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Consider the following generalization of the bicyclic monoid. Let x be any
infinite cardinal and let ZPF (cN") be the semigroup of all order isomorphisms
between principal filters of the set oN" with the product order. We shall study
algebraic properties of the semigroup ZPF (oN*), show that it is bisimple, F-
unitary, F-inverse semigroup, describe Green’s relations on ZPF (¢N"), descri-
be the group of units H (I) of the semigroup ZPF (cN") and describe its maxi-
mal subgroups. We prove that the semigroup ZPF (ocN") is isomorphic to the
semidirect product S, x oB" of the semigroup ¢B” by the group S., show
that every non-identity congruence € on the semigroup ZPF (oN”) is a group
congruence and describe the least group congruence on ZPF (¢N").

Key words:  Semigroup, inverse semigroup, partial map, permutation
group, least group congruence, bicyclic monoid, semidirect product

1. Introduction and preliminaries

In this paper, we shall denote the set of integers by Z, the set of positive integers
by N, the set of all maps from cardinal « to the set X by X* and the symmetric group
of degree k by Sy, i.e., S is the group of all bijections of the set . For set X, by idx we
denote the identity map idx: X — X, idx: x> x for any x € X. Formap f: X =Y
and for subset A C X we denote (A) f ={(z) f |z € X}.

Let (X, <) be a partially ordered set (a poset). For an arbitrary 2 € X we denote

tr={ye X:z<y} and le={ye X:y<z}.

The sets Tz and |z are called the principal filter and the principal ideal, respectively,
generated by the element x € X. A map a: (X,<) — (Y, <) from poset (X, <) into
a poset (Y, <) is called monotone or order preserving if x < y in (X, <) implies that
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za € yain (Y, €). A monotone map «: (X, <) — (Y, <) is said to be order isomorphism
if it is bijective and its converse a~!: (Y, <€) — (X, <) is monotone.

An semigroup S is called inverse if for any element 2 € S there exists a unique
27! € Ssuch that z2~'x = z and 7 'zo~! = 2~ 1. The element 2~ is called the inverse
of x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to
every element x of S its inverse element x~! is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in .S by F ().
If S is an inverse semigroup, then E (S) is closed under multiplication. The semigroup
operation on S determines the following partial order < on F (S): e < f if and only if
ef = fe = e. This order is called the natural partial order on E (S). A semilattice is a
commutative semigroup of idempotents.

If S is a semigroup, then we shall denote the Green relations on S by %, £, 7, 2
and JZ (see [9]). A semigroup S is called simple if S does not contain proper two-sided
ideals and bisimple if S has only one Z-class.

Hereafter we shall assume that A is an infinite cardinal. If a: A — X is a partial map,
then we shall denote the domain and the range of a by dom « and ran «, respectively.

Let #y be the set of all partial one-to-one transformations of a cardinal A together
with the following semigroup operation:

z(af)=(za)B if zedom(af)={yecdoma|yacdomp}, fora,plec .

The semigroup %) is called the symmetric inverse semigroup over the cardinal A (see |9,
Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [29] and it
plays a major role in the theory of semigroups.

The bicyclic semigroup (or the bicyclic monoid) € (p, q) is the semigroup with the
identity 1 generated by elements p and ¢ subject only to the condition pg = 1.

The bicyclic semigroup plays an important role in the algebraic theory of semigroups
and the theory of topological semigroups. For instance, a well-known Andersen’s result [1]
states that a (0-)simple semigroup with an idempotent is completely (0-)simple if and
only if it does not contain an isomorphic copy of the bicyclic semigroup.

The bicyclic monoid admits only the discrete semigroup topology. Bertman and
West in [7] extended this result for the case of semitopological semigroups. Stable and
I'-compact topological semigroups do not contain the bicyclic monoid [2, 22]. The problem
of an embedding of the bicyclic monoid into compact-like topological semigroups was
studied in [3, 4, 19]. The study of various generalizations of the bicyclic monoid, their
algebraic and topological properties, like topologizations, shift-continuous topologizati-
ons and embedding into compact-like topological semigroups was conducted in several
publications, including [5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 25, 18].

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup
%~ (o, B) which is generated by partial transformations a and g of the set of positi-
ve integers N, defined as follows: (n)ao=n+1ifn>1and (n)f=n—1ifn > 1 (see
Exercise IV.1.11(#%) in [27]).

Taking into account this remark, we shall consider the following generalization of
the bicyclic semigroup. For an arbitrary positive integer n > 2 by (N", <) we denote the
n-th power of the set of positive integers N with the product order:

(1, 2n) < (W1, Yn) if and only if r; <y; forall i=1,... n.
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It is obvious that the set of all order isomorphisms between principal filters of the poset
(N", £) with the operation of the composition of partial maps forms a semigroup. Denote
this semigroup by ZPF(N™). The structure of the semigroup ZPF(N") was introduced
and studied in [15]. There was shown that ZPF(N™) is a bisimple, F-unitary, F-inverse
monoid, described Green’s relations on ZPF(N") and its maximal subgroups. It was
proved that ZPF(N™) is isomorphic to the semidirect product of the direct n-th power
of the bicyclic monoid €™ (p,q) by the group of permutation S,, every non-identity
congruence on ZPF(N™) is group and was described the least group congruence on
IPF(N™). It was shown that every shift-continuous topology on ZPF(N") is discrete
and discussed embedding of the semigroup ZPF(N™) into compact-like topological semi-
groups. In [25] it was proved that a Hausdorff locally compact semitopological semigroup
IPF(N") with an adjoined zero is either compact or discrete. In this paper we shall
extend this generalization from N” to oN* for any infinite cardinal k.

