УДК 512.534.5

THE MONOID OF ORDER ISOMORPHISMS BETWEEN PRINCIPAL FILTERS OF $\sigma \mathbb{N}^{\kappa}$

Taras MOKRYTSKYI

Ivan Franko National University of Lviv, Universytetska Str., 1, Lviv, 79000, Ukraine e-mail: tmokrytskyi@gmail.com

Consider the following generalization of the bicyclic monoid. Let κ be any infinite cardinal and let $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ be the semigroup of all order isomorphisms between principal filters of the set $\sigma\mathbb{N}^{\kappa}$ with the product order. We shall study algebraic properties of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, show that it is bisimple, *E*unitary, *F*-inverse semigroup, describe Green's relations on $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, describe the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ and describe its maximal subgroups. We prove that the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is isomorphic to the semidirect product $S_{\kappa} \ltimes \sigma\mathbb{B}^{\kappa}$ of the semigroup $\sigma\mathbb{B}^{\kappa}$ by the group S_{κ} , show that every non-identity congruence \mathfrak{C} on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Key words: Semigroup, inverse semigroup, partial map, permutation group, least group congruence, bicyclic monoid, semidirect product

1 Introduction and preliminaries

In this paper, we shall denote the set of integers by \mathbb{Z} , the set of positive integers by \mathbb{N} , the set of all maps from cardinal κ to the set X by X^{κ} and the symmetric group of degree κ by \mathcal{S}_{κ} , i.e., \mathcal{S}_{κ} is the group of all bijections of the set κ . For set X, by id_X we denote the identity map $id_X \colon X \to X$, $id_X \colon x \mapsto x$ for any $x \in X$. For map $f \colon X \to Y$ and for subset $A \subset X$ we denote $(A) f = \{(x) f \mid x \in X\}$.

Let (X, \leq) be a partially ordered set (a poset). For an arbitrary $x \in X$ we denote

 $\uparrow x = \{ y \in X : x \leqslant y \} \quad \text{and} \quad \downarrow x = \{ y \in X : y \leqslant x \}.$

The sets $\uparrow x$ and $\downarrow x$ are called the *principal filter* and the *principal ideal*, respectively, generated by the element $x \in X$. A map $\alpha \colon (X, \leq) \to (Y, \leq)$ from poset (X, \leq) into a poset (Y, \leq) is called *monotone* or *order preserving* if $x \leq y$ in (X, \leq) implies that

²⁰²⁰ Mathematics Subject Classification: 20M18, 20M20 © Mokrytskyi, T., 2022

 $x\alpha \leq y\alpha$ in (Y, \leq) . A monotone map $\alpha: (X, \leq) \to (Y, \leq)$ is said to be *order isomorphism* if it is bijective and its converse $\alpha^{-1}: (Y, \leq) \to (X, \leq)$ is monotone.

An semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse* of $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication. The semigroup operation on S determines the following partial order \preccurlyeq on E(S): $e \preccurlyeq f$ if and only if ef = fe = e. This order is called the *natural partial order* on E(S). A *semilattice* is a commutative semigroup of idempotents.

If S is a semigroup, then we shall denote the Green relations on S by \mathscr{R} , \mathscr{L} , \mathscr{J} , \mathscr{D} and \mathscr{H} (see [9]). A semigroup S is called *simple* if S does not contain proper two-sided ideals and *bisimple* if S has only one \mathscr{D} -class.

Hereafter we shall assume that λ is an infinite cardinal. If $\alpha \colon \lambda \to \lambda$ is a partial map, then we shall denote the domain and the range of α by dom α and ran α , respectively.

Let \mathscr{I}_{λ} be the set of all partial one-to-one transformations of a cardinal λ together with the following semigroup operation:

 $x(\alpha\beta) = (x\alpha)\beta$ if $x \in \operatorname{dom}(\alpha\beta) = \{y \in \operatorname{dom}\alpha \mid y\alpha \in \operatorname{dom}\beta\}$, for $\alpha, \beta \in \mathscr{I}_{\lambda}$.

The semigroup \mathscr{I}_{λ} is called the *symmetric inverse semigroup* over the cardinal λ (see [9, Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [29] and it plays a major role in the theory of semigroups.

The bicyclic semigroup (or the bicyclic monoid) $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by elements p and q subject only to the condition pq = 1.

The bicyclic semigroup plays an important role in the algebraic theory of semigroups and the theory of topological semigroups. For instance, a well-known Andersen's result [1] states that a (0-)simple semigroup with an idempotent is completely (0-)simple if and only if it does not contain an isomorphic copy of the bicyclic semigroup.

The bicyclic monoid admits only the discrete semigroup topology. Bertman and West in [7] extended this result for the case of semitopological semigroups. Stable and Γ -compact topological semigroups do not contain the bicyclic monoid [2, 22]. The problem of an embedding of the bicyclic monoid into compact-like topological semigroups was studied in [3, 4, 19]. The study of various generalizations of the bicyclic monoid, their algebraic and topological properties, like topological semigroups was conducted in several publications, including [5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 25, 18].

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup $\mathscr{C}_{\mathbb{N}}(\alpha,\beta)$ which is generated by partial transformations α and β of the set of positive integers \mathbb{N} , defined as follows: $(n) \alpha = n + 1$ if $n \ge 1$ and $(n) \beta = n - 1$ if n > 1 (see Exercise IV.1.11(*ii*) in [27]).

Taking into account this remark, we shall consider the following generalization of the bicyclic semigroup. For an arbitrary positive integer $n \ge 2$ by $(\mathbb{N}^n, \leqslant)$ we denote the *n*-th power of the set of positive integers \mathbb{N} with the product order:

$$(x_1, \ldots, x_n) \leqslant (y_1, \ldots, y_n)$$
 if and only if $x_i \leqslant y_i$ for all $i = 1, \ldots, n$

It is obvious that the set of all order isomorphisms between principal filters of the poset (\mathbb{N}^n, \leq) with the operation of the composition of partial maps forms a semigroup. Denote this semigroup by $\mathcal{IPF}(\mathbb{N}^n)$. The structure of the semigroup $\mathcal{IPF}(\mathbb{N}^n)$ was introduced and studied in [15]. There was shown that $\mathcal{IPF}(\mathbb{N}^n)$ is a bisimple, *E*-unitary, *F*-inverse monoid, described Green's relations on $\mathcal{IPF}(\mathbb{N}^n)$ and its maximal subgroups. It was proved that $\mathcal{IPF}(\mathbb{N}^n)$ is isomorphic to the semidirect product of the direct *n*-th power of the bicyclic monoid $\mathscr{C}^n(p,q)$ by the group of permutation \mathcal{S}_n , every non-identity congruence on $\mathcal{IPF}(\mathbb{N}^n)$ is group and was described the least group congruence on $\mathcal{IPF}(\mathbb{N}^n)$. It was shown that every shift-continuous topology on $\mathcal{IPF}(\mathbb{N}^n)$ is discrete and discussed embedding of the semigroup $\mathcal{IPF}(\mathbb{N}^n)$ into compact-like topological semigroup $\mathcal{IPF}(\mathbb{N}^n)$ with an adjoined zero is either compact or discrete. In this paper we shall extend this generalization from \mathbb{N}^n to $\sigma\mathbb{N}^{\kappa}$ for any infinite cardinal κ .

For any infinite cardinal κ consider the subset $\sigma \mathbb{N}^{\kappa}$ of \mathbb{N}^{κ} which contains all maps a such that the set $\{x \in \kappa \mid (x) \ a \neq 1\}$ is finite, i.e.,

$$\sigma \mathbb{N}^{\kappa} = \{ a \in \mathbb{N}^{\kappa} \mid \{ x \in \kappa \mid (x) \ a \neq 1 \} \text{ is finite } \}.$$

Similarly define $\sigma \mathbb{Z}^{\kappa}$ as the subset of \mathbb{Z}^{κ} which contains all maps a such that the set $\{x \in \kappa \mid (x) \ a \neq 0\}$ is finite.

By **1** we shall denote the element of the \mathbb{N}^{κ} such that (x) **1** = 1 for any $x \in \kappa$. On the set \mathbb{Z}^{κ} consider the product order \leq :

 $a \leq b$ if and only if $(x) a \leq (x) b$ for all $x \in \kappa$.

Also, consider the pointwise operations $+, -, \max$ and min on the set \mathbb{Z}^{κ} . For any $a, b \in \mathbb{Z}^{\kappa}$ define

$$(x) (a + b) = (x) a + (x) b,$$

$$(x) (a - b) = (x) a - (x) b,$$

$$(x) (\max\{a, b\}) = \max\{(x) a, (x) b\}$$

$$(x) (\min\{a, b\}) = \min\{(x) a, (x) b\}$$

for any $x \in \kappa$. It is obvious that the set $\sigma \mathbb{Z}^{\kappa}$ is closed under these operations. The set $\sigma \mathbb{N}^{\kappa}$ is also closed under the operation max and min but not for + and -. Moreover

$$a+b, a-b \notin \sigma \mathbb{N}^{\kappa}$$
 for any $a, b \in \sigma \mathbb{N}^{\kappa}$.

But

$$a+b-1 \in \sigma \mathbb{N}^{\kappa}$$
 for any $a, b \in \sigma \mathbb{N}^{\kappa}$,

and

$$a-b+1 \in \sigma \mathbb{N}^{\kappa}$$
 for any $a \in \sigma \mathbb{N}^{\kappa}$ and $b \in \downarrow a$.

Let κ by any infinite cardinal. Define the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ as the set of all order isomorphisms between principal filters of the poset $(\sigma\mathbb{N}^{\kappa},\leqslant)$ with the operation of the composition of partial maps, i.e.,

 $\mathcal{IPF}\left(\sigma\mathbb{N}^{\kappa}\right) = \left(\left\{\alpha \colon \uparrow a \to \uparrow b \mid a, b \in \sigma\mathbb{N}^{\kappa} \text{ and } \alpha \text{ is an order isomorphism}\right\}, \circ\right).$

Consider the following notation. For any $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ by d_{α} and r_{α} we denote the elements of $\sigma \mathbb{N}^{\kappa}$ such that dom $\alpha = \uparrow d_{\alpha}$ and ran $\alpha = \uparrow r_{\alpha}$ Also we define the maps $\lambda_{\alpha}, \rho_{\alpha} \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ in the following way:

dom
$$\rho_{\alpha} = \operatorname{dom} \alpha = \uparrow d_{\alpha}$$
, ran $\rho_{\alpha} = \sigma \mathbb{N}^{\kappa}$, (a) $\rho_{\alpha} = a - d_{\alpha} + \mathbf{1}$ for $a \in \operatorname{dom} \rho_{\alpha}$;
ran $\lambda_{\alpha} = \operatorname{ran} \alpha = \uparrow r_{\alpha}$, dom $\lambda_{\alpha} = \sigma \mathbb{N}^{\kappa}$, (a) $\lambda_{\alpha} = a + r_{\alpha} - \mathbf{1}$ for $a \in \operatorname{dom} \lambda_{\alpha}$.

