{Z}^{\kappa} \rightarrow \sigma \mathbb{Z}^{\kappa}$ as the restriction of the map \mathcal{F}_{g} to the set $\sigma \mathbb{Z}^{\kappa}$. And similarly, statement $(i i i)$ of Lemma 1 implies that the map $\mathcal{F}_{g}^{\diamond}$ is well-defined and $\mathcal{F}_{g}^{\diamond}$ is a bijection.

The proof to the next lemma is similar to the proof of Lemma 1.
Lemma 2. For any infinite cardinal κ and for any bijection $g \in \mathcal{S}_{\kappa}$ statements (iv) $-(x i)$ of Lemma 1 also hold for \mathcal{F}_{g}° and $\mathcal{F}_{g}^{\diamond}$.

We shall denote by \mathbb{I} the identity map of $\sigma \mathbb{N}^{\kappa}$. It is obvious that \mathbb{I} is the unit element of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Also by $H(\mathbb{I})$ we shall denote the group of units of $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. It is clear that $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is an element of $H(\mathbb{I})$ if and only if it is an order isomorphism of the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right)$.
Lemma 3. Let κ be any infinite cardinal and $\alpha \in H(\mathbb{I})$. Then (1) $\alpha=\mathbf{1}$ and for any $x \in \kappa$ there exists $y \in \kappa$ such that $\left(k_{x}\right) \alpha=k_{y}$ for any positive integer $k \geqslant 2$.
Proof. Consider $(\mathbf{1}) \alpha$. Statement $\mathbf{1} \leqslant(\mathbf{1}) \alpha$ implies that $(\mathbf{1}) \alpha^{-1} \leqslant((\mathbf{1}) \alpha) \alpha^{-1}=\mathbf{1}$, so (1) $\alpha=1$.

Now, consider any $x \in \kappa$ and consider $\left(2_{x}\right) \alpha$. Since $\mathbf{1}=(\mathbf{1}) \alpha \neq\left(2_{x}\right) \alpha$, there exists $y \in \kappa$ such that $2_{y} \leqslant\left(2_{x}\right) \alpha$, and the inequality $\left(2_{y}\right) \alpha^{-1} \leqslant 2_{x}$ implies that $\left(2_{x}\right) \alpha=2_{y}$.

Let $k \geqslant 2$ be a positive integer, suppose that for any positive integer $n \leqslant k$ the statement of the lemma holds.

For any $x \in \kappa$ consider the image $\left((k+1)_{x}\right) \alpha$. There exists $z \in \kappa$ such that $(k+1)_{z} \leqslant\left((k+1)_{x}\right) \alpha$. Suppose the contrary that $(k+1)_{z} \nless\left((k+1)_{x}\right) \alpha$ for any $z \in \kappa$. Since

$$
\left((k+1)_{x}\right) \alpha \notin\left\{\mathbf{1}, 2_{z}, 3_{z}, \ldots, k_{z} \mid z \in \kappa\right\},
$$

there exist two distinct elements $z_{1}, z_{2} \in \kappa$ such that

$$
1<\left(z_{1}\right)\left((k+1)_{x}\right) \alpha<k+1 \quad \text { and } \quad 1<\left(z_{2}\right)\left((k+1)_{x}\right) \alpha<k+1 .
$$

Hence we have that

$$
2_{z_{1}} \leqslant\left((k+1)_{x}\right) \alpha \quad \text { and } \quad 2_{z_{2}} \leqslant\left((k+1)_{x}\right) \alpha
$$

and then

$$
\left(2_{z_{1}}\right) \alpha^{-1} \leqslant(k+1)_{x} \quad \text { and } \quad\left(2_{z_{2}}\right) \alpha^{-1} \leqslant(k+1)_{x} .
$$

Since $\left(2_{z_{1}}\right) \alpha^{-1}=2_{z_{1}^{\prime}}$ and $\left(2_{z_{2}}\right) \alpha^{-1}=2_{z_{2}^{\prime}}$ for some $z_{1}^{\prime}, z_{2}^{\prime}$ we have that $z_{1}^{\prime}=z_{2}^{\prime}$. Then $2_{z_{1}}=2_{z_{2}}$ and hence $z_{1}=z_{2}$, which contradicts $z_{1} \neq z_{2}$. Thus, $\left((k+1)_{z}\right) \alpha^{-1} \leqslant(k+1)_{x}$. Since $\left((k+1)_{z}\right) \alpha^{-1} \notin\left\{\mathbf{1}, 2_{x}, 3_{x}, \ldots, k_{x}\right\}$, we have that $\left((k+1)_{z}\right) \alpha^{-1}=(k+1)_{x}$, and hence $\left((k+1)_{x}\right) \alpha=(k+1)_{z}$. We shall prove that $x=y$. The relation $2_{x}<(k+1)_{x}$ implies that $\left(2_{x}\right) \alpha<\left((k+1)_{x}\right) \alpha$. Since $\left(2_{x}\right) \alpha=2_{y}$ and $\left((k+1)_{x}\right) \alpha=(k+1)_{z}$ we have that $2_{y}<(k+1)_{z}$, so $z=y$.

For any $x \in \kappa$, consider the map $\pi_{x}: \sigma \mathbb{N}^{\kappa} \rightarrow \sigma \mathbb{N}^{\kappa}$ defined by the formula:

$$
(t)(a) \pi_{x}= \begin{cases}(t) a, & \text { if } t=x \\ 1, & \text { otherwise }\end{cases}
$$

for any $a \in \sigma \mathbb{N}^{\kappa}$ and $t \in \kappa$.
Lemma 4. Let κ be any infinite cardinal and $\alpha \in H(\mathbb{I})$ such that the equality $\left(2_{x}\right) \alpha=2_{x}$ holds for any $x \in \kappa$. Then α is the identity map.

Proof. Let $a \in \sigma \mathbb{N}^{\kappa}$. Since the inequality $(a) \pi_{x} \leqslant a$ holds for any $x \in \kappa$ and α is an order isomorphism, it follows that $\left((a) \pi_{x}\right) \alpha \leqslant(a) \alpha$. By Lemma 3 and by the lemma assumption we have that $\left((a) \pi_{x}\right) \alpha=(a) \pi_{x}$, so $(a) \pi_{x} \leqslant(a) \alpha$ for any $x \in \kappa$ and therefore $a \leqslant(a) \alpha$.

So, we have that $a \leqslant(a) \alpha$ for any $a \in \sigma \mathbb{N}^{\kappa}$ and for any α that satisfies the lemma assumption. Applying this result to the element $(a) \alpha$ and the map α^{-1} we have that (a) $\alpha \leqslant((a) \alpha) \alpha^{-1}=a$.

The inequalities $a \leqslant(a) \alpha$ and $(a) \alpha \leqslant a$ imply that $(a) \alpha=a$.
Theorem 1. For any infinite cardinal κ, the group of units $H(\mathbb{I})$ of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is isomorphic to the group \mathcal{S}_{κ} of all bijections of the cardinal κ. Moreover $\alpha \in H(\mathbb{I})$ if and only if $\alpha=\mathcal{F}_{g}^{\circ}$ for some $g \in \mathcal{S}_{\kappa}$.

Proof. Define the map $\mathcal{F}: \mathcal{S}_{\kappa} \rightarrow H(\mathbb{I})$ in the following way:

$$
\forall g \in \mathcal{S}_{\kappa} \quad(g) \mathcal{F}=\mathcal{F}_{g}^{\circ},
$$

Since \mathcal{F}_{g}° is an order automorphism of the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right)$ we have that the map \mathcal{F}_{g}° is an element of the group of units $H(\mathbb{I})$, so \mathcal{F} is well-defined. Next, we shall show that the $\operatorname{map} \mathcal{F}$ is an isomorphism.

Statement (iv) of Lemma 1 implies that the map \mathcal{F} is a homomorphism and statement (vii) of Lemma 1 implies that \mathcal{F} is injective.

We shall show that \mathcal{F} is surjective. Let $\alpha \in H(\mathbb{I})$. Lemma 3 implies that for any $x \in \kappa$ there exists $y \in \kappa$ such that $\left(2_{x}\right) \alpha=2_{y}$. We define the map $g: \kappa \rightarrow \kappa$ in the following way: $(x) g=y$. Since α is a bijection so is g.