For any infinite cardinal x consider the subset oN* of N* which contains all maps
a such that the set { € k| () a # 1} is finite, i.e.,

oN®* ={a e N* | {z € k| (z) a # 1} is finite }.
Similarly define ¢Z" as the subset of Z* which contains all maps a such that the
set {z € k| (z) a # 0} is finite.
By 1 we shall denote the element of the N* such that (z)1 =1 for any « € .
On the set Z" consider the product order <:

a<b if and only if (x)a< (z)b forall x€k.

Also, consider the pointwise operations +, —, max and min on the set Z”. For any
a,b € Z" define
(z) (a+b) = (z)a+ (z)b,
(z) (a—b) = (z)a—(z)0,
(z) (max{a, b}) = max{(z) a, (z) b},

() (min{a, b}) = min{(z) a, (z) b}

for any x € k. It is obvious that the set 0Z" is closed under these operations. The set
oN" is also closed under the operation max and min but not for + and —. Moreover

T

a+ba—0b¢oN* for any a,b € oN”.
But
a+b—1¢€oN" for any a,b € oN*,
and
a—b+1€oN* for any a € oN® and be la.

Let x by any infinite cardinal. Define the semigroup ZPF (cN*) as the set of all
order isomorphisms between principal filters of the poset (oN*, <) with the operation of
the composition of partial maps, i.e.,

IPF (oN*) = ({a: Ta = 1b | a,b € oN”" and « is an order isomorphism}, o).

Consider the following notation. For any a € ZPF (oN*) by d, and r, we denote
the elements of ¢N* such that dom a = 1d,, and rana = 1r,
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Also we define the maps A\, po € ZPF (0N*) in the following way:
domp, = doma =1d,, ranp, =N (a)p, =a—ds+1 for a € dompy;
ran A, =rana = 1r,, domA, =oN" (a)A\o=a+7r,—1 fora € dom,.

Since a + r, — 1 € oN* for any a € dom A\, we have that A, is well-defined. Similarly,
a—do+1 € oN* for any a € dom pg, so p, is well-defined too. We note that the definition
of Ao, po implies that Ay, = Ay and p,, = pa.
For any infinite cardinal  and for any bijection g € S, define the selfmap F: Z* —
7" by formula:
(2)(a) Fy=((z)g7 ") a, a €Z", z € k.

2. Algebraic properties of the semigroup ZPF (cN¥)

Proposition 1. For any infinite cardinal k the following statements hold:
(1) ZPF (oN") is an inverse semigroup;
(i7) the semilattice E (ZPF (oN")) is isomorphic to the semilattice (0N*, max) by the
mapping € — d.;
(#i1) aZp in TPF (oN*) if and only if dom o = dom 3;
(iv) aZpB in TPF (oN*) if and only if ran o = ran 3;
(v) aB in ZPF (oN*) if and only if doma = dom 8 and ran« = ran 3;
(vi) for any idempotents €,0. € ITPF (oN*) there exist elements o, € ITPF (ocN*)
such that aff = € and Ba = 1, hence TPF (oN*) is bisimple which implies that it
is simple.

Proof. (i) The definition of the semigroup ZPF (cN*) implies that ZPF (oN*) is an
inverse subsemigroup of the symmetric inverse monoid Z,n~ over the set oN*.

(#4) implies from statement ().

(#1)—(v) follow from statement (¢) and Proposition 3.2.11(1)—(3) of [23].

(vi) Fix arbitrary idempotents ¢,¢ € ZPF (oN*). Define a partial map a: oN* —
oN* in the following way:

dom « = dome, rana = dom and (2)a = z—d.+d,, forany 2z € domua.

Since e,1 € IPF (¢N*), the partial map « is well-defined and a € ZPF (oN*). Then
aa~!t = ¢ and a~'a = ¢ and hence we put 3 = a~!. Lemma 1.1 from [26] implies that
IPF (oN") is bisimple and hence simple. O

For any positive integer k > 2 and for any = € k, consider the map k,: k — N

defined by
k, if t=
OV ST,
1, otherwise.

Lemma 1. For any infinite cardinal k and for any bijection g € S, the following

statements hold:

(i) The selfmap Fy is an order automorphism of the poset (Z",<), and (,7—"9)71 =

Fy-1.
(i1) (oN*)Fy = oNF.
(130) (0ZF)Fy = oZ".
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(iv) Fgn = FgFn for any h € S,..
v) For any k € N and for any x € k: (ko) Fg = k(z)g.

(vi) (1) Fy=1.

(vii) ForanthS,.; g#h = Fy# Fn.

(viii) For any a,b € Z%: (a+b) F, = (a) Fy + (b) Fy-
(i )ForanyabeZ’”" (a—b)F, = (a) Fy — (b) Fy.
(x) For any a,b € Z": (max{a, b}) g = max{( ) Fg, (b) Fy}.
(i) For any a,b € Z": (min{a,b}) F, = min{(a) F, ( ) Fqt

Proof. (i) Show that F, is an order 1som0rphism. Fix distinct a,b € Z". Then there
exists ¥ € k such that (z)a # (x)b. For y = (x)g, we have that z = (y) g~ !, then
((y)g7) a# ((y)g~"') b implies that (a) Fy # (b) Fy, so Fy is injective.

For any a € Z", consider the map b: (x)b= ((z)g)a for any z € k, then

(2) (0) Fy = (@) g7 ") b= (((x)g7") g) a= (2)a

for any = € K, so Fy is surjective and moreover its converse (./"-"g)_1 is equals to the F 1.