Since $a + r_{\alpha} - \mathbf{1} \in \sigma \mathbb{N}^{\kappa}$ for any $a \in \operatorname{dom} \lambda_{\alpha}$ we have that λ_{α} is well-defined. Similarly, $a - d_{\alpha} + \mathbf{1} \in \sigma \mathbb{N}^{\kappa}$ for any $a \in \operatorname{dom} \rho_{\alpha}$, so ρ_{α} is well-defined too. We note that the definition of $\lambda_{\alpha}, \rho_{\alpha}$ implies that $\lambda_{\lambda_{\alpha}} = \lambda_{\alpha}$ and $\rho_{\rho_{\alpha}} = \rho_{\alpha}$.

For any infinite cardinal κ and for any bijection $g \in S_{\kappa}$ define the selfmap $\mathcal{F}_g \colon \mathbb{Z}^{\kappa} \to \mathbb{Z}^{\kappa}$ by formula:

$$(x)(a)\mathcal{F}_g = ((x)g^{-1})a, \ a \in \mathbb{Z}^{\kappa}, \ x \in \kappa$$

2. Algebraic properties of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$

Proposition 1. For any infinite cardinal κ the following statements hold:

- (i) $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ is an inverse semigroup;
- (ii) the semilattice $E(\mathcal{IPF}(\sigma\mathbb{N}^{\kappa}))$ is isomorphic to the semilattice $(\sigma\mathbb{N}^{\kappa}, \max)$ by the mapping $\varepsilon \mapsto d_{\varepsilon}$;
- (*iii*) $\alpha \mathscr{L}\beta$ in $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ if and only if dom $\alpha = \operatorname{dom}\beta$;
- (iv) $\alpha \mathscr{R} \beta$ in $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ if and only if $\operatorname{ran} \alpha = \operatorname{ran} \beta$;
- (v) $\alpha \mathscr{H}\beta$ in $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ if and only if dom $\alpha = \operatorname{dom}\beta$ and $\operatorname{ran}\alpha = \operatorname{ran}\beta$;
- (vi) for any idempotents $\varepsilon, \iota \in IPF(\sigma\mathbb{N}^{\kappa})$ there exist elements $\alpha, \beta \in IPF(\sigma\mathbb{N}^{\kappa})$ such that $\alpha\beta = \varepsilon$ and $\beta\alpha = \iota$, hence $IPF(\sigma\mathbb{N}^{\kappa})$ is bisimple which implies that it is simple.

Proof. (i) The definition of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ implies that $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is an inverse subsemigroup of the symmetric inverse monoid $\mathcal{I}_{\sigma\mathbb{N}^{\kappa}}$ over the set $\sigma\mathbb{N}^{\kappa}$.

- (ii) implies from statement (i).
- (iii)-(v) follow from statement (i) and Proposition 3.2.11(1)-(3) of [23].

(vi) Fix arbitrary idempotents $\varepsilon, \iota \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. Define a partial map $\alpha : \sigma \mathbb{N}^{\kappa} \rightharpoonup \sigma \mathbb{N}^{\kappa}$ in the following way:

dom $\alpha = \operatorname{dom} \varepsilon$, ran $\alpha = \operatorname{dom} \iota$ and $(z) \alpha = z - d_{\varepsilon} + d_{\iota}$, for any $z \in \operatorname{dom} \alpha$. Since $\varepsilon, \iota \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$, the partial map α is well-defined and $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. Then $\alpha \alpha^{-1} = \varepsilon$ and $\alpha^{-1} \alpha = \iota$ and hence we put $\beta = \alpha^{-1}$. Lemma 1.1 from [26] implies that $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ is bisimple and hence simple.

For any positive integer $k \ge 2$ and for any $x \in \kappa$, consider the map $k_x \colon \kappa \to \mathbb{N}$ defined by

(t)
$$k_x = \begin{cases} k, & \text{if } t = x, \\ 1, & \text{otherwise.} \end{cases}$$

Lemma 1. For any infinite cardinal κ and for any bijection $g \in S_{\kappa}$, the following statements hold:

(i) The selfmap \mathcal{F}_g is an order automorphism of the poset $(\mathbb{Z}^{\kappa}, \leq)$, and $(\mathcal{F}_g)^{-1} = \mathcal{F}_{q^{-1}}$.

$$(ii) \ (\sigma \mathbb{N}^{\kappa}) \mathcal{F}_g = \sigma \mathbb{N}^{\kappa}$$

(*iii*)
$$(\sigma \mathbb{Z}^{\kappa}) \mathcal{F}_{g} = \sigma \mathbb{Z}^{\kappa}$$

- (iv) $\mathcal{F}_{gh} = \mathcal{F}_g \mathcal{F}_h$ for any $h \in \mathcal{S}_{\kappa}$.
- (v) For any $k \in \mathbb{N}$ and for any $x \in \kappa$: $(k_x) \mathcal{F}_q = k_{(x)q}$.
- $(vi) (1) \mathcal{F}_g = 1.$
- (vii) For any $h \in S_{\kappa}$: $g \neq h \implies \mathcal{F}_g \neq \mathcal{F}_h$.
- $\begin{array}{l} (viii) \quad \textit{For any } a, b \in \mathbb{Z}^{\kappa} \colon (a+b) \ \mathcal{F}_g = (a) \ \mathcal{F}_g + (b) \ \mathcal{F}_g. \\ (ix) \quad \textit{For any } a, b \in \mathbb{Z}^{\kappa} \colon (a-b) \ \mathcal{F}_g = (a) \ \mathcal{F}_g (b) \ \mathcal{F}_g. \end{array}$
 - (x) For any $a, b \in \mathbb{Z}^{\kappa}$: $(\max\{a, b\}) \mathcal{F}_g = \max\{(a) \mathcal{F}_g, (b) \mathcal{F}_g\}.$ (xi) For any $a, b \in \mathbb{Z}^{\kappa}$: $(\min\{a, b\}) \mathcal{F}_g = \min\{(a) \mathcal{F}_g, (b) \mathcal{F}_g\}.$

Proof. (i) Show that \mathcal{F}_g is an order isomorphism. Fix distinct $a, b \in \mathbb{Z}^{\kappa}$. Then there exists $x \in \kappa$ such that $(x) a \neq (x) b$. For y = (x) g, we have that $x = (y) g^{-1}$, then $((y) g^{-1}) a \neq ((y) g^{-1}) b$ implies that $(a) \mathcal{F}_g \neq (b) \mathcal{F}_g$, so \mathcal{F}_g is injective. For any $a \in \mathbb{Z}^{\kappa}$, consider the map b: (x) b = ((x) g) a for any $x \in \kappa$, then

$$(x) (b) \mathcal{F}_{g} = ((x) g^{-1}) b = (((x) g^{-1}) g) a = (x) a$$

for any $x \in \kappa$, so \mathcal{F}_g is surjective and moreover its converse $(\mathcal{F}_g)^{-1}$ is equals to the $\mathcal{F}_{q^{-1}}$.

Let $a, b \in \mathbb{Z}^{\kappa}$ and $a \leq b$. For any $x \in \kappa$ we have that $(x)g^{-1}a \leq (x)g^{-1}b$ which implies that $(x)(a) \mathcal{F}_g \leq (x)(b) \mathcal{F}_g$, i.e., $(a) \mathcal{F}_g \leq (b) \mathcal{F}_g$, so \mathcal{F}_g is monotone and such is \mathcal{F}_g^{-1} , therefore \mathcal{F}_g is an order isomorphism.

(*ii*) Fix an element $a \in \sigma \mathbb{N}^{\kappa}$. Since $(x)(a) \mathcal{F}_g = (x) g^{-1} a \in \mathbb{N}$ for any $x \in \kappa$ we have that (a) $\mathcal{F}_q \in \mathbb{N}^{\kappa}$. Consider the set $A = \{x \in \kappa \mid (x) \mid a \neq 1\}$ and suppose that $(x)(a) \mathcal{F}_g \neq 1$ for some $x \in \kappa$, then $((x)g^{-1})a \neq 1$ and therefore $(x)g^{-1} \in A$, so $x \in (A) g$. Since the set A is finite and g is a bijection, we have that the set (A) g is finite as well. So $(a) \mathcal{F}_g \in \sigma \mathbb{N}^{\kappa}$, therefore $(\sigma \mathbb{N}^{\kappa}) \mathcal{F}_g \subset \sigma \mathbb{N}^{\kappa}$. By proved above, we have that (a) $\mathcal{F}_{g^{-1}} \in \sigma \mathbb{N}^{\kappa}$, then $((a) \mathcal{F}_{g^{-1}}) \mathcal{F}_g = a$ implies that $\sigma \mathbb{N}^{\kappa} \subset (\sigma \mathbb{N}^{\kappa}) \mathcal{F}_g$.

(iii) The proof is similar to the proof of (ii).

(iv) For any $h \in \mathcal{S}_{\kappa}$, $a \in \mathbb{Z}^{\kappa}$ and $x \in \kappa$ we have that

$$(x) (a) \mathcal{F}_{gh} = ((x) (gh)^{-1}) a =$$

= $((x) (h^{-1}g^{-1})) a =$
= $(((x) h^{-1}) g^{-1}) a =$
= $((x) h^{-1}) (a) \mathcal{F}_{g} =$
= $(x) ((a) \mathcal{F}_{g}) \mathcal{F}_{h} =$
= $(x) (a) (\mathcal{F}_{g} \mathcal{F}_{h}).$

(v) Let $k \in \mathbb{N}$ and $x \in \kappa$. Then for any $t \in \kappa$ we have that

$$(t) (k_x) \mathcal{F}_g = ((t) g^{-1}) k_x =$$

$$= \begin{cases} k, & \text{if } (t) g^{-1} = x \\ 1, & \text{otherwise} \end{cases} =$$

$$= \begin{cases} k, & \text{if } t = (x) g \\ 1, & \text{otherwise} \end{cases} =$$

$$= (t) k_{(x)g}.$$

18

(vi) For any $t \in \kappa$ we have that (t) (1) $\mathcal{F}_g = ((t) g^{-1}) \mathbf{1} = 1$.

(vii) Let $h \in S_{\kappa}$ and $g \neq h$. Then there exists $x \in \kappa$ such that $(x) g^{-1} \neq (x) h^{-1}$. Consider the image of $2_{(x)g^{-1}}$ under the maps \mathcal{F}_g and \mathcal{F}_h . Statement (v) and the inequality $(x) g^{-1} \neq (x) h^{-1}$ imply that:

$$(2_{(x)q^{-1}}) \mathcal{F}_q = 2_x \neq 2_{((x)q^{-1})h} = (2_{(x)q^{-1}}) \mathcal{F}_h.$$

(viii) For any $a, b \in \mathbb{Z}^{\kappa}$ and for any $x \in \kappa$ we have that

$$x) (a + b) \mathcal{F}_{g} = ((x) g^{-1}) (a + b) = = ((x) g^{-1}) a + ((x) g^{-1}) b = = (x) (a) \mathcal{F}_{g} + (x) (b) \mathcal{F}_{g}.$$

Proof of statements (ix) and (xi) are similar to the proof of (viii).