Now consider the composition $\alpha \circ \mathcal{F}_{g^{-1}}^{\circ}$. Let $x \in \kappa$. The definition of the map g implies that

$$
\left(2_{x}\right)\left(\alpha \circ \mathcal{F}_{g^{-1}}^{\circ}\right)=\left(2_{(x) g}\right) \mathcal{F}_{g^{-1}}^{\circ}
$$

and statement (v) of Lemma 1 implies that $\left(2_{(x) g}\right) \mathcal{F}_{g^{-1}}^{\circ}=2_{x}$, so $\left(2_{x}\right)\left(\alpha \circ \mathcal{F}_{g^{-1}}^{\circ}\right)=2_{x}$. By Lemma $4, \alpha \circ \mathcal{F}_{g^{-1}}^{\circ}$ is identity map, therefore $\alpha=\left(\mathcal{F}_{g^{-1}}^{\circ}\right)^{-1}=\mathcal{F}_{g}^{\circ}$.

Theorems 2.3 and 2.20 from [9] and Theorem 1 imply the following corollary.
Corollary 1. For any infinite cardinal κ every maximal subgroup of the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ is isomorphic to the group \mathcal{S}_{κ} of all bijections of the cardinal κ.

Proposition 2. For any infinite cardinal κ and for any $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ there exists a unique bijection $g_{\alpha} \in \mathcal{S}_{\kappa}$ such that $\alpha=\rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha}$.

Proof. Let $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. For the element $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}$ we have that

$$
\rho_{\alpha} \rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1} \lambda_{\alpha}=\varepsilon \alpha \iota,
$$

where ε and ι are idempotents with $\operatorname{dom} \varepsilon=\operatorname{dom} \alpha$ and $\operatorname{dom} \iota=\operatorname{ran} \alpha$, so $\varepsilon \alpha \iota=\alpha$. Since

$$
\operatorname{dom}\left(\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}\right)=\operatorname{ran}\left(\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}\right)=\sigma \mathbb{N}^{\kappa}
$$

we have that $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1} \in H(\mathbb{I})$. By Theorem 1, for $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}$ there exists a bijection $g_{\alpha} \in \mathcal{S}_{\kappa}$ such that $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}=\mathcal{F}_{g_{\alpha}}^{\circ}$.

Suppose that there exists $h \in \mathcal{S}_{\kappa}$ such that $\alpha=\rho_{\alpha} \mathcal{F}_{h}^{\circ} \lambda_{\alpha}$. Then the equality

$$
\rho_{\alpha} \mathcal{F}_{h}^{\circ} \lambda_{\alpha}=\rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha}
$$

implies that

$$
\left(\rho_{\alpha}^{-1} \rho_{\alpha}\right) \mathcal{F}_{h}^{\circ}\left(\lambda_{\alpha} \lambda_{\alpha}^{-1}\right)=\left(\rho_{\alpha}^{-1} \rho_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}\left(\lambda_{\alpha} \lambda_{\alpha}^{-1}\right) .
$$

The definition of $\lambda_{\alpha}, \rho_{\alpha}$ implies that

$$
\rho_{\alpha}^{-1} \rho_{\alpha}=\lambda_{\alpha} \lambda_{\alpha}^{-1}=\mathbb{I},
$$

so $\mathcal{F}_{h}^{\circ}=\mathcal{F}_{g_{\alpha}}^{\circ}$. Statement (v) of Lemma 1 implies that $h=g_{\alpha}$.
The following corollary states that every order isomorphism α in the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ can be uniquely represented as a composition of three basic transformations: shifting to the origin of coordinates, an order isomorphism of entire $\sigma \mathbb{N}^{\kappa}$, and then shifting to the range of α.

Corollary 2. For any infinite cardinal κ and for any element $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ the representation $\alpha=\rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha}$ is unique.

For any $\alpha \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ we shall use this notation g_{α} to denote the element of S_{κ} that implements this representation $\alpha=\rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha}$.

Lemma 5. Let κ be any infinite cardinal and $\alpha, \beta \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$, then

$$
\begin{aligned}
& d_{\alpha \beta}=\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha} ; \\
& r_{\alpha \beta}=\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right) \mathcal{F}_{g_{\beta}}+r_{\beta} ; \\
& \mathcal{F}_{g_{\alpha \beta}}^{\circ}=\mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} .
\end{aligned}
$$

Proof. By the definition of the composition of the partial maps:

$$
\begin{aligned}
\operatorname{dom}(\alpha \beta) & =(\operatorname{ran} \alpha \cap \operatorname{dom} \beta) \alpha^{-1}= \\
& =\left(\uparrow r_{\alpha} \cap \uparrow d_{\beta}\right) \alpha^{-1}= \\
& =\left(\uparrow \max \left\{r_{\alpha}, d_{\beta}\right\}\right) \alpha^{-1} .
\end{aligned}
$$

Since α is an order isomorphism we get that

$$
\left(\uparrow \max \left\{r_{\alpha}, d_{\beta}\right\}\right) \alpha^{-1}=\uparrow\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}\right) \alpha^{-1}\right],
$$

and then, by Corollary 2 and by Lemma $1[(v i),(v i i i)]$,

$$
\begin{aligned}
\operatorname{dom}(\alpha \beta) & =\uparrow\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}\right) \alpha^{-1}\right]= \\
& =\uparrow\left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}\right] \lambda_{\alpha}^{-1}\left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1} \rho_{\alpha}^{-1}\right)= \\
& =\uparrow\left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}+\mathbf{1}\right]\left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1} \rho_{\alpha}^{-1}\right)= \\
& =\uparrow\left(\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{-1}+\mathbf{1}\right] \rho_{\alpha}^{-1}\right)= \\
& =\uparrow\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha}\right] .
\end{aligned}
$$

Similarly, by the definition of the range of the composition of the partial maps:

$$
\begin{aligned}
\operatorname{ran}(\alpha \beta) & =(\operatorname{ran} \alpha \cap \operatorname{dom} \beta) \beta= \\
& =\left(\uparrow r_{\alpha} \cap \uparrow d_{\beta}\right) \beta= \\
& =\left(\uparrow \max \left\{r_{\alpha}, d_{\beta}\right\}\right) \beta .
\end{aligned}
$$

Since β is an order isomorphism we get that

$$
\left(\uparrow \max \left\{r_{\alpha}, d_{\beta}\right\}\right) \beta=\uparrow\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}\right) \beta\right],
$$

and then, by Corollary 2 and by Lemma $1[(v i)$, (viii)],

$$
\begin{aligned}
\operatorname{ran}(\alpha \beta) & =\uparrow\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}\right) \beta\right]= \\
& =\uparrow\left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}\right] \lambda_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \rho_{\beta}\right)= \\
& =\uparrow\left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}+\mathbf{1}\right] \mathcal{F}_{g_{\beta}}^{\circ} \rho_{\beta}\right)= \\
& =\uparrow\left(\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right) \mathcal{F}_{g_{\beta}}+\mathbf{1}\right] \rho_{\beta}\right)= \\
& =\uparrow\left[\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right) \mathcal{F}_{g_{\beta}}+r_{\beta}\right] .
\end{aligned}
$$

We shall prove that

$$
\alpha \beta=\rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta} .
$$

The definition of the maps $\rho_{\alpha \beta}, \mathcal{F}_{g_{\alpha}}^{\circ}, \mathcal{F}_{g_{\beta}}^{\circ}, \lambda_{\alpha \beta}$ and the definition of the composition of the partial maps imply that

$$
\operatorname{dom}\left(\rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta}\right)=\operatorname{dom}(\alpha \beta)
$$

and

$$
\operatorname{ran}\left(\rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta}\right)=\operatorname{ran}(\alpha \beta)
$$