Let a,b € Z" and a < b. For any z € x we have that ((z) g7') a < ((z) g~*) b which
imphes that (z) (a) Fy < () (b) Fy, ie., (a) Fy < (b) Fy, so Fy is monotone and such is
]-'Q , therefore F is an order 1som0rphlsm

(i4) Fix an element a € oN*. Since (z)(a) Fy = ((z)g')a € N for any z € «
we have that (a) F, € N”. Consider the set A = {z € k| (z)a # 1} and suppose
that (z) (a) Fy # 1 for some x € k, then ((z)g™')a # 1 and therefore (z)g~' € A, so
x € (A)g. Since the set A is finite and g is a bijection, we have that the set (A)g is
finite as well. So (a) Fy; € oN¥, therefore (¢N*) F, C oN*. By proved above, we have
that (a) F,-1 € oN*, then ((a) F,-1) F4 = a implies that oN* C (oN*) F,.

(7i7) The proof is similar to the proof of (i7).

(tv) For any h € S, a € Z" and = € k we have that

(v) Let k € N and z € . Then for any
)

(t) (ko) Fg = ((
(

= t) k(m)q

) g~ t) ke =

k, if(t)gt=x
1, otherwise N
k,

1

ift=(x)g

otherwise



THE MONOID OF ORDER ISOMORPHISMS BETWEEN...
ISSN 2078-3744. Bicuuk JIbBiB. yu-Ty. Cepis mex.-mat. 2022. Bumyck 93 19

(vi) For any t € x we have that (¢) (1) F, = ((t)g~')1=1.

(vii) Let h € S, and g # h. Then there exists z € x such that (z)g=* # (z)h~L.
Consider the image of 2(,),-1 under the maps F,; and F},. Statement (v) and the inequali-
ty () g~! # (z) h~! imply that:

(2@g—1) Fog = 20 # 2(@)gn = (2@)g=1) Fi-
(viii) For any a,b € Z* and for any = € k we have that
(2) (a+b) Fy = ((x)g7") (a+b) =
=(@)g ) a+((x)g')b=
= (z) (a) Fy + (z) (b) Fy.
Proof of statements (ix) and (xi) are similar to the proof of (viiz). O

For any infinite cardinal x and for any bijection g € S,; define the map F7: oN* —
oN* as the restriction of the map F; to the set ¢N”. By statement (i7) of Lemma 1,
the map F is well-defined and F, is a bijection. This and statement (i) of Lemma 1
imply that the map JF, is an order isomorphism of the poset (cN", <). Similarly, define
the map F7: 0Z" — oZ" as the restriction of the map F; to the set ¢Z". And similarly,
statement (iii) of Lemma 1 implies that the map F is well-defined and JF; is a bijection.
The proof to the next lemma is similar to the proof of Lemma, 1.

Lemma 2. For any infinite cardinal £ and for any bijection g € Sy, statements (iv)— (x1)
of Lemma 1 also hold for F and Fg.

We shall denote by I the identity map of oN*. It is obvious that I is the unit
element of the semigroup ZPF (oN*). Also by H (I) we shall denote the group of units
of ZTPF (oN*). It is clear that a € ZPF (oN*) is an element of H (I) if and only if it is
an order isomorphism of the poset (oN”, ).

Lemma 3. Let x be any infinite cardinal and o € H (I). Then (1)a = 1 and for any
x € K there exists y € k such that (k;) o = ky for any positive integer k > 2.

Proof. Consider (1) a. Statement 1 < (1) implies that (1)a™! < ((1)a)a™! =1, so
1)a=1.

Now, consider any « € k and consider (2,)«. Since 1 = (1) a # (2,) «, there exists
y € r such that 2, < (2,) @, and the inequality (2,) ™! < 2, implies that (2,) a = 2,.

Let k£ > 2 be a positive integer, suppose that for any positive integer n < k the
statement of the lemma holds.

For any = € & consider the image ((k+1),) . There exists z € k such that
(k+1), < ((k+1),) o Suppose the contrary that (k+1), £ ((k+1),) a for any z € k.
Since

(E+1),)a¢{1,2,,3.,... k. | z € K},

there exist two distinct elements z1, 2o € k such that
I1<(z1)((k+1),)a<k+1 and 1< (z)((k+1),)a<k+1.
Hence we have that
2., <((k+1),)a and 2., <((k+1),)«,
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and then
(22,) a g (k+1), and (2.,) a g (k+1),.

Since (2;,)a™! = 2. and (2,,) ™' = 2, for some z{, 2, we have that zj = zj. Then
2., = 2., and hence z; = z,, which contradicts z; # zo. Thus, (k+1) )a ' < (k+1),.
Since ((k+1),)a* ¢ {1,2,,3,,...,ks}, we have that ((k+1) )a~! = (k+1),, and
hence ((k+1),) o = (k+1),. We shall prove that © = y. The relation 2, < (k+1),
implies that (2,) a < ((k +1),) a. Since (2,) a =2, and ((k +1),) o = (k4 1), we have
that 2, < (k+1),, 50 z = y. O

For any x € k, consider the map 7, : oN* — oN” defined by the formula:

(t)a, ift=ux;
1, otherwise,

for any a € oN* and t € k.

Lemma 4. Let  be any infinite cardinal and oo € H (I) such that the equality (2,) o = 2,
holds for any x € k. Then « is the identity map.

Proof. Let a € oN”. Since the inequality (a)m, < a holds for any z € k and « is an
order isomorphism, it follows that ((a)7;)a < (a) . By Lemma 3 and by the lemma
assumption we have that ((a) 7,) a = (a) 74, s0 (a) 7, < (a) a for any x € x and therefore
a< (a)a.

So, we have that a < (a) a for any a € oN* and for any « that satisfies the lemma
assumption. Applying this result to the element (a)a and the map a~! we have that
(a)a < ((a)a)a™! =a.

The inequalities a < (a) & and (a) & < a imply that (a) @ = a. O

Theorem 1. For any infinite cardinal k, the group of units H (I) of the semigroup
IPF (oN") is isomorphic to the group S, of all bijections of the cardinal k. Moreover
a € H (I) if and only if o = F for some g € S,.