For any infinite cardinal κ and for any bijection $g \in S_{\kappa}$ define the map $\mathcal{F}_{g}^{\circ} : \sigma \mathbb{N}^{\kappa} \to \sigma \mathbb{N}^{\kappa}$ as the restriction of the map \mathcal{F}_{g} to the set $\sigma \mathbb{N}^{\kappa}$. By statement (*ii*) of Lemma 1, the map \mathcal{F}_{g}° is well-defined and \mathcal{F}_{g}° is a bijection. This and statement (*i*) of Lemma 1 imply that the map \mathcal{F}_{g}° is an order isomorphism of the poset ($\sigma \mathbb{N}^{\kappa}, \leq$). Similarly, define the map $\mathcal{F}_{g}^{\circ} : \sigma \mathbb{Z}^{\kappa} \to \sigma \mathbb{Z}^{\kappa}$ as the restriction of the map \mathcal{F}_{g} is well-defined and \mathcal{F}_{g}° is a bijection.

The proof to the next lemma is similar to the proof of Lemma 1.

Lemma 2. For any infinite cardinal κ and for any bijection $g \in S_{\kappa}$ statements (iv) - (xi) of Lemma 1 also hold for \mathcal{F}_{q}° and \mathcal{F}_{q}° .

We shall denote by \mathbb{I} the identity map of $\sigma \mathbb{N}^{\kappa}$. It is obvious that \mathbb{I} is the unit element of the semigroup $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. Also by $H(\mathbb{I})$ we shall denote the group of units of $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. It is clear that $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ is an element of $H(\mathbb{I})$ if and only if it is an order isomorphism of the poset $(\sigma \mathbb{N}^{\kappa}, \leq)$.

Lemma 3. Let κ be any infinite cardinal and $\alpha \in H(\mathbb{I})$. Then $(1)\alpha = 1$ and for any $x \in \kappa$ there exists $y \in \kappa$ such that $(k_x)\alpha = k_y$ for any positive integer $k \ge 2$.

Proof. Consider (1) α . Statement $\mathbf{1} \leq (\mathbf{1}) \alpha$ implies that (1) $\alpha^{-1} \leq ((\mathbf{1}) \alpha) \alpha^{-1} = \mathbf{1}$, so (1) $\alpha = \mathbf{1}$.

Now, consider any $x \in \kappa$ and consider $(2_x) \alpha$. Since $\mathbf{1} = (\mathbf{1}) \alpha \neq (2_x) \alpha$, there exists $y \in \kappa$ such that $2_y \leq (2_x) \alpha$, and the inequality $(2_y) \alpha^{-1} \leq 2_x$ implies that $(2_x) \alpha = 2_y$.

Let $k \ge 2$ be a positive integer, suppose that for any positive integer $n \le k$ the statement of the lemma holds.

For any $x \in \kappa$ consider the image $((k+1)_x)\alpha$. There exists $z \in \kappa$ such that $(k+1)_z \leq ((k+1)_x)\alpha$. Suppose the contrary that $(k+1)_z \leq ((k+1)_x)\alpha$ for any $z \in \kappa$. Since

$$((k+1)_x) \alpha \notin \{\mathbf{1}, 2_z, 3_z, \dots, k_z \mid z \in \kappa\},\$$

there exist two distinct elements $z_1, z_2 \in \kappa$ such that

$$<(z_1)((k+1)_x)\alpha < k+1$$
 and $1 < (z_2)((k+1)_x)\alpha < k+1$.

Hence we have that

1

$$2_{z_1} \leqslant \left((k+1)_x \right) \alpha \quad \text{and} \quad 2_{z_2} \leqslant \left((k+1)_x \right) \alpha,$$

and then

$$(z_{1}) \alpha^{-1} \leq (k+1)_{r}$$
 and $(2_{z_{2}}) \alpha^{-1} \leq (k+1)_{r}$.

Since $(2_{z_1}) \alpha^{-1} = 2_{z'_1}$ and $(2_{z_2}) \alpha^{-1} = 2_{z'_2}$ for some z'_1, z'_2 we have that $z'_1 = z'_2$. Then $2_{z_1} = 2_{z_2}$ and hence $z_1 = z_2$, which contradicts $z_1 \neq z_2$. Thus, $((k+1)_z) \alpha^{-1} \leq (k+1)_x$. Since $((k+1)_z) \alpha^{-1} \notin \{1, 2_x, 3_x, \dots, k_x\}$, we have that $((k+1)_z) \alpha^{-1} = (k+1)_x$, and hence $((k+1)_x) \alpha = (k+1)_z$. We shall prove that x = y. The relation $2_x < (k+1)_x$ implies that $(2_x) \alpha < ((k+1)_x) \alpha$. Since $(2_x) \alpha = 2_y$ and $((k+1)_x) \alpha = (k+1)_z$ we have that $2_y < (k+1)_z$, so z = y.

For any $x \in \kappa$, consider the map $\pi_x : \sigma \mathbb{N}^{\kappa} \to \sigma \mathbb{N}^{\kappa}$ defined by the formula:

(t) (a)
$$\pi_x = \begin{cases} (t) a, & \text{if } t = x; \\ 1, & \text{otherwise,} \end{cases}$$

for any $a \in \sigma \mathbb{N}^{\kappa}$ and $t \in \kappa$.

(2)

Lemma 4. Let κ be any infinite cardinal and $\alpha \in H(\mathbb{I})$ such that the equality $(2_x) \alpha = 2_x$ holds for any $x \in \kappa$. Then α is the identity map.

Proof. Let $a \in \sigma \mathbb{N}^{\kappa}$. Since the inequality $(a) \pi_x \leq a$ holds for any $x \in \kappa$ and α is an order isomorphism, it follows that $((a) \pi_x) \alpha \leq (a) \alpha$. By Lemma 3 and by the lemma assumption we have that $((a) \pi_x) \alpha = (a) \pi_x$, so $(a) \pi_x \leq (a) \alpha$ for any $x \in \kappa$ and therefore $a \leq (a) \alpha$.

So, we have that $a \leq (a) \alpha$ for any $a \in \sigma \mathbb{N}^{\kappa}$ and for any α that satisfies the lemma assumption. Applying this result to the element $(a) \alpha$ and the map α^{-1} we have that $(a) \alpha \leq ((a) \alpha) \alpha^{-1} = a$.

The inequalities $a \leq (a) \alpha$ and $(a) \alpha \leq a$ imply that $(a) \alpha = a$.

Theorem 1. For any infinite cardinal κ , the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is isomorphic to the group \mathcal{S}_{κ} of all bijections of the cardinal κ . Moreover $\alpha \in H(\mathbb{I})$ if and only if $\alpha = \mathcal{F}_{q}^{\circ}$ for some $g \in \mathcal{S}_{\kappa}$.

Proof. Define the map $\mathcal{F}: \mathcal{S}_{\kappa} \to H(\mathbb{I})$ in the following way:

$$\forall g \in \mathcal{S}_{\kappa} \quad (g) \,\mathcal{F} = \mathcal{F}_{q}^{\circ},$$

Since \mathcal{F}_g° is an order automorphism of the poset $(\sigma \mathbb{N}^{\kappa}, \leq)$ we have that the map \mathcal{F}_g° is an element of the group of units $H(\mathbb{I})$, so \mathcal{F} is well-defined. Next, we shall show that the map \mathcal{F} is an isomorphism.

Statement (iv) of Lemma 1 implies that the map \mathcal{F} is a homomorphism and statement (vii) of Lemma 1 implies that \mathcal{F} is injective.

We shall show that \mathcal{F} is surjective. Let $\alpha \in H(\mathbb{I})$. Lemma 3 implies that for any $x \in \kappa$ there exists $y \in \kappa$ such that $(2_x)\alpha = 2_y$. We define the map $g \colon \kappa \to \kappa$ in the following way: (x)g = y. Since α is a bijection so is g.

Now consider the composition $\alpha \circ \mathcal{F}_{g^{-1}}^{\circ}$. Let $x \in \kappa$. The definition of the map g implies that

$$(2_x)\left(\alpha \circ \mathcal{F}_{g^{-1}}^{\circ}\right) = \left(2_{(x)g}\right)\mathcal{F}_{g^{-1}}^{\circ}$$

and statement (v) of Lemma 1 implies that $(2_{(x)g}) \mathcal{F}_{g^{-1}}^{\circ} = 2_x$, so $(2_x) \left(\alpha \circ \mathcal{F}_{g^{-1}}^{\circ} \right) = 2_x$. By Lemma 4, $\alpha \circ \mathcal{F}_{g^{-1}}^{\circ}$ is identity map, therefore $\alpha = \left(\mathcal{F}_{g^{-1}}^{\circ}\right)^{-1} = \mathcal{F}_{g}^{\circ}$. \square

Theorems 2.3 and 2.20 from [9] and Theorem 1 imply the following corollary.

Corollary 1. For any infinite cardinal κ every maximal subgroup of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is isomorphic to the group \mathcal{S}_{κ} of all bijections of the cardinal κ .

Proposition 2. For any infinite cardinal κ and for any $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ there exists a unique bijection $g_{\alpha} \in \mathcal{S}_{\kappa}$ such that $\alpha = \rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha}$.

Proof. Let $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. For the element $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}$ we have that

$$\rho_{\alpha}\rho_{\alpha}^{-1}\alpha\lambda_{\alpha}^{-1}\lambda_{\alpha}=\varepsilon\alpha\iota,$$

where ε and ι are idempotents with dom $\varepsilon = \operatorname{dom} \alpha$ and dom $\iota = \operatorname{ran} \alpha$, so $\varepsilon \alpha \iota = \alpha$. Since

dom
$$\left(\rho_{\alpha}^{-1}\alpha\lambda_{\alpha}^{-1}\right) = \operatorname{ran}\left(\rho_{\alpha}^{-1}\alpha\lambda_{\alpha}^{-1}\right) = \sigma\mathbb{N}^{\kappa}$$

we have that $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1} \in H(\mathbb{I})$. By Theorem 1, for $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1}$ there exists a bijection $g_{\alpha} \in S_{\kappa}$ such that $\rho_{\alpha}^{-1} \alpha \lambda_{\alpha}^{-1} = \mathcal{F}_{g_{\alpha}}^{\circ}$. Suppose that there exists $h \in S_{\kappa}$ such that $\alpha = \rho_{\alpha} \mathcal{F}_{h}^{\circ} \lambda_{\alpha}$. Then the equality

$$\rho_{\alpha}\mathcal{F}_{h}^{\circ}\lambda_{\alpha}=\rho_{\alpha}\mathcal{F}_{g_{\alpha}}^{\circ}\lambda_{\alpha}$$

implies that

$$\left(\rho_{\alpha}^{-1}\rho_{\alpha}\right)\mathcal{F}_{h}^{\circ}\left(\lambda_{\alpha}\lambda_{\alpha}^{-1}\right)=\left(\rho_{\alpha}^{-1}\rho_{\alpha}\right)\mathcal{F}_{g_{\alpha}}^{\circ}\left(\lambda_{\alpha}\lambda_{\alpha}^{-1}\right).$$

The definition of $\lambda_{\alpha}, \rho_{\alpha}$ implies that

$$\rho_{\alpha}^{-1}\rho_{\alpha} = \lambda_{\alpha}\lambda_{\alpha}^{-1} = \mathbb{I},$$

so $\mathcal{F}_h^{\circ} = \mathcal{F}_{g_{\alpha}}^{\circ}$. Statement (v) of Lemma 1 implies that $h = g_{\alpha}$.