Now consider any $a \in \operatorname{dom}(\alpha \beta)$ and the representation $a=d_{\alpha \beta}+a-d_{\alpha \beta}$. Denote $a-d_{\alpha \beta}$ by b, then a has the representation $a=d_{\alpha \beta}+b$. And consider the images of a under the maps $\alpha \beta$ and $\rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta}$:

$$
\begin{aligned}
(a) \alpha \beta= & \left(d_{\alpha \beta}+b\right) \alpha \beta= \\
= & \left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right] \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha}+b\right) \alpha \beta= \\
= & \left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right] \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha}+b\right) \rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha} \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta}= \\
= & \left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right] \mathcal{F}_{g_{\alpha}}^{-1}+\mathbf{1}+b\right) \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha} \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta}= \\
= & \left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}+\mathbf{1}+(b) \mathcal{F}_{g_{\alpha}}\right) \lambda_{\alpha} \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta}= \\
= & \left(\max \left\{r_{\alpha}, d_{\beta}\right\}+(b) \mathcal{F}_{g_{\alpha}}\right) \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta}= \\
= & \left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}+\mathbf{1}+(b) \mathcal{F}_{g_{\alpha}}\right) \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta}= \\
= & \left(\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right] \mathcal{F}_{g_{\beta}}+\mathbf{1}+(b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}\right) \lambda_{\beta}= \\
= & {\left[\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right] \mathcal{F}_{g_{\beta}}+(b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}+r_{\beta}=} \\
= & r_{\alpha \beta}+(b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} ; \\
& \begin{aligned}
(a) \rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta} & =\left(d_{\alpha \beta}+b\right) \rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta}= \\
& =(b+\mathbf{1}) \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta}= \\
& =\left((b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}+\mathbf{1}\right) \lambda_{\alpha \beta}= \\
& =(b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}+r_{\alpha \beta} .
\end{aligned}
\end{aligned}
$$

We have that $\alpha \beta=\rho_{\alpha \beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha \beta}$, so by Corollary $2 \mathcal{F}_{g_{\alpha \beta}}^{\circ}=\mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ}$.
Corollary 3. For any infinite cardinal κ and for any elements $\alpha, \beta \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ the bijection $g_{\alpha \beta}$ is equals to $g_{\alpha} g_{\beta}$.

Corollary 4. Let κ be any infinite cardinal and ε be the idempotent of the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$, then $g_{\varepsilon}=i d_{\kappa}, \mathcal{F}_{g_{\varepsilon}}^{\circ}=\mathbb{I}$.
Remark 2. In the bicyclic semigroup $\mathscr{C}(p, q)$ the semigroup operation is determined in the following way:

$$
p^{i} q^{j} \cdot p^{k} q^{l}= \begin{cases}p^{i} q^{j-k+l}, & \text { if } j>k \\ p^{i} q^{l}, & \text { if } j=k \\ p^{i-j+k} q^{l}, & \text { if } j<k\end{cases}
$$

which is equivalent to the following formula:

$$
p^{i} q^{j} \cdot p^{k} q^{l}=p^{i+\max \{j, k\}-j} q^{l+\max \{j, k\}-k} .
$$

We note that the bicyclic semigroup $\mathscr{C}(p, q)$ is isomorphic to the semigroup $(\mathbb{N} \times \mathbb{N}, *)$ which is defined on the square $\mathbb{N} \times \mathbb{N}$ of the set of all positive integers with the following multiplication:

$$
\begin{equation*}
(i, j) *(k, l)=(i+\max \{j, k\}-j, l+\max \{j, k\}-k) . \tag{1}
\end{equation*}
$$

To see this, it is sufficiently to check that the map

$$
f: \mathscr{C}(p, q) \rightarrow \mathbb{N} \times \mathbb{N}: p^{i} q^{j} \stackrel{f}{\mapsto}(i+1, j+1)
$$

is an isomorphism between semigroups $\mathscr{C}(p, q)$ and $(\mathbb{N} \times \mathbb{N}, *)$.

In this paper we shall use the semigroup $(\mathbb{N} \times \mathbb{N}, *)$ as a representation of the bicyclic semigroup $\mathscr{C}(p, q)$ and we shall denote the semigroup $(\mathbb{N} \times \mathbb{N}, *)$ by \mathbb{B}.

For any infinite cardinal κ, define the semigroup $\sigma \mathbb{B}^{\kappa}$ as the set $\sigma \mathbb{N}^{\kappa} \times \sigma \mathbb{N}^{\kappa}$ with the multiplications $*_{\kappa}$ which is similar to (1):
$(a, b) *_{\kappa}(c, d)=(a+\max \{b, c\}-b, d+\max \{b, c\}-c)$, where $a, b, c, d \in \sigma \mathbb{N}^{\kappa}$.
We can observe that the semigroup $\sigma \mathbb{B}^{\kappa}$, as defined by the multiplication operation $*_{\kappa}$ in (2), is indeed isomorphic to the σ-product of κ many copies of the bicyclic monoid.

For any $g \in \mathcal{S}_{\kappa}$ consider a map $\Phi_{g}: \sigma \mathbb{B}^{\kappa} \rightarrow \sigma \mathbb{B}^{\kappa}$ defined in the following way: for any $(a, b) \in \sigma \mathbb{B}^{\kappa}$ define

$$
((a, b)) \Phi_{g}=\left((a) \mathcal{F}_{g}^{\circ},(b) \mathcal{F}_{g}^{\circ}\right) .
$$

Statements (i) and $(i i)$ of Lemma 1 imply that the map Φ_{g} is well-defined and Φ_{g} is a bijection.

Check that the map Φ_{g} is an automorphism of $\sigma \mathbb{B}^{\kappa}$. For any $(a, b),(c, d) \in \sigma \mathbb{B}^{\kappa}$, by statements (xiii) - (x) of Lemma 1:

$$
\begin{aligned}
& \left((a, b) *_{\kappa}(c, d)\right) \Phi_{g}=((a+\max \{b, c\}-b, d+\max \{b, c\}-c)) \Phi_{g}= \\
& \quad=\left((a+\max \{b, c\}-b) \mathcal{F}_{g}^{\circ},(d+\max \{b, c\}-c) \mathcal{F}_{g}^{\circ}\right)= \\
& \quad=\left((a) \mathcal{F}_{g}+\max \left\{(b) \mathcal{F}_{g},(c) \mathcal{F}_{g}\right\}-(b) \mathcal{F}_{g},(d) \mathcal{F}_{g}+\max \left\{(b) \mathcal{F}_{g},(c) \mathcal{F}_{g}\right\}-(c) \mathcal{F}_{g}\right)= \\
& \quad=\left((a) \mathcal{F}_{g},(b) \mathcal{F}_{g}\right) *_{\kappa}\left((c) \mathcal{F}_{g},(d) \mathcal{F}_{g}\right)=\left((a) \mathcal{F}_{g}^{\circ},(b) \mathcal{F}_{g}^{\circ}\right) *_{\kappa}\left((c) \mathcal{F}_{g}^{\circ},(d) \mathcal{F}_{g}^{\circ}\right)= \\
& \quad=(a, b) \Phi_{g} *_{\kappa}(c, d) \Phi_{g} .
\end{aligned}
$$

Let κ be any infinite cardinal and $\operatorname{Aut}\left(\sigma \mathbb{B}^{\kappa}\right)$ be the group of automorphisms of the semigroup $\sigma \mathbb{B}^{\kappa}$. Consider the map $\Phi: \mathcal{S}_{\kappa} \rightarrow \operatorname{Aut}\left(\sigma \mathbb{B}^{\kappa}\right)$ for any $g \in \mathcal{S}_{\kappa}$ define $(g) \Phi=\Phi_{g}$. Statement (vii) of Lemma 1 implies that Φ is injective. Next, we show that the map Φ is a homomorphism. For any $g, h \in \mathcal{S}_{\kappa}$ consider the image of their composition: for any $[a, b] \in \sigma \mathbb{B}^{\kappa}$

$$
\begin{aligned}
([a, b])(g h) \Phi & =([a, b]) \Phi_{g h}= \\
& =\left[(a) \mathcal{F}_{g h}^{\circ},(b) \mathcal{F}_{g h}^{\circ}\right] .
\end{aligned}
$$

Statement (iv) of Lemma 1 implies that

$$
\left[(a) \mathcal{F}_{g h}^{\circ},(b) \mathcal{F}_{g h}^{\circ}\right]=\left[(a) \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ},(b) \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ}\right],
$$

and since

$$
\begin{aligned}
{\left[(a) \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ},(b) \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ}\right] } & =\left(\left[(a) \mathcal{F}_{g}^{\circ},(b) \mathcal{F}_{g}^{\circ}\right]\right) \Phi_{h}= \\
& =([a, b]) \Phi_{g} \Phi_{h}= \\
& =([a, b])(g) \Phi(h) \Phi
\end{aligned}
$$

we have that

$$
([a, b])(g h) \Phi=([a, b])(g) \Phi(h) \Phi,
$$

i.e., Φ is a homomorphism.