Proof. Define the map F: S, — H (I) in the following way:
VgeS. (9)F=7F,,

Since F is an order automorphism of the poset (oN* <) we have that the map Fy is
an element of the group of units H (I), so F is well-defined. Next, we shall show that the
map F is an isomorphism.

Statement (iv) of Lemma 1 implies that the map F is a homomorphism and
statement (vii) of Lemma 1 implies that F is injective.

We shall show that F is surjective. Let « € H (I). Lemma 3 implies that for any
x € K there exists y € k such that (2,)a = 2,. We define the map g: kK — « in the
following way: (x) g = y. Since « is a bijection so is g.

Now consider the composition « o .7-';,1. Let € k. The definition of the map g
implies that

(22) (a0 Fya ) = (29) Fos
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and statement (v) of Lemma 1 implies that (2(,)4) Fo-1 = 24,50 (2) (a o ]—";,1) = 2,.

-1
By Lemma 4, a0 ]-';,1 is identity map, therefore a = (]—';’,1) =Fy. O

Theorems 2.3 and 2.20 from [9] and Theorem 1 imply the following corollary.

Corollary 1. For any infinite cardinal x every mazimal subgroup of the semigroup
IPF (oN") is isomorphic to the group S, of all bijections of the cardinal k.

Proposition 2. For any infinite cardinal k and for any o € TPF (oN") there exists a
unique bijection go € Sx such that o = poF; Ao

Proof. Let a € ZPF (oN¥). For the element p_laA;! we have that
PaPa N Ae = cau,
where € and ¢ are idempotents with dome = dom « and dom ¢ = ran «, so ear = a. Since
dom (p;'aA;!) =ran (p; ') = oN*,
we have that p laA;! € H (I). By Theorem 1, for p ta);! there exists a bijection

go € S, such that plar;! = Fo .

Suppose that there exists h € S, such that o = poFj Ao. Then the equality
pa]:f(zAa = paf;a)\a
implies that
(P pa) Fir (Mada’) = (P pa) T3, (MaAa)-
The definition of A\, p, implies that
/J‘;lpa = >\a/\;1 =1,
so Fj = F, . Statement (v) of Lemma 1 implies that h = g,. O
The following corollary states that every order isomorphism « in the semigroup
IPF (oN") can be uniquely represented as a composition of three basic transformations:

shifting to the origin of coordinates, an order isomorphism of entire cN*, and then shifting
to the range of a.

Corollary 2. For any infinite cardinal £ and for any element o € TPF (oN*) the
representation o = poF, Ao 1S unique.

For any o € ZPF (oN*) we shall use this notation g, to denote the element of S,
that implements this representation o = poFg Aq-

Lemma 5. Let & be any infinite cardinal and o, 8 € TPF (oN¥), then
dop = (max{rq,dg} — ra)]-};l + dy;
Tap = (max{rmdg} - dﬁ) fgﬁ + 78;
Fous = FguTgs-

9ap
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Proof. By the definition of the composition of the partial maps:
dom (afB) = (rtanaNdom B) o™t =
= (Tra N1dg)a™" =
= (tmax{r,,dg})a*
Since « is an order isomorphism we get that
(tmax{ra,ds})a™" = 1 [(max{ra,ds})a~"],
and then, by Corollary 2 and by Lemma 1[(vé) , (viii)],
dom (af) = 1 [(max{ra,ds})a"'] =
= ([max{ra, ds A" (F5) ' o)
=1 (Imax{ra, dg} — o + 1] (F5.) " p2") =
=1 ([(max{ra, dg} —ra) .7:5;1 + 1} p(;l) =
=1 [(max{ra, dg} —ra) .7:9_: + da] )
Similarly, by the definition of the range of the composition of the partial maps:
ran (aff) = (ranaNdom ) f =
= (traN1ds)8 =
= (tmax{ra,ds})
Since ( is an order isomorphism we get that
(tmax{rq,dg})B = 1 [(max{ra, ds})5],
and then, by Corollary 2 and by Lemma 1[(vé) , (viii)],
ran (aff) = T [(max{ra, ds})f] =
=1 ([max{ra, dg}] A F, ) =
(Imaxc{ra, ds} - dg + 1] F,ps ) =
([(nax{ra. s} — ds) Fyy + 1] ps) =
=1 [(max{rq,dsg} — dg) Fy, + s8] .

|
—>—>—>

We shall prove that
Bl = papFy Fy,Aap
The definition of the maps pag, F, }"gB, «p and the definition of the composition of
the partial maps imply that

dom (Pocﬁ}_;afgg)\aﬁ) = dom (af3)

and
ran (pag}"o Fosha ) =ran (af).
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Now consider any a € dom (a3) and the representation a = dog+a—das. Denote a —dap
by b, then a has the representation a = dog + b. And consider the images of a under the
maps af and pagFy Fg Aap

(a) 6B = (dap +B) aff =
(lmax{ra,ds} —ro] F,.' +da +b) aff =
( [max{rq,dg} — ra] }-g;l +dy + b) paFy, )\ap/g}" Ag =
(Imax{ry,dg} —ro] Fy. +1+b) Fy )\apﬁ )\5:

= (max{rq,dg} —ro + 1+ (b) F, ) ap,g]:
(
(
= (
= [m

]
= (max{ra,dg} + (b) Fy.) psFg,A
= maX{ra,dﬂ} — d5 + 1+ (b) ]:ga>]: )\5 =
[max{ry,ds} — dg] Fgs +1+ (b )Fga}—gﬁ) Ag =
aX{Ta,dg} - dﬁ]]:gﬁ +( )fgafgﬁ +rg=
T‘aﬁ + ( )‘ng‘}—gﬁ7