The following corollary states that every order isomorphism α in the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ can be uniquely represented as a composition of three basic transformations: shifting to the origin of coordinates, an order isomorphism of entire $\sigma \mathbb{N}^{\kappa}$, and then shifting to the range of α .

Corollary 2. For any infinite cardinal κ and for any element $\alpha \in IPF(\sigma\mathbb{N}^{\kappa})$ the representation $\alpha = \rho_{\alpha} \mathcal{F}_{q_{\alpha}}^{\circ} \lambda_{\alpha}$ is unique.

For any $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ we shall use this notation g_{α} to denote the element of S_{κ} that implements this representation $\alpha = \rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha}$.

Lemma 5. Let κ be any infinite cardinal and $\alpha, \beta \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$, then

$$d_{\alpha\beta} = (\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha}) \mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha};$$

$$r_{\alpha\beta} = (\max\{r_{\alpha}, d_{\beta}\} - d_{\beta}) \mathcal{F}_{g_{\beta}} + r_{\beta};$$

$$\mathcal{F}_{g_{\alpha\beta}}^{\circ} = \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ}.$$

Proof. By the definition of the composition of the partial maps:

$$dom (\alpha\beta) = (ran \alpha \cap dom \beta) \alpha^{-1} =$$
$$= (\uparrow r_{\alpha} \cap \uparrow d_{\beta}) \alpha^{-1} =$$
$$= (\uparrow max\{r_{\alpha}, d_{\beta}\}) \alpha^{-1}.$$

Since α is an order isomorphism we get that

$$(\uparrow \max\{r_{\alpha}, d_{\beta}\})\alpha^{-1} = \uparrow [(\max\{r_{\alpha}, d_{\beta}\})\alpha^{-1}],$$

and then, by Corollary 2 and by Lemma $\mathbf{1}[(vi)\,,(viii)],$

$$dom (\alpha\beta) = \uparrow \left[(\max\{r_{\alpha}, d_{\beta}\})\alpha^{-1} \right] =$$

$$= \uparrow \left(\left[\max\{r_{\alpha}, d_{\beta}\} \right] \lambda_{\alpha}^{-1} \left(\mathcal{F}_{g_{\alpha}}^{\circ} \right)^{-1} \rho_{\alpha}^{-1} \right) =$$

$$= \uparrow \left(\left[\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha} + \mathbf{1} \right] \left(\mathcal{F}_{g_{\alpha}}^{\circ} \right)^{-1} \rho_{\alpha}^{-1} \right) =$$

$$= \uparrow \left(\left[(\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha}) \mathcal{F}_{g_{\alpha}}^{-1} + \mathbf{1} \right] \rho_{\alpha}^{-1} \right) =$$

$$= \uparrow \left[(\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha}) \mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha} \right].$$

Similarly, by the definition of the range of the composition of the partial maps:

$$\operatorname{ran} (\alpha \beta) = (\operatorname{ran} \alpha \cap \operatorname{dom} \beta) \beta =$$
$$= (\uparrow r_{\alpha} \cap \uparrow d_{\beta}) \beta =$$
$$= (\uparrow \max\{r_{\alpha}, d_{\beta}\}) \beta.$$

Since β is an order isomorphism we get that

$$(\uparrow \max\{r_{\alpha}, d_{\beta}\})\beta = \uparrow [(\max\{r_{\alpha}, d_{\beta}\})\beta],$$

and then, by Corollary 2 and by Lemma 1[(vi), (viii)],

$$\operatorname{ran}(\alpha\beta) = \uparrow [(\max\{r_{\alpha}, d_{\beta}\})\beta] =$$

= $\uparrow \left([\max\{r_{\alpha}, d_{\beta}\}] \lambda_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \rho_{\beta} \right) =$
= $\uparrow \left([\max\{r_{\alpha}, d_{\beta}\} - d_{\beta} + \mathbf{1}] \mathcal{F}_{g_{\beta}}^{\circ} \rho_{\beta} \right) =$
= $\uparrow \left([(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta}) \mathcal{F}_{g_{\beta}} + \mathbf{1}] \rho_{\beta} \right) =$
= $\uparrow [(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta}) \mathcal{F}_{g_{\beta}} + r_{\beta}].$

We shall prove that

$$\alpha\beta = \rho_{\alpha\beta}\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}\lambda_{\alpha\beta}.$$

The definition of the maps $\rho_{\alpha\beta}$, $\mathcal{F}^{\circ}_{g_{\alpha}}$, $\mathcal{F}^{\circ}_{g_{\beta}}$, $\lambda_{\alpha\beta}$ and the definition of the composition of the partial maps imply that

$$\operatorname{dom}\left(\rho_{\alpha\beta}\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}\lambda_{\alpha\beta}\right) = \operatorname{dom}\left(\alpha\beta\right)$$

 and

$$\operatorname{ran}\left(\rho_{\alpha\beta}\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}\lambda_{\alpha\beta}\right)=\operatorname{ran}\left(\alpha\beta\right).$$

Now consider any $a \in \text{dom}(\alpha\beta)$ and the representation $a = d_{\alpha\beta} + a - d_{\alpha\beta}$. Denote $a - d_{\alpha\beta}$ by b, then a has the representation $a = d_{\alpha\beta} + b$. And consider the images of a under the maps $\alpha\beta$ and $\rho_{\alpha\beta}\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}\lambda_{\alpha\beta}$:

$$a) \alpha\beta = (d_{\alpha\beta} + b) \alpha\beta =$$

$$= \left(\left[\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha} \right] \mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha} + b \right) \alpha\beta =$$

$$= \left(\left[\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha} \right] \mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha} + b \right) \rho_{\alpha} \mathcal{F}_{g_{\alpha}}^{\circ} \lambda_{\alpha} \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta} =$$

$$= \left(\left[\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha} + \mathbf{1} + (b) \mathcal{F}_{g_{\alpha}} \right) \lambda_{\alpha} \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta} =$$

$$= \left(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta} + \mathbf{1} + (b) \mathcal{F}_{g_{\alpha}} \right) \lambda_{\alpha} \rho_{\beta} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta} =$$

$$= \left(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta} + \mathbf{1} + (b) \mathcal{F}_{g_{\alpha}} \right) \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\beta} =$$

$$= \left(\left[\max\{r_{\alpha}, d_{\beta}\} - d_{\beta} \right] \mathcal{F}_{g_{\beta}} + \mathbf{1} + (b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} \right) \lambda_{\beta} =$$

$$= \left[\max\{r_{\alpha}, d_{\beta}\} - d_{\beta} \right] \mathcal{F}_{g_{\beta}} + (b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} + r_{\beta} =$$

$$= r_{\alpha\beta} + (b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}}$$

$$(a) \rho_{\alpha\beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha\beta} = \left(d_{\alpha\beta} + b \right) \rho_{\alpha\beta} \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ} \lambda_{\alpha\beta} =$$

$$= \left((b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} + \mathbf{1} \right) \lambda_{\alpha\beta} =$$

$$= \left((b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} + \mathbf{1} \right) \lambda_{\alpha\beta} =$$

$$= \left((b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} + \mathbf{1} \right) \lambda_{\alpha\beta} =$$

$$= \left((b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} + \mathbf{1} \right) \lambda_{\alpha\beta} =$$

$$= \left((b) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} + \mathbf{1} \right) \lambda_{\alpha\beta} =$$

We have that $\alpha\beta = \rho_{\alpha\beta}\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}\lambda_{\alpha\beta}$, so by Corollary 2 $\mathcal{F}_{g_{\alpha\beta}}^{\circ} = \mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}$.

Corollary 3. For any infinite cardinal κ and for any elements $\alpha, \beta \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ the bijection $g_{\alpha\beta}$ is equals to $g_{\alpha}g_{\beta}$.

Corollary 4. Let κ be any infinite cardinal and ε be the idempotent of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, then $g_{\varepsilon} = id_{\kappa}$, $\mathcal{F}_{g_{\varepsilon}}^{\circ} = \mathbb{I}$.

Remark 2. In the bicyclic semigroup $\mathscr{C}(p,q)$ the semigroup operation is determined in the following way:

$$p^{i}q^{j} \cdot p^{k}q^{l} = \begin{cases} p^{i}q^{j-k+l}, & \text{if } j > k; \\ p^{i}q^{l}, & \text{if } j = k; \\ p^{i-j+k}q^{l}, & \text{if } j < k, \end{cases}$$

which is equivalent to the following formula:

$$p^{i}q^{j} \cdot p^{k}q^{l} = p^{i+\max\{j,k\}-j}q^{l+\max\{j,k\}-k}.$$

We note that the bicyclic semigroup $\mathscr{C}(p,q)$ is isomorphic to the semigroup $(\mathbb{N} \times \mathbb{N}, *)$ which is defined on the square $\mathbb{N} \times \mathbb{N}$ of the set of all positive integers with the following multiplication:

(1)
$$(i,j) * (k,l) = (i + \max\{j,k\} - j, l + \max\{j,k\} - k).$$

To see this, it is sufficiently to check that the map

$$f: \mathscr{C}(p,q) \to \mathbb{N} \times \mathbb{N} : p^i q^j \stackrel{J}{\mapsto} (i+1,j+1)$$

is an isomorphism between semigroups $\mathscr{C}(p,q)$ and $(\mathbb{N} \times \mathbb{N}, *)$.

In this paper we shall use the semigroup $(\mathbb{N} \times \mathbb{N}, *)$ as a representation of the bicyclic semigroup $\mathscr{C}(p,q)$ and we shall denote the semigroup $(\mathbb{N} \times \mathbb{N}, *)$ by \mathbb{B} .

For any infinite cardinal κ , define the semigroup $\sigma \mathbb{B}^{\kappa}$ as the set $\sigma \mathbb{N}^{\kappa} \times \sigma \mathbb{N}^{\kappa}$ with the multiplications $*_{\kappa}$ which is similar to (1):

(2) $(a,b) *_{\kappa} (c,d) = (a + \max\{b,c\} - b, d + \max\{b,c\} - c), \text{ where } a, b, c, d \in \sigma \mathbb{N}^{\kappa}.$

We can observe that the semigroup $\sigma \mathbb{B}^{\kappa}$, as defined by the multiplication operation $*_{\kappa}$ in (2), is indeed isomorphic to the σ -product of κ many copies of the bicyclic monoid.

For any $g \in S_{\kappa}$ consider a map $\Phi_g : \sigma \mathbb{B}^{\kappa} \to \sigma \mathbb{B}^{\kappa}$ defined in the following way: for any $(a, b) \in \sigma \mathbb{B}^{\kappa}$ define

$$((a,b)) \Phi_g = ((a) \mathcal{F}_g^\circ, (b) \mathcal{F}_g^\circ).$$

Statements (i) and (ii) of Lemma 1 imply that the map Φ_g is well-defined and Φ_g is a bijection.