For any infinite cardinal κ consider the semidirect product $\mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ of the semigroup $\sigma \mathbb{B}^{\kappa}$ by the group \mathcal{S}_{κ} as the set $\mathcal{S}_{\kappa} \times \sigma \mathbb{B}^{\kappa}$ with the operation:

$$
(g,[a, b])(h,[c, d])=\left(g h,([a, b]) \Phi_{h} *_{\kappa}[c, d]\right) \quad \text { for }(g,[a, b]),(h,[c, d]) \in \mathcal{S}_{\kappa} \times \sigma \mathbb{B}^{\kappa} .
$$

Define the map $\Psi: \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right) \rightarrow \mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ by the formula:

$$
(\alpha) \Psi=\left(g_{\alpha},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)
$$

The definition of $d_{\alpha}, r_{\alpha}, g_{\alpha}$ and $\mathcal{F}_{g_{\alpha}}^{\circ}$ implies that the map Ψ is well-defined.
Theorem 2. For any infinite cardinal κ the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is isomorphic to the semidirect product $\mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ of the semigroup $\sigma \mathbb{B}^{\kappa}$ by the group \mathcal{S}_{κ}.

Proof. Consider the map Ψ. Corollary 2 implies that Ψ is a bijection. We shall prove that Ψ is also a homomorphism.

For any $\alpha, \beta \in \mathcal{I P \mathcal { F }}\left(\sigma \mathbb{N}^{\kappa}\right)$ we have that $(\alpha \beta) \Psi=\left(g_{\alpha \beta},\left[\left(d_{\alpha \beta}\right) \mathcal{F}_{g_{\alpha \beta}}^{\circ}, r_{\alpha \beta}\right]\right)$. Corollary 3 and Lemma 5 imply that

$$
\begin{aligned}
& \left(g_{\alpha \beta},\left[\left(d_{\alpha \beta}\right) \mathcal{F}_{g_{\alpha \beta}}^{\circ}, r_{\alpha \beta}\right]\right)= \\
& =\left(g_{\alpha} g_{\beta},\left[\left(\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ},\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right) \mathcal{F}_{g_{\beta}}+r_{\beta}\right]\right)
\end{aligned}
$$

Lemma 1, the definition of the operation $*_{\kappa}$, and the definition of the map Φ imply that

$$
\begin{aligned}
& \left(g_{\alpha} g_{\beta},\left[\left(\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ},\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right) \mathcal{F}_{g_{\beta}}+r_{\beta}\right]\right)= \\
& =\left(g_{\alpha} g_{\beta},\left[\max \left\{\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}},\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}\right\}-\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}}+\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}, \max \left\{\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}},\right.\right.\right. \\
& \left.\left.\left.\quad\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}\right\}-\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}+r_{\beta}\right]\right)= \\
& =\left(g_{\alpha} g_{\beta},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}},\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}}\right] *_{\kappa}\left[\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}, r_{\beta}\right]\right)= \\
& =\left(g_{\alpha} g_{\beta},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ},\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}}^{\circ}\right] *_{\kappa}\left[\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right)= \\
& =\left(g_{\alpha} g_{\beta},\left(\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right) \Phi_{g_{\beta}} *_{\kappa}\left[\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right)= \\
& =\left(g_{\alpha},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)\left(g_{\beta},\left[\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right) \\
& =(\alpha) \Psi(\beta) \Psi .
\end{aligned}
$$

For any $\alpha \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$, let $\left(g_{\alpha},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)=(\alpha) \Psi$ be the image of the element α by the isomorphism $\Psi: \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right) \rightarrow \mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ which is defined above the proof of Theorem 2.

Every inverse semigroup S admits the least group congruence $\mathfrak{C}_{\text {mg }}$ (see [27, Section III]):
$s \mathfrak{C}_{\mathbf{m g}} t$ if and only if there exists an idempotent $e \in S$ such that $s e=t e$.
Proposition 3. For any infinite cardinal κ, any element $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ and for any idempotent $\varepsilon \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ we have:

$$
\begin{aligned}
(\alpha \varepsilon) \Psi & =\left(g_{\alpha},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)\left(i d_{\kappa},\left[d_{\varepsilon}, d_{\varepsilon}\right]\right)= \\
& =\left(g_{\alpha},\left[\max \left\{r_{\alpha}, d_{\varepsilon}\right\}-r_{\alpha}+\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, \max \left\{r_{\alpha}, d_{\varepsilon}\right\}\right]\right) \\
(\varepsilon \alpha) \Psi & =\left(i d_{\kappa},\left[d_{\varepsilon}, d_{\varepsilon}\right]\right)\left(g_{\alpha},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)= \\
& =\left(g_{\alpha},\left[\left(\max \left\{d_{\varepsilon}, d_{\alpha}\right\}\right) \mathcal{F}_{g_{\alpha}}^{\circ},\left(\max \left\{d_{\varepsilon}, d_{\alpha}\right\}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}+r_{\alpha}\right]\right) .
\end{aligned}
$$

Proof. By Corollary 4, g_{ε} is the identity permutation, i.e., $g_{\varepsilon}=i d_{\kappa}$ and $\mathcal{F}_{g_{\varepsilon}}^{\circ}=\mathbb{I}$. Since $\operatorname{dom} \varepsilon=\operatorname{ran} \varepsilon$ we have that $d_{\varepsilon}=r_{\varepsilon}$ and then $\left(d_{\varepsilon}\right) \mathcal{F}_{g_{\varepsilon}}^{\circ}=d_{\varepsilon}=r_{\varepsilon}$, so

$$
\left(g_{\varepsilon},\left[\left(d_{\varepsilon}\right) \mathcal{F}_{g_{\varepsilon}}^{\circ}, r_{\varepsilon}\right]\right)=\left(i d_{\kappa},\left[d_{\varepsilon}, d_{\varepsilon}\right]\right) .
$$

Then the definition of the multiplication in $\mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ completes the proof of the proposition.

The following theorem describes the least group congruence on the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$.

Theorem 3. Let κ be any infinite cardinal. Then $\alpha \mathfrak{C}_{\mathbf{m g}} \beta$ in the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ if and only if

$$
g_{\alpha}=g_{\beta} \quad \text { and } \quad\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}=\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}-r_{\beta} .
$$

Proof. Fix an idempotent ε in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$. By Proposition 3,

$$
\begin{aligned}
& \left(g_{\alpha},\left[\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)\left(i d_{\kappa},\left[d_{\varepsilon}, d_{\varepsilon}\right]\right)=\left(g_{\alpha},\left[\max \left\{r_{\alpha}, d_{\varepsilon}\right\}-r_{\alpha}+\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, \max \left\{r_{\alpha}, d_{\varepsilon}\right\}\right]\right) \\
& \left(g_{\beta},\left[\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right)\left(i d_{\kappa},\left[d_{\varepsilon}, d_{\varepsilon}\right]\right)=\left(g_{\beta},\left[\max \left\{r_{\beta}, d_{\varepsilon}\right\}-r_{\beta}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, \max \left\{r_{\beta}, d_{\varepsilon}\right\}\right]\right),
\end{aligned}
$$

so the equality $\alpha \varepsilon=\beta \varepsilon$ holds if and only if

$$
g_{\alpha}=g_{\beta} \quad \text { and } \quad\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}=\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}-r_{\beta}
$$

For any infinite cardinal κ, by $\sigma \mathbb{Z}_{+}^{\kappa}$ we shall denote the group $\left(\sigma \mathbb{Z}^{\kappa},+\right.$). Let $\operatorname{Aut}\left(\sigma \mathbb{Z}_{+}^{\kappa}\right)$ be the group of automorphisms of the group $\sigma \mathbb{Z}_{+}^{\kappa}$. Consider the map $\Theta: \mathcal{S}_{\kappa} \rightarrow$ Aut $\left(\sigma \mathbb{Z}_{+}^{\kappa}\right)$: for any $g \in \mathcal{S}_{\kappa}$ define $(g) \Theta=\mathcal{F}_{g}^{\diamond}$.