(a) paﬁf ‘Fgﬁ)‘ ( aff + b) paﬂf ‘Fgﬁ)‘

=0b+1)F, F, Aag =

( ]:gafgﬁ"’_l) Aap =
= ( )]:ga]:gﬁ +’I“aﬂ.
We have that a8 = pasF, F, ', Aag, S0 by Corollary 2 Fas =FgFgs O
Corollary 3. For any infinite cardinal k and for any elements o, 8 € TPF (oN*) the
bijection gnp is equals to gnggs.
Corollary 4. Let x be any infinite cardinal and € be the idempotent of the semigroup
IPF (oN¥), then g. = id,, Fy =

Remark 2. In the bicyclic semigroup € (p,q) the semigroup operation is determined in
the following way:

piqj—k-‘rl, ifj > kj;

p'd -ptd =1 pid, if j = k;

pifj‘l’kql, ifj < k,

which is equivalent to the following formula:
piqj .pkql — pi+max{j,k}7qu+max{j,k}7k'

We note that the bicyclic semigroup € (p,q) is isomorphic to the semigroup (N x N, x)
which is defined on the square N x N of the set of all positive integers with the following
multiplication:

(1) (27]) * (ka l) = (Z + maX{j7 k} - Jvl + max{j, k} - k) .
To see this, it is sufficiently to check that the map
Fi€pa) > NxN:ipg b (i+1,5+1)

is an isomorphism between semigroups % (p, ¢) and (N x N, x).
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In this paper we shall use the semigroup (N x N, %) as a representation of the bicyclic
semigroup % (p, ¢) and we shall denote the semigroup (N x N, ) by B.

For any infinite cardinal x, define the semigroup cB” as the set cN” x ¢N* with the
multiplications x,, which is similar to (1):

(2)  (a,b) %4 (¢,d) = (a + max{b, ¢} — b,d + max{b,c} — c¢), where a,b,c,d € cN*.
We can observe that the semigroup ¢B”, as defined by the multiplication operation
%, in (2), is indeed isomorphic to the o-product of x many copies of the bicyclic monoid.

For any g € S, consider a map ®,: oB® — oB" defined in the following way: for
any (a,b) € oB" define

((a,0)) @ = ((a) Fy, (b) 77) -
Statements (i) and (i) of Lemma 1 imply that the map ®, is well-defined and @, is a
bijection.

Check that the map @, is an automorphism of ¢B*. For any (a,b), (¢,d) € oB", by
statements (ziii) — (x) of Lemma 1:

((a,b) * (¢, d) )@y = ((a + max{b, ¢} — b,d + max{b, c} — ¢)) &, =

= ((a + max{b,c} — b) Fys(d+ max{b, c} — ¢) ,7-';) =

= ((a) Fg + max{(b) Fy, (c) Fyg} — (b) Fy, (d) Fg + max{(b) Fy, (c) Fg} = (c) Fy) =

= ((a) Fy, (0) Fy) #x ((€) Fy. (d) Fy) = ((a) Fy, (b) Fy) #x ((¢) Fg. (d) Fy) =

= (a,b) @y *, (c,d) Dy.

Let k be any infinite cardinal and Aut(cB") be the group of automorphisms of the
semigroup oB”. Consider the map ®: S, — Aut (6B") for any g € S, define (g) & = Dy,
Statement (vii) of Lemma 1 implies that ® is injective. Next, we show that the map ®
is a homomorphism. For any g, h € S, consider the image of their composition: for any
[a,b] € cB*

([a,0]) (gh) @ = ([a, b]) Pgn =
= [(a) Fan» (b) ]:Oh] :

g g
Statement (iv) of Lemma 1 implies that

[(@) Fon. () Fou] = [(a) Fg i, (b) Fg FR]

and since

[(a) FgFr, (0) FgF] = ([(a) Fy. (b) o) @0 =

= (o) 9,0, =

we have that
(la,b]) (gh) @ = ([a,b]) (9) © (h) P,

i.e., ® is a homomorphism.
For any infinite cardinal x consider the semidirect product S, x¢ cB" of the semi-
group oB” by the group S, as the set S, x oB”* with the operation:

(9, [a,b]) (h, [e, d]) = (gh, ([a,b]) Pp *, [c,d])  for (g,[a,b]), (h,[c,d]) € S, x oB".
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Define the map ¥: ZPF (cN*) — S,; X¢ 0B" by the formula:
() U = (ga, [(da) ]-';a,ra]) .
The definition of dq, 74, go and F, implies that the map V¥ is well-defined.

Theorem 2. For any infinite cardinal k the semigroup TPF (oN") is isomorphic to the
semidirect product S, Xo oB* of the semigroup ocB" by the group S.

Proof. Consider the map V. Corollary 2 implies that ¥ is a bijection. We shall prove
that W is also a homomorphism.

For any «, 8 € TPF (cN*) we have that (af) ¥ = (gaﬁ, {(dag) f;aﬁvraBD . Corol-

lary 3 and Lemma 5 imply that
(908 [(da) 5, 7] ) =
= (9095, [((max{ra,ds} = ra) F,.! + da) Fo, 7o, (max{ra, ds} — dg) Fy, +75] ).
Lemma 1, the definition of the operation *,, and the definition of the map ® imply that
(9098 [(max{ra, da} = ra) Fyl + do) Fo, Fo, (max{ra, da} - dg) Fy, +75] ) =
= (9098, [max{(ra) Fy,, (dg) Fy,} — (ra) Fyy + (da) Fy, Fy, s max{(ra) Fy,,
(dp) Fos} = (dg) Fyy +15]) =
= (9098, [(da) Fyo Fys, (r a) 9] *x [(ds) gwﬁ])
(900 () 75,75, 00) 75, | e (0 75, ms] ) =
= (9098, ([(da) ... 70]) @y, 4 | (ds) 7, D
= (90 [(da) 5, 7a]) (95 {(dﬁ)]:;w?"ﬁ])
= () ¥ (B )

O

For any oo € TPF (0N*), let (o, [(da) Fy, 7o) = (a) ¥ be the image of the element
a by the isomorphism ¥: ZPF (cN*) — S, xg ocB” which is defined above the proof of
Theorem 2.