Check that the map Φ_g is an automorphism of $\sigma \mathbb{B}^{\kappa}$. For any $(a, b), (c, d) \in \sigma \mathbb{B}^{\kappa}$, by statements (xiii) - (x) of Lemma 1:

$$((a,b) *_{\kappa} (c,d)) \Phi_{g} = ((a + \max\{b,c\} - b,d + \max\{b,c\} - c)) \Phi_{g} = = ((a + \max\{b,c\} - b) \mathcal{F}_{g}^{\circ}, (d + \max\{b,c\} - c) \mathcal{F}_{g}^{\circ}) = = ((a) \mathcal{F}_{g} + \max\{(b) \mathcal{F}_{g}, (c) \mathcal{F}_{g}\} - (b) \mathcal{F}_{g}, (d) \mathcal{F}_{g} + \max\{(b) \mathcal{F}_{g}, (c) \mathcal{F}_{g}\} - (c) \mathcal{F}_{g}) = = ((a) \mathcal{F}_{g}, (b) \mathcal{F}_{g}) *_{\kappa} ((c) \mathcal{F}_{g}, (d) \mathcal{F}_{g}) = ((a) \mathcal{F}_{g}^{\circ}, (b) \mathcal{F}_{g}^{\circ}) *_{\kappa} ((c) \mathcal{F}_{g}^{\circ}, (d) \mathcal{F}_{g}^{\circ}) = = (a, b) \Phi_{g} *_{\kappa} (c, d) \Phi_{g}.$$

Let κ be any infinite cardinal and $\operatorname{Aut}(\sigma \mathbb{B}^{\kappa})$ be the group of automorphisms of the semigroup $\sigma \mathbb{B}^{\kappa}$. Consider the map $\Phi \colon \mathcal{S}_{\kappa} \to \operatorname{Aut}(\sigma \mathbb{B}^{\kappa})$ for any $g \in \mathcal{S}_{\kappa}$ define $(g) \Phi = \Phi_g$. Statement (vii) of Lemma 1 implies that Φ is injective. Next, we show that the map Φ is a homomorphism. For any $g, h \in \mathcal{S}_{\kappa}$ consider the image of their composition: for any $[a, b] \in \sigma \mathbb{B}^{\kappa}$

$$([a,b]) (gh) \Phi = ([a,b]) \Phi_{gh} =$$
$$= [(a) \mathcal{F}_{qh}^{\circ}, (b) \mathcal{F}_{qh}^{\circ}]$$

Statement (iv) of Lemma 1 implies that

$$\left[(a) \, \mathcal{F}_{gh}^{\circ}, (b) \, \mathcal{F}_{gh}^{\circ} \right] = \left[(a) \, \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ}, (b) \, \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ} \right],$$

and since

$$[(a) \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ}, (b) \mathcal{F}_{g}^{\circ} \mathcal{F}_{h}^{\circ}] = ([(a) \mathcal{F}_{g}^{\circ}, (b) \mathcal{F}_{g}^{\circ}]) \Phi_{h} = = ([a, b]) \Phi_{g} \Phi_{h} = = ([a, b]) (g) \Phi (h) \Phi,$$

we have that

$$([a,b]) (gh) \Phi = ([a,b]) (g) \Phi (h) \Phi,$$

i.e., Φ is a homomorphism.

For any infinite cardinal κ consider the semidirect product $S_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ of the semigroup $\sigma \mathbb{B}^{\kappa}$ by the group S_{κ} as the set $S_{\kappa} \times \sigma \mathbb{B}^{\kappa}$ with the operation:

 $\left(g, [a, b]\right)\left(h, [c, d]\right) = \left(gh, \left([a, b]\right) \Phi_h \ast_{\kappa} [c, d]\right) \quad \text{ for } \left(g, [a, b]\right), \left(h, [c, d]\right) \in \mathcal{S}_{\kappa} \times \sigma \mathbb{B}^{\kappa}.$

Define the map $\Psi \colon \mathcal{IPF}(\sigma\mathbb{N}^{\kappa}) \to \mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma\mathbb{B}^{\kappa}$ by the formula:

$$(\alpha) \Psi = \left(g_{\alpha}, \left[(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha} \right] \right).$$

The definition of $d_{\alpha}, r_{\alpha}, g_{\alpha}$ and $\mathcal{F}_{g_{\alpha}}^{\circ}$ implies that the map Ψ is well-defined.

Theorem 2. For any infinite cardinal κ the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is isomorphic to the semidirect product $S_{\kappa} \ltimes_{\Phi} \sigma\mathbb{B}^{\kappa}$ of the semigroup $\sigma\mathbb{B}^{\kappa}$ by the group S_{κ} .

Proof. Consider the map Ψ . Corollary 2 implies that Ψ is a bijection. We shall prove that Ψ is also a homomorphism.

For any $\alpha, \beta \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ we have that $(\alpha\beta) \Psi = \left(g_{\alpha\beta}, \left[(d_{\alpha\beta}) \mathcal{F}_{g_{\alpha\beta}}^{\circ}, r_{\alpha\beta}\right]\right)$. Corollary 3 and Lemma 5 imply that

$$\left(g_{\alpha\beta}, \left\lfloor (d_{\alpha\beta}) \mathcal{F}_{g_{\alpha\beta}}^{\circ}, r_{\alpha\beta} \right\rfloor \right) = = \left(g_{\alpha}g_{\beta}, \left[\left(\left(\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha} \right) \mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha} \right) \mathcal{F}_{g_{\alpha}}^{\circ} \mathcal{F}_{g_{\beta}}^{\circ}, \left(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta} \right) \mathcal{F}_{g_{\beta}} + r_{\beta} \right] \right).$$

Lemma 1, the definition of the operation $*_{\kappa}$, and the definition of the map Φ imply that

$$\begin{split} & \left(g_{\alpha}g_{\beta}, \left[\left(\left(\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha}\right)\mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha}\right)\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ}, \left(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta}\right)\mathcal{F}_{g_{\beta}} + r_{\beta}\right]\right) = \\ &= \left(g_{\alpha}g_{\beta}, \left[\max\{(r_{\alpha})\mathcal{F}_{g_{\beta}}, (d_{\beta})\mathcal{F}_{g_{\beta}}\right] - (r_{\alpha})\mathcal{F}_{g_{\beta}} + (d_{\alpha})\mathcal{F}_{g_{\alpha}}\mathcal{F}_{g_{\beta}}, \max\{(r_{\alpha})\mathcal{F}_{g_{\beta}}, (d_{\beta})\mathcal{F}_{g_{\beta}}, r_{\beta}\right]\right) = \\ &= \left(g_{\alpha}g_{\beta}, \left[(d_{\alpha})\mathcal{F}_{g_{\alpha}}\mathcal{F}_{g_{\beta}}, (r_{\alpha})\mathcal{F}_{g_{\beta}}\right] *_{\kappa} \left[(d_{\beta})\mathcal{F}_{g_{\beta}}, r_{\beta}\right]\right) = \\ &= \left(g_{\alpha}g_{\beta}, \left[(d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)\Phi_{g_{\beta}} *_{\kappa} \left[(d_{\beta})\mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right) = \\ &= \left(g_{\alpha}, \left[(d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)\Phi_{g_{\beta}} *_{\kappa} \left[(d_{\beta})\mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right) = \\ &= \left(g_{\alpha}, \left[(d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\right]\right)\left(g_{\beta}, \left[(d_{\beta})\mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta}\right]\right) = \\ &= \left(\alpha\right)\Psi\left(\beta\right)\Psi. \end{split}$$

For any $\alpha \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, let $(g_{\alpha}, [(d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}]) = (\alpha)\Psi$ be the image of the element α by the isomorphism $\Psi : \mathcal{IPF}(\sigma\mathbb{N}^{\kappa}) \to \mathcal{S}_{\kappa} \ltimes_{\Phi} \sigma\mathbb{B}^{\kappa}$ which is defined above the proof of Theorem 2.

Every inverse semigroup S admits the *least group* congruence \mathfrak{C}_{mg} (see [27, Section III]):

 $s\mathfrak{C}_{\mathbf{mg}}t$ if and only if there exists an idempotent $e \in S$ such that se = te.

Proposition 3. For any infinite cardinal κ , any element $\alpha \in IPF(\sigma\mathbb{N}^{\kappa})$ and for any idempotent $\varepsilon \in IPF(\sigma\mathbb{N}^{\kappa})$ we have:

$$(\alpha\varepsilon)\Psi = (g_{\alpha}, [(d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}])(id_{\kappa}, [d_{\varepsilon}, d_{\varepsilon}]) = = (g_{\alpha}, [\max\{r_{\alpha}, d_{\varepsilon}\} - r_{\alpha} + (d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, \max\{r_{\alpha}, d_{\varepsilon}\}]); (\varepsilon\alpha)\Psi = (id_{\kappa}, [d_{\varepsilon}, d_{\varepsilon}])(g_{\alpha}, [(d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}]) = = (g_{\alpha}, [(\max\{d_{\varepsilon}, d_{\alpha}\})\mathcal{F}_{g_{\alpha}}^{\circ}, (\max\{d_{\varepsilon}, d_{\alpha}\})\mathcal{F}_{g_{\alpha}}^{\circ} - (d_{\alpha})\mathcal{F}_{g_{\alpha}}^{\circ} + r_{\alpha}]).$$

Proof. By Corollary 4, g_{ε} is the identity permutation, i.e., $g_{\varepsilon} = id_{\kappa}$ and $\mathcal{F}_{g_{\varepsilon}}^{\circ} = \mathbb{I}$. Since dom $\varepsilon = \operatorname{ran} \varepsilon$ we have that $d_{\varepsilon} = r_{\varepsilon}$ and then $(d_{\varepsilon}) \mathcal{F}_{g_{\varepsilon}}^{\circ} = d_{\varepsilon} = r_{\varepsilon}$, so

$$\left[g_{\varepsilon},\left[\left(d_{\varepsilon}\right)\mathcal{F}_{g_{\varepsilon}}^{\circ},r_{\varepsilon}\right]\right)=\left(id_{\kappa},\left[d_{\varepsilon},d_{\varepsilon}\right]
ight).$$

Then the definition of the multiplication in $S_{\kappa} \ltimes_{\Phi} \sigma \mathbb{B}^{\kappa}$ completes the proof of the proposition.