Statements $(i),(i i i)$ and (viii) of Lemma 1 imply that for any $g \in \mathcal{S}$ the map $\mathcal{F}_{g}^{\diamond}$ is an isomorphism of the group $\sigma \mathbb{Z}_{+}^{\kappa}$, so the map Θ is well-defined. Next, statements (iv) and (vii) of Lemma 1 imply that the map Θ is an injective homomorphism.

Consider the semidirect product $\mathcal{S}_{\kappa} \ltimes_{\Theta}\left(\sigma \mathbb{Z}^{\kappa},+\right)$ as the set $\mathcal{S}_{\kappa} \times \sigma \mathbb{Z}^{\kappa}$ with the operation

$$
(g, m)(h, n)=\left(g h,(m) \mathcal{F}_{h}^{\diamond}+n\right) .
$$

Theorem 4. For any infinite cardinal κ the quotient semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right) / \mathfrak{C}_{\mathbf{m g}}$ is isomorphic to the semidirect product $\mathcal{S}_{\kappa} \ltimes_{\Theta}\left(\sigma \mathbb{Z}^{\kappa},+\right)$ of the group $\left(\sigma \mathbb{Z}^{\kappa},+\right)$ by the group \mathcal{S}_{κ}.

Proof. Define the map $\Upsilon: \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right) \rightarrow \mathscr{S}_{\kappa} \ltimes_{\Theta}\left(\sigma \mathbb{Z}^{\kappa},+\right)$ in the following way: for any $\alpha \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ we put

$$
(\alpha) \Upsilon=\left(g_{\alpha},\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}\right) .
$$

Since $a-b \in \sigma \mathbb{Z}^{\kappa}$ for any $a, b \in \sigma \mathbb{N}^{\kappa}$ we have that Υ is well-defined.
For any $\alpha, \beta \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ by the definition of Υ we have that

$$
(\alpha \beta) \Upsilon=\left(g_{\alpha \beta},\left(d_{\alpha \beta}\right) \mathcal{F}_{g_{\alpha \beta}}^{\circ}-r_{\alpha \beta}\right)
$$

and by Lemma 5

$$
(\alpha \beta) \Upsilon=\left(g_{\alpha} g_{\beta},\left(\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-r_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{-1}+d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ}-\left(\max \left\{r_{\alpha}, d_{\beta}\right\}-d_{\beta}\right) \mathcal{F}_{g_{\beta}}-r_{\beta}\right),
$$

then, by statements (viii) and (ix) of Lemma 1

$$
\begin{aligned}
(\alpha \beta) \Upsilon= & \left(g_{\alpha} g_{\beta},\left(\max \left\{r_{\alpha}, d_{\beta}\right\}\right) \mathcal{F}_{g_{\beta}}-\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}}+\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}-\left(\max \left\{r_{\alpha}, d_{\beta}\right\}\right) \mathcal{F}_{g_{\beta}}+\right. \\
& \left.\quad+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}-r_{\beta}\right)= \\
= & \left(g_{\alpha} g_{\beta},\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}-\left(r_{\alpha}\right) \mathcal{F}_{g_{\beta}}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}-r_{\beta}\right)= \\
= & \left(g_{\alpha},\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}\right)\left(g_{\beta},\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}-r_{\beta}\right)= \\
= & (\alpha) \Upsilon(\beta) \Upsilon
\end{aligned}
$$

and hence Υ is a homomorphism.
Show that the map Υ is surjective. For any $(g, z) \in \mathcal{S}_{\kappa} \times \sigma \mathbb{Z}^{\kappa}$, consider the maps $a, b: \kappa \rightarrow \mathbb{N}$. For any $x \in \kappa$:

$$
(x) a=\left\{\begin{array}{ll}
(x) z, & \text { if }(x) z>0 \\
1, & \text { if }(x) z=0 \\
0, & \text { if }(x) z<0
\end{array} \quad \text { and } \quad(x) b= \begin{cases}0, & \text { if }(x) z>0 \\
1, & \text { if }(x) z=0 \\
-(x) z, & \text { if }(x) z<0\end{cases}\right.
$$

We have that $a, b \in \sigma \mathbb{N}^{\kappa}$ and $z=a-b$. Now we consider $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that

$$
\begin{aligned}
g_{\alpha} & =g, \\
d_{\alpha} & =(a)\left(\mathcal{F}_{g}^{\circ}\right)^{-1}, \\
r_{\alpha} & =b .
\end{aligned}
$$

Then

$$
\begin{aligned}
(\alpha) \Upsilon & =\left(g_{\alpha},\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}\right)= \\
& =\left(g,\left((a)\left(\mathcal{F}_{g}^{\circ}\right)^{-1}\right) \mathcal{F}_{g}^{\circ}-b\right)= \\
& =(g, a-b)= \\
& =(g, z),
\end{aligned}
$$

so Υ is surjective.
Also, Theorem 3 implies that $\alpha \mathfrak{C}_{\mathbf{m g}} \beta$ in $\mathcal{I P \mathcal { F }}\left(\sigma \mathbb{N}^{\kappa}\right)$ if and only if $(\alpha) \Upsilon=(\beta) \Upsilon$. This implies that the homomorphism Υ generates the congruences $\mathfrak{C}_{\mathrm{mg}}$ on $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$.

Every inverse semigroup S admits a partial order:

$$
a \preccurlyeq b \quad \text { if and only if there exists } \quad e \in E(S) \text { such that } a=b e .
$$

So defined order is called the natural partial order on S. We observe that $a \preccurlyeq b$ in an inverse semigroup S if and only if $a=f b$ for some $f \in E(S)$ (see [23, Lemma 1.4.6]).

This and Proposition 3 imply the following proposition, which describes the natural partial order on the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$.
Proposition 4. Let κ be any infinite cardinal and let $\alpha, \beta \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Then the following conditions are equivalent:
(i) $\alpha \preccurlyeq \beta$;
(ii) $g_{\alpha}=g_{\beta},\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}=\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}-r_{\beta}$ and $d_{\beta} \leqslant d_{\alpha}$ in the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right)$;
(iii) $g_{\alpha}=g_{\beta},\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha}=\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}-r_{\beta}$ and $r_{\beta} \leqslant r_{\alpha}$ in the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right)$.

An inverse semigroup S is said to be E-unitary if ae $\in E(S)$ for some $e \in E(S)$ implies that $a \in E(S)$ [23]. E-unitary inverse semigroups were introduced by Siatô in [28], where they were called "proper ordered inverse semigroups".
Proposition 5. For any infinite cardinal κ, the inverse semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is E-unitary.

Proof. Let $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Suppose that $\alpha \varepsilon$ is an idempotent for some idempotent $\varepsilon \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Then Proposition 3 and the definition of idempotents imply that $g_{\alpha}=i d_{\kappa}$ and $d_{\alpha}=\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}=r_{\alpha}$, so α is an idempotent.

An inverse semigroup S is called F-inverse, if the $\mathfrak{C}_{\mathbf{m g}}$-class $s_{\mathfrak{C}_{\mathbf{m g}}}$ of each element s has the top (biggest) element with the respect to the natural partial order on S [24].
Proposition 6. For any infinite cardinal κ, the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ is an F-inverse semigroup.
Proof. Let $\alpha \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Consider an element $\beta \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that

$$
\begin{aligned}
g_{\beta} & =g_{\alpha} \\
d_{\beta} & =d_{\alpha}-\min \left\{d_{\alpha},\left(r_{\alpha}\right)\left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1}\right\}+\mathbf{1}, \\
r_{\beta} & =r_{\alpha}-\min \left\{\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right\}+\mathbf{1}
\end{aligned}
$$