Every inverse semigroup S admits the least group congruence €pmg (see [27, Secti-
on IIT)):

5Cmgt if and only if  there exists an idempotent e € S such that se = te.

Proposition 3. For any infinite cardinal k, any element o« € ZPF (cN*) and for any
idempotent ¢ € TPF (oN*) we have:

(ag) ¥ = (g, [(da) Fy, ,7a]) (idm (d-, d]) =
(ga, [max{rm d.} — (da)]:;a,max{ra, ds}]) ;
(idy, [de, dc]) (904’ [( 04) ]:;a’r"‘]) =
= (9o [(max{de, da}) Fo., (max{d.,do}) Fy — (da) Fy, + Tal) .

() U =
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Proof. By Corollary 4, g. is the identity permutation, i.e., g. = id,; and F; = L. Since

dome = rane we have that d. = r. and then (d.) F, =d. =re, so

(9@ [(ds) ]:5577“5]) = (idy, [de, dc]) .

Then the definition of the multiplication in S, x ¢ cB* completes the proof of the proposi-
tion. O

The following theorem describes the least group congruence on the semigroup
IPF (oN*F).

Theorem 3. Let k be any infinite cardinal. Then a€mgf in the semigroup TPF (oN¥)
if and only if
Jo = g3 and (da)]:;)a —ro = (dg) Fy. —ra.

9

Proof. Fix an idempotent ¢ in ZPF (ocN*). By Proposition 3,
(90, [(da) 75, 7a]) (ids, [de, d]) = (90, [max{ra, de} = 7o + (da) 5, ,max{ra, d:}])
(gg, {(dg) F;ﬁ’TﬁD (idy, [de, de]) = (gg7 [max{rg, d.} —rp+ (dg) f;{i7max{rg,d5}}) ,
so the equality ae = Pe holds if and only if
9o = 9p and (da) Fy, —Ta = (d@)]:;ﬂ —ra.
U

For any infinite cardinal s, by oZ% we shall denote the group (¢Z",+). Let
Aut(cZ%) be the group of automorphisms of the group oZ%. Consider the map
O: S, — Aut (0Z%): for any g € S,; define (9) © = F.

Statements (i) , (4ii) and (viii) of Lemma 1 imply that for any g € S the map F7 is
an isomorphism of the group ¢Zf, so the map © is well-defined. Next, statements (iv)
and (vii) of Lemma 1 imply that the map © is an injective homomorphism.

Consider the semidirect product Sx xg (0Z",+) as the set Sy x oZ® with the
operation

(g,m) (h,n) = (gh, (m) Fj, +n).

Theorem 4. For any infinite cardinal k the quotient semigroup IPF (oN*) /Cpg is
isomorphic to the semidirect product S,; Xo (62", +) of the group (6Z",+) by the group
S-

Proof. Define the map Y: ZPF (6N*) — .7 xo (0Z",+) in the following way: for any
a € ITPF (oN*) we put
()T = (ga, (da) Fo, = ra) )
Since a — b € ¢Z" for any a,b € cN* we have that T is well-defined.
For any «, 8 € TPF (ocN*) by the definition of T we have that

(aﬁ) T = (gaﬂ’ (daﬂ) ]:;a/; - 7'045) s

and by Lemma 5
(o) T= (gagg, ((max{ra, dg}—7q) -7'—911 + da) ]—';af;ﬁ— (max{rq,dg}—dg) Fy, —r5> ,
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then, by statements (viii) and (iz) of Lemma 1
(aB) Y :(gagﬂv (max{ra,ds}) Fg, — (ra) Fgy + (da) Fgo Fgs — (max{ra,dg}) Fg,+
+ (dg) Fgy —75) =
= (9098, (da) Fy. Fys — (ra) Fgy + (dg) Fygy —15) =
= (gas (da) Fy, = 7a) (95, (d3) Fg, = 75) =
=(@)T(B)T,

and hence T is a homomorphism.
Show that the map T is surjective. For any (g,z) € S, x 0Z", consider the maps
a,b: Kk — N. For any z € k:

() z, if (x)z>0 0, it (x)z2>0
(x)a =11, if (£)z2=0 and (x)b=11, if (z)z=0
0, if ()2<0 —(z)z, if (z)z<0.
We have that a,b € oN* and z = a — b. Now we consider o € ZPF (oN") such that
9o = G,
oy —1
do = (a) (]:g) )
To =

Then

so T is surjective.
Also, Theorem 3 implies that a€mg S in ZPF (oN*) if and only if (o) T = (8) Y. This
implies that the homomorphism Y generates the congruences € on ZPF (oN*). O

Every inverse semigroup S admits a partial order:
axb if and only if there exists e € E(S) such that a = be.

So defined order is called the natural partial order on S. We observe that a < b in an
inverse semigroup S if and only if a = fb for some f € E (S) (see [23, Lemma 1.4.6]).

This and Proposition 3 imply the following proposition, which describes the natural
partial order on the semigroup ZPF (oN*).

Proposition 4. Let k be any infinite cardinal and let «, 8 € ITPF (oN¥). Then the
following conditions are equivalent:
(i) a < B;
(%) ga = 98, (da)}—;a — T = (dg)]-';ﬁ —rg and dg < do in the poset (oN*, <);
(ii0) ga = gp, (da) Fy, —ra = (dg) Fg, —rs and rg < 1o in the poset (oN*, <).