The following theorem describes the least group congruence on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Theorem 3. Let κ be any infinite cardinal. Then $\alpha \mathfrak{C}_{\mathbf{mg}}\beta$ in the semigroup $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ if and only if

$$g_{\alpha} = g_{\beta}$$
 and $(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - r_{\alpha} = (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} - r_{\beta}.$

Proof. Fix an idempotent ε in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. By Proposition 3,

$$\begin{pmatrix} g_{\alpha}, \left[(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha} \right] \end{pmatrix} (id_{\kappa}, [d_{\varepsilon}, d_{\varepsilon}]) = \begin{pmatrix} g_{\alpha}, \left[\max\{r_{\alpha}, d_{\varepsilon}\} - r_{\alpha} + (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, \max\{r_{\alpha}, d_{\varepsilon}\} \right] \end{pmatrix}, \\ \begin{pmatrix} g_{\beta}, \left[(d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta} \right] \end{pmatrix} (id_{\kappa}, [d_{\varepsilon}, d_{\varepsilon}]) = \begin{pmatrix} g_{\beta}, \left[\max\{r_{\beta}, d_{\varepsilon}\} - r_{\beta} + (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ}, \max\{r_{\beta}, d_{\varepsilon}\} \right] \end{pmatrix},$$

so the equality $\alpha \varepsilon = \beta \varepsilon$ holds if and only if

$$g_{\alpha} = g_{\beta}$$
 and $(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - r_{\alpha} = (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} - r_{\beta}.$

For any infinite cardinal κ , by $\sigma \mathbb{Z}_{+}^{\kappa}$ we shall denote the group $(\sigma \mathbb{Z}^{\kappa}, +)$. Let $\operatorname{Aut}(\sigma \mathbb{Z}_{+}^{\kappa})$ be the group of automorphisms of the group $\sigma \mathbb{Z}_{+}^{\kappa}$. Consider the map $\Theta: \mathcal{S}_{\kappa} \to \operatorname{Aut}(\sigma \mathbb{Z}_{+}^{\kappa})$: for any $g \in \mathcal{S}_{\kappa}$ define $(g) \Theta = \mathcal{F}_{g}^{\diamond}$.

Statements (i), (iii) and (viii) of Lemma 1 imply that for any $g \in S$ the map \mathcal{F}_g^{\diamond} is an isomorphism of the group $\sigma \mathbb{Z}_+^{\kappa}$, so the map Θ is well-defined. Next, statements (iv) and (vii) of Lemma 1 imply that the map Θ is an injective homomorphism.

Consider the semidirect product $\mathcal{S}_{\kappa} \ltimes_{\Theta} (\sigma \mathbb{Z}^{\kappa}, +)$ as the set $\mathcal{S}_{\kappa} \times \sigma \mathbb{Z}^{\kappa}$ with the operation

$$(g,m)(h,n) = (gh,(m)\mathcal{F}_h^{\diamond} + n).$$

Theorem 4. For any infinite cardinal κ the quotient semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})/\mathfrak{C}_{mg}$ is isomorphic to the semidirect product $S_{\kappa} \ltimes_{\Theta}(\sigma\mathbb{Z}^{\kappa}, +)$ of the group $(\sigma\mathbb{Z}^{\kappa}, +)$ by the group S_{κ} .

Proof. Define the map $\Upsilon : \mathcal{IPF}(\sigma \mathbb{N}^{\kappa}) \to \mathscr{S}_{\kappa} \ltimes_{\Theta}(\sigma \mathbb{Z}^{\kappa}, +)$ in the following way: for any $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ we put

$$(\alpha) \Upsilon = \left(g_{\alpha}, (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - r_{\alpha}\right).$$

Since $a - b \in \sigma \mathbb{Z}^{\kappa}$ for any $a, b \in \sigma \mathbb{N}^{\kappa}$ we have that Υ is well-defined.

For any $\alpha, \beta \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ by the definition of Υ we have that

$$(\alpha\beta)\Upsilon = \left(g_{\alpha\beta}, (d_{\alpha\beta})\mathcal{F}_{g_{\alpha\beta}}^{\circ} - r_{\alpha\beta}\right),$$

and by Lemma 5

$$(\alpha\beta)\,\Upsilon = \left(g_{\alpha}g_{\beta}, \left(\left(\max\{r_{\alpha}, d_{\beta}\} - r_{\alpha}\right)\mathcal{F}_{g_{\alpha}}^{-1} + d_{\alpha}\right)\mathcal{F}_{g_{\alpha}}^{\circ}\mathcal{F}_{g_{\beta}}^{\circ} - \left(\max\{r_{\alpha}, d_{\beta}\} - d_{\beta}\right)\mathcal{F}_{g_{\beta}} - r_{\beta}\right),$$

then, by statements (viii) and (ix) of Lemma 1

$$\begin{aligned} (\alpha\beta) \Upsilon = & \left(g_{\alpha}g_{\beta}, \left(\max\{r_{\alpha}, d_{\beta}\}\right) \mathcal{F}_{g_{\beta}} - (r_{\alpha}) \mathcal{F}_{g_{\beta}} + (d_{\alpha}) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} - \left(\max\{r_{\alpha}, d_{\beta}\}\right) \mathcal{F}_{g_{\beta}} + \\ & + (d_{\beta}) \mathcal{F}_{g_{\beta}} - r_{\beta} \right) = \\ & = & \left(g_{\alpha}g_{\beta}, (d_{\alpha}) \mathcal{F}_{g_{\alpha}} \mathcal{F}_{g_{\beta}} - (r_{\alpha}) \mathcal{F}_{g_{\beta}} + (d_{\beta}) \mathcal{F}_{g_{\beta}} - r_{\beta} \right) = \\ & = & \left(g_{\alpha}, (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - r_{\alpha} \right) \left(g_{\beta}, (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} - r_{\beta} \right) = \\ & = & (\alpha) \Upsilon (\beta) \Upsilon, \end{aligned}$$

and hence Υ is a homomorphism.

Show that the map Υ is surjective. For any $(g, z) \in \mathcal{S}_{\kappa} \times \sigma \mathbb{Z}^{\kappa}$, consider the maps $a, b: \kappa \to \mathbb{N}$. For any $x \in \kappa$:

$$(x) a = \begin{cases} (x) z, & \text{if } (x) z > 0\\ 1, & \text{if } (x) z = 0\\ 0, & \text{if } (x) z < 0 \end{cases} \text{ and } (x) b = \begin{cases} 0, & \text{if } (x) z > 0\\ 1, & \text{if } (x) z = 0\\ -(x) z, & \text{if } (x) z < 0. \end{cases}$$

We have that $a, b \in \sigma \mathbb{N}^{\kappa}$ and z = a - b. Now we consider $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ such that

$$g_{\alpha} = g,$$

$$d_{\alpha} = (a) \left(\mathcal{F}_{g}^{\circ}\right)^{-1},$$

$$r_{\alpha} = b.$$

Then

$$(\alpha) \Upsilon = (g_{\alpha}, (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - r_{\alpha}) =$$

= $(g, ((a) (\mathcal{F}_{g}^{\circ})^{-1}) \mathcal{F}_{g}^{\circ} - b) =$
= $(g, a - b) =$
= $(g, z),$

so Υ is surjective.

Also, Theorem 3 implies that $\alpha \mathfrak{C}_{\mathbf{mg}}\beta$ in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ if and only if $(\alpha) \Upsilon = (\beta) \Upsilon$. This implies that the homomorphism Υ generates the congruences $\mathfrak{C}_{\mathbf{mg}}$ on $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Every inverse semigroup S admits a partial order:

if and only if there exists $a \preccurlyeq b$ $e \in E(S)$ such that a = be.

So defined order is called the natural partial order on S. We observe that $a \preccurlyeq b$ in an inverse semigroup S if and only if a = fb for some $f \in E(S)$ (see [23, Lemma 1.4.6]).

This and Proposition 3 imply the following proposition, which describes the natural partial order on the semigroup $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$.

Proposition 4. Let κ be any infinite cardinal and let $\alpha, \beta \in IPF(\sigma\mathbb{N}^{\kappa})$. Then the following conditions are equivalent:

(i) $\alpha \preccurlyeq \beta$;

- (ii) $g_{\alpha} = g_{\beta}, (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} r_{\alpha} = (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} r_{\beta} \text{ and } d_{\beta} \leqslant d_{\alpha} \text{ in the poset } (\sigma \mathbb{N}^{\kappa}, \leqslant);$ (iii) $g_{\alpha} = g_{\beta}, (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} r_{\alpha} = (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} r_{\beta} \text{ and } r_{\beta} \leqslant r_{\alpha} \text{ in the poset } (\sigma \mathbb{N}^{\kappa}, \leqslant).$

An inverse semigroup S is said to be *E*-unitary if $ae \in E(S)$ for some $e \in E(S)$ implies that $a \in E(S)$ [23]. *E*-unitary inverse semigroups were introduced by Siatô in [28], where they were called "proper ordered inverse semigroups".

Proposition 5. For any infinite cardinal κ , the inverse semigroup $IPF(\sigma\mathbb{N}^{\kappa})$ is *E*-unitary.

Proof. Let $\alpha \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. Suppose that $\alpha\varepsilon$ is an idempotent for some idempotent $\varepsilon \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. Then Proposition 3 and the definition of idempotents imply that $g_{\alpha} = id_{\kappa}$ and $d_{\alpha} = (d_{\alpha}) \mathcal{F}_{g_{\alpha}} = r_{\alpha}$, so α is an idempotent.

An inverse semigroup S is called *F*-inverse, if the \mathfrak{C}_{mg} -class $s_{\mathfrak{C}_{mg}}$ of each element s has the top (biggest) element with the respect to the natural partial order on S [24].

Proposition 6. For any infinite cardinal κ , the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is an *F*-inverse semigroup.

Proof. Let $\alpha \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. Consider an element $\beta \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ such that

$$\begin{aligned} g_{\beta} &= g_{\alpha}, \\ d_{\beta} &= d_{\alpha} - \min\{d_{\alpha}, (r_{\alpha}) \left(\mathcal{F}_{g_{\alpha}}^{\circ}\right)^{-1}\} + \mathbf{1}, \\ r_{\beta} &= r_{\alpha} - \min\{(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\} + \mathbf{1}. \end{aligned}$$

We have that $\min\{d_{\alpha}, (r_{\alpha}) (\mathcal{F}_{g_{\alpha}}^{\circ})^{-1}\} \in \sigma \mathbb{N}^{\kappa}$ and $\min\{d_{\alpha}, (r_{\alpha}) (\mathcal{F}_{g_{\alpha}}^{\circ})^{-1}\} \leq d_{\alpha}$, so $d_{\beta} \in \sigma \mathbb{N}^{\kappa}$. Similar $r_{\beta} \in \sigma \mathbb{N}^{\kappa}$, so β is well-defined. Also, we have that $g_{\beta} = g_{\alpha}$ and

$$(d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} - r_{\beta} = \left(d_{\alpha} - \min\{d_{\alpha}, (r_{\alpha}) \left(\mathcal{F}_{g_{\alpha}}^{\circ} \right)^{-1} \} + \mathbf{1} \right) \mathcal{F}_{g_{\alpha}}^{\circ} - \left(r_{\alpha} - \min\{(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha} \} + \mathbf{1} \right) =$$

$$= (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - \min\{(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha} \} + \mathbf{1} - r_{\alpha} + \min\{(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha} \} - \mathbf{1} =$$

$$= (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} - r_{\alpha},$$

then Theorem 3 implies that $\beta \mathfrak{C}_{\mathbf{mg}} \alpha$.