We have that $\min \left\{d_{\alpha},\left(r_{\alpha}\right)\left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1}\right\} \in \sigma \mathbb{N}^{\kappa}$ and $\min \left\{d_{\alpha},\left(r_{\alpha}\right)\left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1}\right\} \leqslant d_{\alpha}$, so $d_{\beta} \in$ $\sigma \mathbb{N}^{\kappa}$. Similar $r_{\beta} \in \sigma \mathbb{N}^{\kappa}$, so β is well-defined. Also, we have that $g_{\beta}=g_{\alpha}$ and

$$
\begin{aligned}
\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}-r_{\beta} & =\left(d_{\alpha}-\min \left\{d_{\alpha},\left(r_{\alpha}\right)\left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1}\right\}+\mathbf{1}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-\left(r_{\alpha}-\min \left\{\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right\}+\mathbf{1}\right)= \\
& =\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-\min \left\{\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right\}+\mathbf{1}-r_{\alpha}+\min \left\{\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right\}-\mathbf{1}= \\
& =\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}-r_{\alpha},
\end{aligned}
$$

then Theorem 3 implies that $\beta \mathfrak{C}_{\mathbf{m g}} \alpha$.
Now, for any $\gamma \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$, such that $\gamma \mathfrak{C}_{\mathbf{m g}} \alpha$, we consider the idempotent ε with $d_{\varepsilon}=r_{\gamma}$ and consider the product $(\beta) \Psi(\varepsilon) \Psi$. By Proposition 3

$$
\begin{aligned}
(\beta) \Psi(\varepsilon) \Psi & =\left(g_{\beta},\left[\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right)\left(i d_{\kappa},\left[d_{\varepsilon}, d_{\varepsilon}\right]\right)= \\
& =\left(g_{\beta},\left[\max \left\{r_{\beta}, d_{\varepsilon}\right\}-r_{\beta}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, \max \left\{r_{\beta}, d_{\varepsilon}\right\}\right]\right)= \\
& =\left(g_{\beta},\left[\max \left\{r_{\beta}, r_{\gamma}\right\}-r_{\beta}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, \max \left\{r_{\beta}, r_{\gamma}\right\}\right]\right)
\end{aligned}
$$

Since $\gamma \mathfrak{C}_{\mathbf{m g}} \alpha$, by Theorem 3 we have that $g_{\gamma}=g_{\alpha}$ and $r_{\gamma}-\left(d_{\gamma}\right) \mathcal{F}_{g_{\gamma}}^{\circ}=r_{\alpha}-\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}$, then for any $x \in \kappa$

$$
\begin{aligned}
& (x)\left(\max \left\{r_{\beta}, r_{\gamma}\right\}\right)=(x)\left(\max \left\{r_{\alpha}-\min \left\{\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right\}+\mathbf{1}, r_{\gamma}\right\}\right)= \\
& = \begin{cases}\max \left\{(x) r_{\alpha}-(x) r_{\alpha}+(x) \mathbf{1},(x) r_{\gamma}\right\}, & \text { if }(x)\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}>(x) r_{\alpha}= \\
\max \left\{(x) r_{\alpha}-(x)\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}+(x) \mathbf{1},(x) r_{\gamma}\right\}, & \text { otherwise }\end{cases} \\
& = \begin{cases}\max \left\{1,(x) r_{\gamma}\right\}, & \text { if }(x)\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}>(x) r_{\alpha}= \\
\max \left\{(x) r_{\gamma}-(x)\left(d_{\gamma}\right) \mathcal{F}_{g_{\gamma}}^{\circ}+1,(x) r_{\gamma}\right\}, & \text { otherwise }\end{cases} \\
& =(x) r_{\gamma},
\end{aligned}
$$

so $\max \left\{r_{\beta}, r_{\gamma}\right\}=r_{\gamma}$. Also

$$
\begin{aligned}
\max \left\{r_{\beta}, r_{\gamma}\right\}-r_{\beta}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ} & =r_{\gamma}-r_{\beta}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}= \\
& =r_{\gamma}-r_{\alpha}+\left(d_{\alpha}\right) \mathcal{F}_{g_{\alpha}}^{\circ}= \\
& =\left(d_{\gamma}\right) \mathcal{F}_{g_{\gamma}}^{\circ},
\end{aligned}
$$

so

$$
\left(g_{\beta},\left[\max \left\{r_{\beta}, r_{\gamma}\right\}-r_{\beta}+\left(d_{\beta}\right) \mathcal{F}_{g_{\beta}}^{\circ}, \max \left\{r_{\beta}, r_{\gamma}\right\}\right]\right)=\left(g_{\gamma},\left[\left(d_{\gamma}\right) \mathcal{F}_{g_{\gamma}}^{\circ}, r_{\gamma}\right]\right)=(\gamma) \Psi
$$

The equality $(\beta) \Psi(\varepsilon) \Psi=(\gamma) \Psi$ implies that $\gamma=\beta \varepsilon$, so $\gamma \preccurlyeq \beta$. This means that the element β is the biggest element in the $\mathfrak{C}_{\mathbf{m g}}$-class of the element α in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$.

Lemma 6. Let κ be any infinite cardinal and let \mathfrak{C} be a congruence on the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\varepsilon \mathfrak{C} \iota$ for some two distinct idempotents $\varepsilon, \iota \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Then $\varsigma \mathfrak{C} v$ for all idempotents ς, v of $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$.
Proof. We observe that without loss of generality we may assume that $\varepsilon \preccurlyeq \iota$ where
 $E\left(\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)\right)$ then $\varepsilon \mathfrak{C} \iota$ implies that $\varepsilon=\varepsilon \varepsilon \mathfrak{C} \iota \varepsilon$, and since the idempotents ε and ι are distinct in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ we have that $\iota \varepsilon \preccurlyeq \varepsilon$.

Now, the inequality $\varepsilon \preccurlyeq \iota$ implies that $\operatorname{dom} \varepsilon \subseteq \operatorname{dom} \iota$. Next, we define partial map $\alpha: \sigma \mathbb{N}^{\kappa} \rightharpoonup \sigma \mathbb{N}^{\kappa}$ in the following way:
$\operatorname{dom} \alpha=\sigma \mathbb{N}^{\kappa}, \quad \operatorname{ran} \alpha=\operatorname{dom} \iota \quad$ and $\quad(z) \alpha=z+d_{\iota}-\mathbf{1}, \quad$ for any $\quad z \in \operatorname{dom} \alpha$.
The definition of α implies that $\alpha \iota \alpha^{-1}=\alpha \alpha^{-1}=\mathbb{I}$ and $\alpha^{-1} \alpha=\iota$, and moreover, we have that

$$
\begin{aligned}
\left(\alpha \varepsilon \alpha^{-1}\right)\left(\alpha \varepsilon \alpha^{-1}\right) & =\alpha \varepsilon\left(\alpha^{-1} \alpha\right) \varepsilon \alpha^{-1}= \\
& =\alpha \varepsilon \iota \varepsilon \alpha^{-1}= \\
& =\alpha \varepsilon \varepsilon \alpha^{-1}= \\
& =\alpha \varepsilon \alpha^{-1},
\end{aligned}
$$

which implies that $\alpha \varepsilon \alpha^{-1}$ is an idempotent of $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\alpha \varepsilon \alpha^{-1} \neq \mathbb{I}$.
Thus, it was shown that there exists a non-unit idempotent ε^{*} in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\varepsilon^{*} \mathbb{C} \mathbb{I}$. This implies that $\varepsilon_{0} \mathfrak{C} \mathbb{I}$ for any idempotent ε_{0} of $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\varepsilon^{*} \preccurlyeq$ $\varepsilon_{0} \preccurlyeq \mathbb{I}$. Since $\varepsilon^{*} \neq \mathbb{I}$ we have that $d_{\varepsilon^{*}} \neq \mathbf{1}$, so there exists $x \in \kappa$ such that $(x) d_{\varepsilon^{*}} \neq 1$, thus $2_{x} \leqslant d_{\varepsilon^{*}}$. Consider an idempotent ε_{x} in $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $d_{\varepsilon_{x}}=2_{x}$. Then $d_{\varepsilon_{x}}=2_{x} \leqslant d_{\varepsilon^{*}}$ implies that $\varepsilon^{*} \preccurlyeq \varepsilon_{x}$, so $\varepsilon_{x} \mathfrak{C} \mathbb{I}$.

Fix an arbitrary $y \in \kappa \backslash\{x\}$. Define a bijection on the set κ in the following way:
$(x) g=y$,
(y) $g=x$
and
($t) g=t, \quad$ for $\quad t \in \kappa \backslash\{x, y\}$.