Taras MOKRYTSKYI
28 ISSN 2078-3744. Bicuux JIpBiB. yu-Ty. Cepis mex.-mar. 2022. Bunyck 93

An inverse semigroup S is said to be E-unitary if ae € F (S) for some e € E(S5)
implies that a € E () [23]. E-unitary inverse semigroups were introduced by Siato in
[28], where they were called “proper ordered inverse semigroups”.

Proposition 5. For any infinite cardinal k, the inverse semigroup ITPF (oN*) is
E-unitary.

Proof. Let a € IPF (oN"). Suppose that ae is an idempotent for some idempotent
¢ € TPF (oN¥). Then Proposition 3 and the definition of idempotents imply that g, = id,
and d, = (do) Fg, = Ta, 50 « is an idempotent. O

An inverse semigroup S is called F'-inverse, if the €ng-class s¢,,, of each element s
has the top (biggest) element with the respect to the natural partial order on S [24].

Proposition 6. For any infinite cardinal k, the semigroup TPF (oN*) is an F-inverse
semigroup.

Proof. Let a € TPF (oN"). Consider an element § € ZPF (oN*) such that
98 = Ya;
. o\ —1
dg = do —min{d,, (ra) (‘Fga) }+1,
rg=Tq — min{(da)}';a,ra} + 1.

We have that min{d,, () (]-';’a)_l} € oN* and min{d,, (7,) (]—";a)_l} < dq, s0 dg €

oN”. Similar 73 € oN*, so 3 is well-defined. Also, we have that gg = g, and
(dg) F2,—1p = (d —min{dy, (ra) (F2, )‘1}+1) Fo — (ra—min{(da) F2, ra}+1) =
=(do) F,, —min{(da) F, ,7a} +1— 1o + min{(da) Fy_,ra} —1=
= (da) f;& —Ta,

then Theorem 3 implies that SCygar.
Now, for any v € ZPF (¢N*), such that y€mga, we consider the idempotent € with
d. = r., and consider the product (8) ¥ (¢) ¥. By Proposition 3

()W (€)Y = (g5, [(ds) Fy,75) ) (idi de, dc]) =
= (g@, {max{rg,dg} — 1+ (dg) Fy,, max{rg, d. }}
)

)=
- (gﬁ, {max{r&rv} — 15+ (dg) Fy,, max{rg, r,} )

Since Y€mga, by Theorem 3 we have that g, = g and 7, —(dy) Fy = ro—(da) Fy.
then for any x € &

(@) (max{rg,ry}) = (x) (max{ra — min{(dy) f;ﬂ,ra} + 1,r7}) =
_ {max{( )70 = (@)ra+ (@)1 (2) ) if (2) (do) Fg, > ()70 _
)

max{( — () (do) Fy, + (2)1,(z) 7y}, otherwise

)Ta
_ {max{l ()}, if (2) (da) Fo, > (2) 70
)

max{(z) ry — (z) (dy) Fg, +1,(z)ry}, otherwise

= (x) r“/a
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so max{rg,r,} = r,. Also
max{rg,ry} —rs + (dg) Fg, =1y —1p + (dg) Fy, =
=y ok () 5, =
= (dy) Fy,

$0
(gﬁ7 [max{rg,r,y} —rg+ (dg) Fy,, max{rg, 7’7}}) = (g,y, [(dv) ]-";W,TWD = (y) V.

The equality (8) ¥ () ¥ = (v) ¥ implies that v = fe, so v < 8. This means that
the element [ is the biggest element in the €yg-class of the element « in ZPF (oN*). O

Lemma 6. Let k be any infinite cardinal and let € be a congruence on the semigroup
IPF (oN") such that €. for some two distinct idempotents £,1 € TPF (oN*). Then ¢Cv
for all idempotents ¢,v of TPF (oN*).

Proof. We observe that without loss of generality we may assume that € < ¢ where
< is the natural partial order on the semilattice E(ZPF (oN¥)). Indeed, if €,¢ €
E(ZPF (oN")) then €. implies that ¢ = ee€ie, and since the idempotents ¢ and ¢ are
distinct in ZPF (cN*) we have that e < €.

Now, the inequality € < ¢ implies that dome C dom¢. Next, we define partial map
a: oN¥ — gN* in the following way:

doma = oN*, rana = dom¢ and (z)a=z+d,—1, forany zedoma.
The definition of o implies that cta™ = aa™! =1 and o 'a = «, and moreover, we
have that

(aea‘l) (aaa_l) = Qe (a_la) ea”l =
=aeea !l =

=aqeca”t =

= ozeofl,
which implies that aea™! is an idempotent of ZPF (oN*) such that aea™! # L.

Thus, it was shown that there exists a non-unit idempotent ¢* in ZPF (¢N*) such
that ¢*€l. This implies that o€l for any idempotent £y of ZPF (¢N*) such that £* <
g0 < L. Since ¢* # I we have that d.« # 1, so there exists ¢ € k such that (z)d.« # 1,
thus 2, < dc«. Consider an idempotent ¢, in ZPF (oN*) such that d., = 2,. Then
de, = 2, < d.~ implies that €* < €,, so ;€L

Fix an arbitrary y € x \ {«}. Define a bijection on the set « in the following way:

() g =y, (y)g==x and tyg=t, for ter\{z vy}
Next, consider the map F, as an element of ZPF (¢N”). The definition of g implies that
g~ = g, then, by Lemma 1(i) we have that (]-";)71 = ]-";_1 = F, and then

FUFS = FeFe = F2 (Fo) ' =1
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The calculations
(FoeaFy) © = (F5) ¥ (ea,) ¥ (Fy) ¥ =
= (97 1, ID (idm [217 230]) (97 [17 1]) =