Now, for any $\gamma \in \mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$, such that $\gamma \mathfrak{C}_{\mathbf{mg}} \alpha$, we consider the idempotent ε with $d_{\varepsilon} = r_{\gamma}$ and consider the product $(\beta) \Psi(\varepsilon) \Psi$. By Proposition 3

$$(\beta) \Psi (\varepsilon) \Psi = \left(g_{\beta}, \left[(d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ}, r_{\beta} \right] \right) (id_{\kappa}, [d_{\varepsilon}, d_{\varepsilon}]) = = \left(g_{\beta}, \left[\max\{r_{\beta}, d_{\varepsilon}\} - r_{\beta} + (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ}, \max\{r_{\beta}, d_{\varepsilon}\} \right] \right) = = \left(g_{\beta}, \left[\max\{r_{\beta}, r_{\gamma}\} - r_{\beta} + (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ}, \max\{r_{\beta}, r_{\gamma}\} \right] \right).$$

Since $\gamma \mathfrak{C}_{\mathbf{mg}} \alpha$, by Theorem 3 we have that $g_{\gamma} = g_{\alpha}$ and $r_{\gamma} - (d_{\gamma}) \mathcal{F}_{g_{\gamma}}^{\circ} = r_{\alpha} - (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}$, then for any $x \in \kappa$

$$\begin{aligned} (x) \left(\max\{r_{\beta}, r_{\gamma}\} \right) &= (x) \left(\max\{r_{\alpha} - \min\{(d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ}, r_{\alpha}\} + \mathbf{1}, r_{\gamma}\} \right) = \\ &= \begin{cases} \max\{(x) r_{\alpha} - (x) r_{\alpha} + (x) \mathbf{1}, (x) r_{\gamma}\}, & \text{if } (x) (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} > (x) r_{\alpha} \\ \max\{(x) r_{\alpha} - (x) (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} + (x) \mathbf{1}, (x) r_{\gamma}\}, & \text{otherwise} \end{cases} = \\ &= \begin{cases} \max\{1, (x) r_{\gamma}\}, & \text{if } (x) (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} > (x) r_{\alpha} \\ \max\{(x) r_{\gamma} - (x) (d_{\gamma}) \mathcal{F}_{g_{\gamma}}^{\circ} + 1, (x) r_{\gamma}\}, & \text{otherwise} \end{cases} = \\ &= (x) r_{\gamma}, \end{aligned}$$

so $\max\{r_{\beta}, r_{\gamma}\} = r_{\gamma}$. Also

$$\max\{r_{\beta}, r_{\gamma}\} - r_{\beta} + (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} = r_{\gamma} - r_{\beta} + (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ} = r_{\gamma} - r_{\alpha} + (d_{\alpha}) \mathcal{F}_{g_{\alpha}}^{\circ} = (d_{\gamma}) \mathcal{F}_{g_{\gamma}}^{\circ},$$

 \mathbf{so}

$$\left(g_{\beta}, \left[\max\{r_{\beta}, r_{\gamma}\} - r_{\beta} + (d_{\beta}) \mathcal{F}_{g_{\beta}}^{\circ}, \max\{r_{\beta}, r_{\gamma}\}\right]\right) = \left(g_{\gamma}, \left[(d_{\gamma}) \mathcal{F}_{g_{\gamma}}^{\circ}, r_{\gamma}\right]\right) = (\gamma) \Psi.$$

The equality $(\beta) \Psi(\varepsilon) \Psi = (\gamma) \Psi$ implies that $\gamma = \beta \varepsilon$, so $\gamma \preccurlyeq \beta$. This means that the element β is the biggest element in the \mathfrak{C}_{mg} -class of the element α in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. \Box

Lemma 6. Let κ be any infinite cardinal and let \mathfrak{C} be a congruence on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $\varepsilon\mathfrak{C}\iota$ for some two distinct idempotents $\varepsilon, \iota \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. Then $\varsigma\mathfrak{C}\upsilon$ for all idempotents ς, υ of $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Proof. We observe that without loss of generality we may assume that $\varepsilon \preccurlyeq \iota$ where \preccurlyeq is the natural partial order on the semilattice $E(\mathcal{IPF}(\sigma\mathbb{N}^{\kappa}))$. Indeed, if $\varepsilon, \iota \in E(\mathcal{IPF}(\sigma\mathbb{N}^{\kappa}))$ then $\varepsilon \mathfrak{C}\iota$ implies that $\varepsilon = \varepsilon \varepsilon \mathfrak{C}\iota\varepsilon$, and since the idempotents ε and ι are distinct in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ we have that $\iota\varepsilon \preccurlyeq \varepsilon$.

Now, the inequality $\varepsilon \preccurlyeq \iota$ implies that dom $\varepsilon \subseteq \operatorname{dom} \iota$. Next, we define partial map $\alpha : \sigma \mathbb{N}^{\kappa} \rightharpoonup \sigma \mathbb{N}^{\kappa}$ in the following way:

dom $\alpha = \sigma \mathbb{N}^{\kappa}$, ran $\alpha = \operatorname{dom} \iota$ and $(z) \alpha = z + d_{\iota} - \mathbf{1}$, for any $z \in \operatorname{dom} \alpha$. The definition of α implies that $\alpha \iota \alpha^{-1} = \alpha \alpha^{-1} = \mathbb{I}$ and $\alpha^{-1} \alpha = \iota$, and moreover, we have that

$$(\alpha \varepsilon \alpha^{-1}) (\alpha \varepsilon \alpha^{-1}) = \alpha \varepsilon (\alpha^{-1} \alpha) \varepsilon \alpha^{-1} =$$
$$= \alpha \varepsilon \iota \varepsilon \alpha^{-1} =$$
$$= \alpha \varepsilon \varepsilon \alpha^{-1} =$$
$$= \alpha \varepsilon \alpha^{-1}.$$

which implies that $\alpha \varepsilon \alpha^{-1}$ is an idempotent of $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$ such that $\alpha \varepsilon \alpha^{-1} \neq \mathbb{I}$.

Thus, it was shown that there exists a non-unit idempotent ε^* in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $\varepsilon^* \mathfrak{CI}$. This implies that $\varepsilon_0 \mathfrak{CI}$ for any idempotent ε_0 of $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $\varepsilon^* \preccurlyeq \varepsilon_0 \preccurlyeq \mathbb{I}$. Since $\varepsilon^* \neq \mathbb{I}$ we have that $d_{\varepsilon^*} \neq \mathbf{1}$, so there exists $x \in \kappa$ such that $(x) d_{\varepsilon^*} \neq \mathbf{1}$, thus $2_x \leqslant d_{\varepsilon^*}$. Consider an idempotent ε_x in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $d_{\varepsilon_x} = 2_x$. Then $d_{\varepsilon_x} = 2_x \leqslant d_{\varepsilon^*}$ implies that $\varepsilon^* \preccurlyeq \varepsilon_x$, so $\varepsilon_x \mathfrak{CI}$.

Fix an arbitrary $y \in \kappa \setminus \{x\}$. Define a bijection on the set κ in the following way:

$$(x) g = y,$$
 $(y) g = x$ and $(t) g = t,$ for $t \in \kappa \setminus \{x, y\}.$

Next, consider the map \mathcal{F}_g° as an element of $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. The definition of g implies that $g^{-1} = g$, then, by Lemma 1(*i*) we have that $(\mathcal{F}_g^{\circ})^{-1} = \mathcal{F}_{g^{-1}}^{\circ} = \mathcal{F}_g^{\circ}$ and then

$$\mathcal{F}_{g}^{\circ}\mathbb{I}\mathcal{F}_{g}^{\circ}=\mathcal{F}_{g}^{\circ}\mathcal{F}_{g}^{\circ}=\mathcal{F}_{g}^{\circ}\left(\mathcal{F}_{g}^{\circ}\right)^{-1}=\mathbb{I}.$$

The calculations

$$\begin{split} \left(\mathcal{F}_{g}^{\circ}\varepsilon_{x}\mathcal{F}_{g}^{\circ}\right)\Psi &= \left(\mathcal{F}_{g}^{\circ}\right)\Psi\left(\varepsilon_{d_{x}}\right)\Psi\left(\mathcal{F}_{g}^{\circ}\right)\Psi = \\ &= \left(g,\left[\mathbf{1},\mathbf{1}\right]\right)\left(id_{\kappa},\left[2_{x},2_{x}\right]\right)\left(g,\left[\mathbf{1},\mathbf{1}\right]\right) = \\ &= \left(g,\left[2_{x},2_{x}\right]\right)\left(g,\left[\mathbf{1},\mathbf{1}\right]\right) = \\ &= \left(gg,\left[\left(2_{x}\right)\mathcal{F}_{g}^{\circ},\left(2_{x}\right)\mathcal{F}_{g}^{\circ}\right]\right) = \\ &= \left(id_{\kappa},\left[2_{(x)g},2_{(x)g}\right]\right) = \\ &= \left(id_{\kappa},\left[2_{y},2_{y}\right]\right) = \\ &= \left(\varepsilon_{y}\right)\Psi \end{split}$$

shows that $\mathcal{F}_{g}^{\circ}\varepsilon_{x}\mathcal{F}_{g}^{\circ}=\varepsilon_{y}$, where ε_{y} is an idempotent in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $d_{\varepsilon_{y}}=2_{y}$. Then

$$\varepsilon_y = \left(\mathcal{F}_g^\circ \varepsilon_x \mathcal{F}_g^\circ\right) \mathfrak{C} \left(\mathcal{F}_g^\circ \mathbb{I} \mathcal{F}_g^\circ\right) = \mathbb{I}$$

implies that $\varepsilon_y \mathfrak{CI}$.

The above arguments imply that $\varepsilon_x \mathfrak{CI}$ for every idempotent $\varepsilon_x \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that ε_x is the identity map of the principal filter $\uparrow 2_x$ of the poset $(\sigma\mathbb{N}^{\kappa}, \leqslant), x \in \kappa$. Now, fix an idempotent ζ in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ and consider the set $A = \{x \in \kappa \mid (x) \ d_{\zeta} \neq 1\}$. Since $d_{\zeta} \in \sigma\mathbb{N}^{\kappa}$ the set A is finite, so there exists $k \in \mathbb{N}$ such that $A = \{x_1, x_2, \ldots, x_k\}$ for some $x_1, x_2, \ldots, x_k \in \kappa$. Consider the idempotent $\varepsilon_A = \varepsilon_{x_1} \ldots \varepsilon_{x_k}$. Since \mathfrak{C} is congruence, $\varepsilon_{x_i}\mathfrak{CI}$ for any $x_i \in A$ and A is finite we have that $(\varepsilon_{x_1} \ldots \varepsilon_{x_k})\mathfrak{CI}$. The definition of ε_A and the semigroup operation of $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ imply that $d_{\varepsilon_A} = 2_A$, where

$$(t) 2_A = \begin{cases} 2 & \text{if } t \in A \\ 1 & \text{otherwise} \end{cases}$$

We define the partial map $\gamma : \sigma \mathbb{N}^{\kappa} \rightharpoonup \sigma \mathbb{N}^{\kappa}$ in the following way:

dom $\gamma = \sigma \mathbb{N}^{\kappa}$, ran $\gamma = \uparrow 2_A$ and $(z) \gamma = z + 2_A - \mathbf{1}$, for any $z \in \operatorname{dom} \gamma$. The definition of γ implies that that $\gamma \gamma^{-1} = \mathbb{I}$ and $\gamma^{-1} \gamma = \varepsilon_A$. For any positive integer $n \in \mathbb{N}$ consider the idempotent

$$(\gamma^{-1})^n \gamma^n = \underbrace{\gamma^{-1} \dots \gamma^{-1}}_{n \text{-times}} \underbrace{\gamma \dots \gamma}_{n \text{-times}}.$$

Since $\varepsilon_A = \gamma^{-1} \gamma \mathfrak{CI}$ we have that $\gamma^{-1} \gamma^{-1} \gamma \gamma \mathfrak{C} \gamma^{-1} \gamma = \varepsilon_A$ and $\gamma^{-1} \gamma^{-1} \gamma \gamma \mathfrak{CI}$, so by induction $(\gamma^{-1})^n \gamma^n \mathfrak{CI}$, for any $n \in \mathbb{N}$. Also, by induction, we have that $d_{(\gamma^{-1})^n \gamma^n} = (n+1)_A$, where

$$(t) (n+1)_A = \begin{cases} n+1 & \text{if } t \in A \\ 1 & \text{otherwise,} \end{cases}$$

for any $n \in \mathbb{N}$. Thus, we have that

$$d_{\zeta} \leq d_{(\gamma^{-1})^{m}\gamma^{m}} = (m+1)_{A},$$

where $m = \max\{(x) d_{\zeta} \mid x \in \kappa\}$, implies that $(\gamma^{-1})^{m}\gamma^{m} \preccurlyeq \zeta$, so $\zeta \mathfrak{CI}$.