Next, consider the map \mathcal{F}_{g}° as an element of $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$. The definition of g implies that $g^{-1}=g$, then, by Lemma $1(i)$ we have that $\left(\mathcal{F}_{g}^{\circ}\right)^{-1}=\mathcal{F}_{g^{-1}}^{\circ}=\mathcal{F}_{g}^{\circ}$ and then

$$
\mathcal{F}_{g}^{\circ} \mathbb{I} \mathcal{F}_{g}^{\circ}=\mathcal{F}_{g}^{\circ} \mathcal{F}_{g}^{\circ}=\mathcal{F}_{g}^{\circ}\left(\mathcal{F}_{g}^{\circ}\right)^{-1}=\mathbb{I}
$$

The calculations

$$
\begin{aligned}
\left(\mathcal{F}_{g}^{\circ} \varepsilon_{x} \mathcal{F}_{g}^{\circ}\right) \Psi= & \left(\mathcal{F}_{g}^{\circ}\right) \Psi\left(\varepsilon_{d_{x}}\right) \Psi\left(\mathcal{F}_{g}^{\circ}\right) \Psi= \\
& =(g,[\mathbf{1}, \mathbf{1}])\left(i d_{\kappa},\left[2_{x}, 2_{x}\right]\right)(g,[\mathbf{1}, \mathbf{1}])= \\
& =\left(g,\left[2_{x}, 2_{x}\right]\right)(g,[\mathbf{1}, \mathbf{1}])= \\
& =\left(g g,\left[\left(2_{x}\right) \mathcal{F}_{g}^{\circ},\left(2_{x}\right) \mathcal{F}_{g}^{\circ}\right]\right)= \\
& =\left(i d_{\kappa},\left[2_{(x) g}, 2_{(x) g}\right]\right)= \\
& =\left(i d_{\kappa},\left[2_{y}, 2_{y}\right]\right)= \\
& =\left(\varepsilon_{y}\right) \Psi
\end{aligned}
$$

shows that $\mathcal{F}_{g}^{\circ} \varepsilon_{x} \mathcal{F}_{g}^{\circ}=\varepsilon_{y}$, where ε_{y} is an idempotent in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $d_{\varepsilon_{y}}=2_{y}$. Then

$$
\varepsilon_{y}=\left(\mathcal{F}_{g}^{\circ} \varepsilon_{x} \mathcal{F}_{g}^{\circ}\right) \mathfrak{C}\left(\mathcal{F}_{g}^{\circ} \mathbb{I} \mathcal{F}_{g}^{\circ}\right)=\mathbb{I}
$$

implies that $\varepsilon_{y} \mathfrak{C} \mathbb{I}$.
The above arguments imply that $\varepsilon_{x} \mathfrak{C} \mathbb{I}$ for every idempotent $\varepsilon_{x} \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that ε_{x} is the identity map of the principal filter $\uparrow 2_{x}$ of the poset $\left(\sigma \mathbb{N}^{\kappa}, \leqslant\right), x \in \kappa$. Now, fix an idempotent ζ in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ and consider the set $A=\left\{x \in \kappa \mid(x) d_{\zeta} \neq 1\right\}$. Since $d_{\zeta} \in \sigma \mathbb{N}^{\kappa}$ the set A is finite, so there exists $k \in \mathbb{N}$ such that $A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ for some $x_{1}, x_{2}, \ldots, x_{k} \in \kappa$. Consider the idempotent $\varepsilon_{A}=\varepsilon_{x_{1}} \ldots \varepsilon_{x_{k}}$. Since \mathfrak{C} is congruence, $\varepsilon_{x_{i}} \mathfrak{C I}$ for any $x_{i} \in A$ and A is finite we have that $\left(\varepsilon_{x_{1}} \ldots \varepsilon_{x_{k}}\right) \mathfrak{C} \mathbb{I}$. The definition of ε_{A} and the semigroup operation of $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ imply that $d_{\varepsilon_{A}}=2_{A}$, where

$$
(t) 2_{A}= \begin{cases}2 & \text { if } t \in A \\ 1 & \text { otherwise }\end{cases}
$$

We define the partial map $\gamma: \sigma \mathbb{N}^{\kappa} \rightharpoonup \sigma \mathbb{N}^{\kappa}$ in the following way:
$\operatorname{dom} \gamma=\sigma \mathbb{N}^{\kappa}, \quad \operatorname{ran} \gamma=\uparrow 2_{A} \quad$ and $\quad(z) \gamma=z+2_{A}-\mathbf{1}, \quad$ for any $\quad z \in \operatorname{dom} \gamma$.
The definition of γ implies that that $\gamma \gamma^{-1}=\mathbb{I}$ and $\gamma^{-1} \gamma=\varepsilon_{A}$. For any positive integer $n \in \mathbb{N}$ consider the idempotent

$$
\left(\gamma^{-1}\right)^{n} \gamma^{n}=\underbrace{\gamma^{-1} \ldots \gamma^{-1}}_{n \text {-times }} \underbrace{\gamma \ldots \gamma}_{n \text {-times }}
$$

Since $\varepsilon_{A}=\gamma^{-1} \gamma \mathbb{C} \mathbb{I}$ we have that $\gamma^{-1} \gamma^{-1} \gamma \gamma \mathfrak{C} \gamma^{-1} \gamma=\varepsilon_{A}$ and $\gamma^{-1} \gamma^{-1} \gamma \gamma \mathfrak{C} \mathbb{I}$, so by induction $\left(\gamma^{-1}\right)^{n} \gamma^{n} \mathbb{C} \mathbb{I}$, for any $n \in \mathbb{N}$. Also, by induction, we have that $d_{\left(\gamma^{-1}\right)^{n} \gamma^{n}}=(n+1)_{A}$, where

$$
(t)(n+1)_{A}= \begin{cases}n+1 & \text { if } t \in A \\ 1 & \text { otherwise }\end{cases}
$$

for any $n \in \mathbb{N}$. Thus, we have that

$$
d_{\zeta} \leqslant d_{\left(\gamma^{-1}\right)^{m} \gamma^{m}}=(m+1)_{A}
$$

where $m=\max \left\{(x) d_{\zeta} \mid x \in \kappa\right\}$, implies that $\left(\gamma^{-1}\right)^{m} \gamma^{m} \preccurlyeq \zeta$, so $\zeta \mathbb{C} \mathbb{I}$.
Lemma 7. Let κ be any infinite cardinal and let \mathfrak{C} be a congruence on the semigroup $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\alpha \mathfrak{C} \beta$ for some non- \mathscr{H}-equivalent elements $\alpha, \beta \in \mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$. Then $\varepsilon \mathfrak{C} \iota$ for all idempotents ε, ι of $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$.

Proof. Since α and β are not- \mathscr{H}-equivalent in $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ we have that either $\alpha \alpha^{-1} \neq$ $\beta \beta^{-1}$ or $\alpha^{-1} \alpha \neq \beta^{-1} \beta$ (see [23, p. 82]). Then Proposition 4 from [23, Section 2.3] implies that $\alpha \alpha^{-1} \mathfrak{C} \beta \beta^{-1}$ and $\alpha^{-1} \alpha \mathfrak{C} \beta^{-1} \beta$ and hence the assumption of Lemma 6 holds.

Lemma 8. Let κ be any infinite cardinal and let \mathfrak{C} be a congruence on the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\alpha \mathfrak{C} \beta$ for some two distinct \mathscr{H}-equivalent elements $\alpha, \beta \in$ $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$. Then $\varepsilon \mathfrak{C} \iota$ for all idempotents ε, ι of $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$.
Proof. By Proposition $1(v i)$ the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is simple and then Theorem 2.3 from [9] implies that there exist $\mu, \xi \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $f: H_{\alpha} \rightarrow H_{\mathbb{I}}: \chi \mapsto \mu \chi \xi$ maps α to \mathbb{I} and β to $\gamma \neq \mathbb{I}$, respectively, which implies that $\mathbb{I} \mathcal{C} \gamma$. Since γ is an element of the group of units of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$, by Theorem $1, \gamma=\mathcal{F}_{g_{\gamma}}^{\circ}$ and since $\gamma \neq \mathbb{I}$ we have that $g_{\gamma} \neq i d_{\kappa}$, so there exists $x \in \kappa$ such that $(x) g_{\gamma} \neq x$. Put ε as the identity map with $d_{\varepsilon}=2_{x}$. Since \mathfrak{C} is a congruence on the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ and $\gamma \in H_{\rrbracket}$ we have that

$$
\varepsilon=\varepsilon \varepsilon=\varepsilon \mathbb{I} \mathfrak{C} \varepsilon \gamma \varepsilon .
$$