= (idm [2?;7 21/]) =

= (gy) ¥
shows that Fje,F, = ¢,, where ¢, is an idempotent in ZPF (cN*) such that d., = 2,.
Then

ey = (FyeaFy) € (FGIFy) =1
implies that ¢, €I
The above arguments imply that .l for every idempotent e, € ZPF (cN*) such

that €, is the identity map of the principal filter 12, of the poset (¢N*, <), x € k. Now,
fix an idempotent ¢ in ZPF (¢N*) and consider the set A = { € x| (x)d¢ # 1}. Since
dc € oN* the set A is finite, so there exists k € N such that A = {x1,2,..., 2} for
some 1,2, ...,T,r € K. Consider the idempotent e4 = €4, ... €4, - Since € is congruence,
€4, ¢l for any x; € A and A is finite we have that (e, ...€5,) €l. The definition of €4
and the semigroup operation of ZPF (¢N*) imply that d., = 24, where

2 ifteA
(t)2A={

1 otherwise.
We define the partial map ~v: oN* — gN* in the following way:

domy=0N" rany=124 and (2)y=2z+24—1, forany z€& domn~.

! =T and vy~ !4 = €4. For any positive integer

The definition of v implies that that vy~
n € N consider the idempotent

(7_1)n7" =~ . 4Ty,

—_———— ——

n-times  n-times

Since 4 = v~ 'v€I we have that Y"1y~ 1yy€y 1y = 4 and v~ 'y~ 1y~¢L, so by induction
(7*1)71 7" €, for any n € N. Also, by induction, we have that d(,-1yn,n = (n+1), where

n+l ifted
)+ 1)a = {1 otherwise,
for any n € N. Thus, we have that
de < d('y*l)’"’y’" = (m+1)a,
where m = max{(z)d. | z € k}, implies that (7_1)m ™ < ¢, so CCI. O

Lemma 7. Let k be any infinite cardinal and let € be a congruence on the semigroup
IPF (oN*) such that a8 for some non-7 -equivalent elements o, 8 € TPF (oN*). Then
€€ for all idempotents e, of TPF (oN¥).
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Proof. Since a and 8 are not-#-equivalent in ZPF (cN*) we have that either aa™! #
BB~ orata # 1B (see [23, p. 82]). Then Proposition 4 from [23, Section 2.3] implies
that aa=1¢B5~1 and o 'a€B~ 15 and hence the assumption of Lemma 6 holds. O

Lemma 8. Let k be any infinite cardinal and let € be a congruence on the semi-
group TPF (oN*) such that «€S for some two distinct € -equivalent elements «, 3 €
IPF (oN*). Then €€ for all idempotents €, of TPF (oN*).

Proof. By Proposition 1(vi) the semigroup ZPF (¢cN*) is simple and then Theorem 2.3
from [9] implies that there exist p,& € ZPF (oN*) such that f: H, — Hy: x — puxé
maps « to I and B to v # I, respectively, which implies that I€. Since ~y is an element of
the group of units of the semigroup ZPF (cN*), by Theorem 1, v = Fg and since v # I
we have that g, # id,, so there exists © € k such that (z) g, # x. Put ¢ as the identity
map with d. = 2,. Since € is a congruence on the semigroup ZPF (¢N*) and v € Hy we
have that
€ = ee = eleCene.

Proposition 3 implies that

(£9) W = (g, [max{(2,) 7y, 2.} max{(2.) 75, 2. }] )

By Lemma 1(v) we have that (2,) F; = 2(;)y, # 24, this and the definition of elements

2, and 2(),., imply that max{(2;) Fg ,2:} # 24, so

Teye = max{(2;) Fy ,2:} # 22 = 7e,

then by Proposition 1(v), eve and ¢ are non-s#-equivalent elements in ZPF (cN*). Next,
we apply Lemma 7. O

Theorem 5. For any infinite cardinal x every non-identity congruence € on the semi-
group TPF (oN¥) is group.

Proof. For every non-identity congruence € on ZPF (ocN*) there exist two distinct
elements «, § € ZPF (6N*) such that a€S. If a8 in ZPF (¢N*) then by Lemma 7 all
idempotents of the semigroup ZPF (cN*) are €-equivalent, otherwise by Lemma 8 we
get the same. Thus, by Lemma II.1.10 of [27] the quotient semigroup ZPF (¢N*) /€ has
a unique idempotent and hence it is a group. O
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Posriissremo Take y3arajbHeHHS OIMUKJIIYHOTO MOHOIMA. s 10BLIBHOTO
HECKIHYEHHOTO KapauHaaa k po3riaaaemo Hamsrpymy ZPF (oN”) Bcix mopan-
KOBHX i30MOpdi3MiB romoBHMX (GiabTpiB MHONKWHEM 0N 3 TOpSAKOM TOOYTKY.
Mu nocaiammo anrebpuani BiaactuBocTi mHamisrpymm ZPF (oN”), nosenemo, mo
BOHA € OimpocToio, F-yHiTapHOIO, F-IHBEPCHOIO HAIIBIPYIIO0, OMHUIIEMO BiIHO-
menns ['pina #a wanisrpym ZPF (oN%), omumewmo rpyny ommuanms H (I) miei
izomopdHua HamiBupamomy n00yTKy S, X oB” manmisrpynm oB” i rpymu Sy,
JI0BEZEMO L0 KOXKHA He TOTOXKHa KOHrpyemmist € ma mamirpym ZPF (oN7) e
IPYNOBOIO; OMUIIEMO HAWMEHITY IpynoBy KOHTpyeHtiio Ha ZPF (oN).

Karowoet caosa: HamiBrpyia, iHBepCHA HAIBIpyIa, YaCTKOBE BiIOOpaKeH-
Hsl, TPYIIa I€PECTAHOBOK, HAWMEHINA TPYIOBA KOHTPYEHITis, OIUKITIYHA HAITB-
rpyla, HaliBUpaMuil 00y TOK.