Lemma 7. Let κ be any infinite cardinal and let \mathfrak{C} be a congruence on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $\alpha\mathfrak{C}\beta$ for some non- \mathscr{H} -equivalent elements $\alpha, \beta \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. Then $\mathfrak{EC}\iota$ for all idempotents ε, ι of $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Proof. Since α and β are not- \mathscr{H} -equivalent in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ we have that either $\alpha\alpha^{-1} \neq \beta\beta^{-1}$ or $\alpha^{-1}\alpha \neq \beta^{-1}\beta$ (see [23, p. 82]). Then Proposition 4 from [23, Section 2.3] implies that $\alpha\alpha^{-1}\mathfrak{C}\beta\beta^{-1}$ and $\alpha^{-1}\alpha\mathfrak{C}\beta^{-1}\beta$ and hence the assumption of Lemma 6 holds. \Box

Lemma 8. Let κ be any infinite cardinal and let \mathfrak{C} be a congruence on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $\alpha\mathfrak{C}\beta$ for some two distinct \mathscr{H} -equivalent elements $\alpha, \beta \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$. Then $\mathfrak{cC}\iota$ for all idempotents ε, ι of $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Proof. By Proposition 1(vi) the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is simple and then Theorem 2.3 from [9] implies that there exist $\mu, \xi \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $f: H_{\alpha} \to H_{\mathbb{I}}: \chi \mapsto \mu\chi\xi$ maps α to \mathbb{I} and β to $\gamma \neq \mathbb{I}$, respectively, which implies that $\mathbb{IC}\gamma$. Since γ is an element of the group of units of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, by Theorem 1, $\gamma = \mathcal{F}_{g_{\gamma}}^{\circ}$ and since $\gamma \neq \mathbb{I}$ we have that $g_{\gamma} \neq id_{\kappa}$, so there exists $x \in \kappa$ such that $(x) g_{\gamma} \neq x$. Put ε as the identity map with $d_{\varepsilon} = 2_x$. Since \mathfrak{C} is a congruence on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ and $\gamma \in H_{\mathbb{I}}$ we have that

$$\varepsilon = \varepsilon \varepsilon = \varepsilon \mathbb{I} \varepsilon \mathfrak{C} \varepsilon \gamma \varepsilon.$$

Proposition 3 implies that

$$(\varepsilon\gamma\varepsilon)\Psi = \left(g_{\gamma}, \left[\max\{(2_x)\mathcal{F}_{g_{\gamma}}^{\circ}, 2_x\}, \max\{(2_x)\mathcal{F}_{g_{\gamma}}^{\circ}, 2_x\}\right]\right).$$

By Lemma 1(v) we have that $(2_x) \mathcal{F}_{g_{\gamma}}^{\circ} = 2_{(x)g_{\gamma}} \neq 2_x$, this and the definition of elements 2_x and $2_{(x)g_{\gamma}}$ imply that $\max\{(2_x) \mathcal{F}_{g_{\gamma}}^{\circ}, 2_x\} \neq 2_x$, so

$$r_{\varepsilon\gamma\varepsilon} = \max\{(2_x)\mathcal{F}^{\circ}_{g_{\gamma}}, 2_x\} \neq 2_x = r_{\varepsilon},$$

then by Proposition 1(v), $\varepsilon \gamma \varepsilon$ and ε are non- \mathscr{H} -equivalent elements in $\mathcal{IPF}(\sigma \mathbb{N}^{\kappa})$. Next, we apply Lemma 7.

Theorem 5. For any infinite cardinal κ every non-identity congruence \mathfrak{C} on the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ is group.

Proof. For every non-identity congruence \mathfrak{C} on $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ there exist two distinct elements $\alpha, \beta \in \mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ such that $\alpha\mathfrak{C}\beta$. If $\alpha\mathscr{H}\beta$ in $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ then by Lemma 7 all idempotents of the semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ are \mathfrak{C} -equivalent, otherwise by Lemma 8 we get the same. Thus, by Lemma II.1.10 of [27] the quotient semigroup $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})/\mathfrak{C}$ has a unique idempotent and hence it is a group. \Box

ACKNOWLEDGEMENTS

The author acknowledges Oleg Gutik and Alex Ravsky for their useful comments and suggestions.

References

- 1. O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.
- L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc. 117 (1965), 521-529. DOI: 10.2307/1994222
- T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211-218.

- T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803-2814. DOI: 10.1016/j.topol.2010.08.020
- S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discr. Math. 21 (2016), no. 2, 163-183.
- 6. S. Bardyla and O. Gutik, On the lattice of weak topologies on the bicyclic monoid with adjoined zero, Algebra Discr. Math. **30** (2020), no. 1, 26-43. DOI: 10.12958/adm1459
- M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. Sec. A 76 (1976), no. 21–23, 219–226.
- I. Chuchman and O. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ. 2 (2010), no. 1, 119-132.
- A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.
- O. Gutik and O. Lysetska, On the semigroup B^F_ω which is generated by the family F of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021), 34-50. DOI: 10.30970/vmm.2021.92.034-050
- O. Gutik and P. Khylynskyi, On a locally compact monoid of cofinite partial isometries of N with adjoined zero, Topol. Algebra Appl. 10 (2022), no. 1, 233-245. DOI: 10.1515/taa-2022-0130
- O. Gutik and O. Krokhmalna, The monoid of monotone injective partial selfmaps of the poset (N³, ≤) with cofinite domains and images, Visn. L'viv. Univ., Ser. Mekh.-Mat. 88 (2019), 32-50.
- O. Gutik and K. Maksymyk, On semitopological bicyclic extensions of linearly ordered groups, Mat. Metody Fiz.-Mekh. Polya 59 (2016), no. 4, 31-43; reprinted version: J. Math. Sci. 238 (2019), no. 1, 32-45. DOI: 10.1007/s10958-019-04216-x
- 14. O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.
- 15. O. Gutik and T. Mokrytskyi, The monoid of order isomorphisms between principal filters of \mathbb{N}^n , Eur. J. Math. 6 (2020), no. 1, 14-36. DOI: 10.1007/s10958-019-04216-x
- O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
- 17. O. V. Gutik and O. B. Popadiuk, On the semigroup of injective endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}_n}$ which is generated by the family \mathscr{F}_n of finite bounded intervals of ω , Mat. Metody Fiz.-Mekh. Polya **65** (2022), no. 1-2, 42-57.
- 18. O. Gutik and I. Pozdniakova, On the group of automorphisms of the semigroup $B_{\mathbb{Z}}^{\mathscr{F}}$ with the family \mathscr{F} of inductive nonempty subsets of ω , Algebra Discr. Math. (to appear) (arXiv:2206.12819).
- O. Gutik and D. Repovš, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x
- O. Gutik and A. Savchuk, The semigroup of partial co-finite isometries of positive integers, Bukovyn. Mat. Zh. 6 (2018), no.1-2, 42-51 (in Ukrainian). DOI: 10.31861/bmj2018.01.042
- O. Gutik and A. Savchuk, On the monoid of cofinite partial isometries of N with the usual metric, Visn. L'viv. Univ., Ser. Mekh.-Mat. 89 (2020) 17-30. DOI: 10.30970/vmm.2020.89.017-030
- J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183

- 23. M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.
- 24. R. McFadden and L. O'Carroll, *F*-inverse semigroups, Proc. Lond. Math. Soc., III Ser. 22 (1971), no. 4, 652–666. DOI: 10.1112/plms/s3-22.4.652
- T. Mokrytskyi, On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of Nⁿ with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 87 (2019), 37-45. DOI: 10.30970/vmm.2019.87.037-045
- W. D. Munn, Uniform semilattices and bisimple inverse semigroups, Q. J. Math., Oxf. II. Ser. 17 (1966), no. 1, 151-159. DOI: 10.1093/qmath/17.1.151
- 27. M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
- T. Saitô, Proper ordered inverse semigroups, Pacif. J. Math. 15 (1965), no. 2, 649-666. DOI: 10.2140/pjm.1965.15.649
- 29. V. V. Wagner, *Generalized groups*, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (in Russian).

Стаття: надійшла до редколегії 24.01.2022 доопрацьована 07.05.2022 прийнята до друку 22.06.2022

МОНОЇД ПОРЯДКОВИХ ІЗОМОРФІЗМІВ ГОЛОВНИХ ФІЛЬТРІВ МНОЖИНИ σ№^κ

Тарас МОКРИЦЬКИЙ

Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000, Львів e-mail: tmokrytskyi@gmail.com

Розглянемо таке узагальнення біциклічного моноїда. Для довільного нескінченного кардинала κ розглянемо напівгрупу $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ всіх порядкових ізоморфізмів головних фільтрів множини $\sigma\mathbb{N}^{\kappa}$ з порядком добутку. Ми дослідимо алгебричні властивості напівгрупи $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, доведемо, що вона є біпростою, E-унітарною, F-інверсною напівгрупою, опишемо відношення Гріна на напівгрупі $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$, опишемо групу одиниць $H(\mathbb{I})$ цієї напівгрупи і її максимальні підгрупи. Доведемо, що напівгрупа $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$ ізоморфна напівпрямому добутку $\mathcal{S}_{\kappa} \ltimes \sigma\mathbb{B}^{\kappa}$ напівгрупи $\sigma\mathbb{B}^{\kappa}$ і групи \mathcal{S}_{κ} , доведемо що кожна не тотожна конгруенція \mathfrak{C} на напігрупі $\mathcal{IPF}(\sigma\mathbb{N}^{\kappa})$.

Ключові слова: напівгрупа, інверсна напівгрупа, часткове відображення, група перестановок, найменша групова конгруенція, біциклічна напівгрупа, напівпрямий добуток.