Proposition 3 implies that

$$
(\varepsilon \gamma \varepsilon) \Psi=\left(g_{\gamma},\left[\max \left\{\left(2_{x}\right) \mathcal{F}_{g_{\gamma}}^{\circ}, 2_{x}\right\}, \max \left\{\left(2_{x}\right) \mathcal{F}_{g_{\gamma}}^{\circ}, 2_{x}\right\}\right]\right) .
$$

By Lemma $1(v)$ we have that $\left(2_{x}\right) \mathcal{F}_{g_{\gamma}}^{\circ}=2_{(x) g_{\gamma}} \neq 2_{x}$, this and the definition of elements 2_{x} and $2_{(x) g_{\gamma}}$ imply that $\max \left\{\left(2_{x}\right) \mathcal{F}_{g_{\gamma}}^{\circ}, 2_{x}\right\} \neq 2_{x}$, so

$$
r_{\varepsilon \gamma \varepsilon}=\max \left\{\left(2_{x}\right) \mathcal{F}_{g_{\gamma}}^{\circ}, 2_{x}\right\} \neq 2_{x}=r_{\varepsilon},
$$

then by Proposition $1(v), \varepsilon \gamma \varepsilon$ and ε are non- \mathscr{H}-equivalent elements in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$. Next, we apply Lemma 7 .

Theorem 5. For any infinite cardinal κ every non-identity congruence \mathfrak{C} on the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ is group.
Proof. For every non-identity congruence \mathfrak{C} on $\operatorname{IPF}\left(\sigma \mathbb{N}^{k}\right)$ there exist two distinct elements $\alpha, \beta \in \operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ such that $\alpha \mathfrak{C} \beta$. If $\alpha \mathscr{H} \beta$ in $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$ then by Lemma 7 all idempotents of the semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ are \mathfrak{C}-equivalent, otherwise by Lemma 8 we get the same. Thus, by Lemma II.1.10 of [27] the quotient semigroup $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right) / \mathfrak{C}$ has a unique idempotent and hence it is a group.

Acknowledgements

The author acknowledges Oleg Gutik and Alex Ravsky for their useful comments and suggestions.

References

1. O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.
2. L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc. 117 (1965), 521-529. DOI: 10.2307/1994222
3. T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211-218.
4. T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803-2814. DOI: 10.1016/j.topol.2010.08.020
5. S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discr. Math. 21 (2016), no. 2, 163-183.
6. S. Bardyla and O. Gutik, On the lattice of weak topologies on the bicyclic monoid with adjoined zero, Algebra Discr. Math. 30 (2020), no. 1, 26-43. DOI: 10.12958/adm1459
7. M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. Sec. A 76 (1976), no. 21-23, 219-226.
8. I. Chuchman and O. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ. 2 (2010), no. 1, 119-132.
9. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.
10. O. Gutik and O. Lysetska, On the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ which is generated by the family \mathscr{F} of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021), 34-50. DOI: $10.30970 / \mathrm{vmm} .2021 .92 .034-050$
11. O. Gutik and P. Khylynskyi, On a locally compact monoid of cofinite partial isometries of \mathbb{N} with adjoined zero, Topol. Algebra Appl. 10 (2022), no. 1, 233-245.
DOI: 10.1515/taa-2022-0130
12. O. Gutik and O. Krokhmalna, The monoid of monotone injective partial selfmaps of the poset $\left(\mathbb{N}^{3}, \leqslant\right)$ with cofinite domains and images, Visn. L'viv. Univ., Ser. Mekh.-Mat. 88 (2019), 32-50.
13. O. Gutik and K. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups, Mat. Metody Fiz.-Mekh. Polya 59 (2016), no. 4, 31-43; reprinted version: J. Math. Sci. 238 (2019), no. 1, 32-45. DOI: 10.1007/s10958-019-04216-x
14. O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.
15. O. Gutik and T. Mokrytskyi, The monoid of order isomorphisms between principal filters of \mathbb{N}^{n}, Eur. J. Math. 6 (2020), no. 1, 14-36. DOI: 10.1007/s10958-019-04216-x
16. O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: $10.30970 / \mathrm{vmm} .2020 .90 .005-019$
17. O. V. Gutik and O. B. Popadiuk, On the semigroup of injective endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}_{n}}$ which is generated by the family \mathscr{F}_{n} of finite bounded intervals of ω, Mat. Metody Fiz.-Mekh. Polya 65 (2022), no. 1-2, 42-57.
18. O. Gutik and I. Pozdniakova, On the group of automorphisms of the semigroup $B_{\mathbb{Z}}^{\mathscr{F}}$ with the family \mathscr{F} of inductive nonempty subsets of ω, Algebra Discr. Math. (to appear) (arXiv:2206.12819).
19. O. Gutik and D. Repovš, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: $10.1007 / \mathrm{s} 00233-007-0706-\mathrm{x}$
20. O. Gutik and A. Savchuk, The semigroup of partial co-finite isometries of positive integers, Bukovyn. Mat. Zh. 6 (2018), no.1-2, 42-51 (in Ukrainian). DOI: 10.31861/bmj2018.01.042
21. O. Gutik and A. Savchuk, On the monoid of cofinite partial isometries of \mathbb{N} with the usual metric, Visn. L'viv. Univ., Ser. Mekh.-Mat. 89 (2020) 17-30. DOI: $10.30970 / \mathrm{vmm} .2020 .89 .017-030$
22. J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183
23. M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
24. R. McFadden and L. O'Carroll, F-inverse semigroups, Proc. Lond. Math. Soc., III Ser. 22 (1971), no. 4, 652-666. DOI: $10.1112 / \mathrm{plms} / \mathrm{s} 3-22.4 .652$
25. T. Mokrytskyi, On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of \mathbb{N}^{n} with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 87 (2019), 37-45. DOI: 10.30970/vmm.2019.87.037-045
26. W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Q. J. Math., Oxf. II. Ser. 17 (1966), no. 1, 151-159. DOI: 10.1093/qmath/17.1.151
27. M. Petrich, Inverse semigroups, John Wiley \& Sons, New York, 1984.
28. T. Saitô, Proper ordered inverse semigroups, Pacif. J. Math. 15 (1965), no. 2, 649-666. DOI: 10.2140/pjm.1965.15.649
29. V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).

Статтл: надійшла до редколегії 24.01.2022
доопрацъована 07.05.2022
прийнята до друку 22.06.2022

МОНОЇД ПОРЯДКОВИХ ІЗОМОРФІЗМІВ ГОЛОВНИХ ФІЛЬТРІВ МНОЖИНИ $\sigma \mathbb{N}^{\kappa}$

Тарас МОКРИЦЬКИЙ

Львівсъкий націоналъний університет імені Івана Франка, вул. Університетська, 1, 79000, Лъвів
e-mail: tmokrytskyi@gmail.com

Abstract

Розглянемо таке узагальнення біциклічного моноїда. Для довільного нескінченного кардинала κ розглянемо напівгрупу $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ всіх порядкових ізоморфізмів головних фільтрів множини $\sigma \mathbb{N}^{\kappa}$ з порядком добутку. Ми дослідимо алгебричні властивості напівгрупи $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right)$, доведемо, що вона ϵ біпростою, E-унітарною, F-інверсною напівгрупою, опишемо відношення Гріна на напівгрупі $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$, опишемо групу одиниць H (I) цієї напівгрупи і її максимальні підгрупи. Доведемо, що напівгрупа $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$ ізоморфна напівпрямому добутку $\mathcal{S}_{\kappa} \ltimes \sigma \mathbb{B}^{\kappa}$ напівгрупи $\sigma \mathbb{B}^{\kappa}$ і групи \mathcal{S}_{κ}, доведемо що кожна не тотожна конгруенція \mathfrak{C} на напігрупі $\mathcal{I P F}\left(\sigma \mathbb{N}^{\kappa}\right) є$ груповою; опишемо найменшу групову конгруенцію на $\operatorname{IPF}\left(\sigma \mathbb{N}^{\kappa}\right)$.

Ключові слова: напівгрупа, інверсна напівгрупа, часткове відображення, група перестановок, найменша групова конгруенція, біциклічна напівгрупа, напівпрямий добуток.

[^0]: 2020 Mathematics Subject Classification: 20M18, 20M20
 © Mokrytskyi, T., 2022

