
ISSN 2078-3744. Âiñíèê Ëüâiâ. óí-òó. Ñåðiÿ ìåõ.-ìàò. 2022. Âèïóñê 93. Ñ. 14�33

Visnyk of the Lviv Univ. Series Mech. Math. 2022. Issue 93. P. 14�33

http://publications.lnu.edu.ua/bulletins/index.php/mmf

doi: http://dx.doi.org/10.30970/vmm.2022.93.014-033

ÓÄÊ 512.534.5

THE MONOID OF ORDER ISOMORPHISMS BETWEEN
PRINCIPAL FILTERS OF σNκ

Taras MOKRYTSKYI

Ivan Franko National University of Lviv,

Universytetska Str., 1, Lviv, 79000, Ukraine

e-mail: tmokrytskyi@gmail.com

Consider the following generalization of the bicyclic monoid. Let κ be any
in�nite cardinal and let IPF (σNκ) be the semigroup of all order isomorphisms
between principal �lters of the set σNκ with the product order. We shall study
algebraic properties of the semigroup IPF (σNκ), show that it is bisimple, E-
unitary, F -inverse semigroup, describe Green's relations on IPF (σNκ), descri-
be the group of units H (I) of the semigroup IPF (σNκ) and describe its maxi-
mal subgroups. We prove that the semigroup IPF (σNκ) is isomorphic to the
semidirect product Sκ n σBκ of the semigroup σBκ by the group Sκ, show
that every non-identity congruence C on the semigroup IPF (σNκ) is a group
congruence and describe the least group congruence on IPF (σNκ).
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1. Introduction and preliminaries

In this paper, we shall denote the set of integers by Z, the set of positive integers
by N, the set of all maps from cardinal κ to the set X by Xκ and the symmetric group
of degree κ by Sκ, i.e., Sκ is the group of all bijections of the set κ. For set X, by idX we
denote the identity map idX : X → X, idX : x 7→ x for any x ∈ X. For map f : X → Y
and for subset A ⊂ X we denote (A) f = {(x) f | x ∈ X}.

Let (X,6) be a partially ordered set (a poset). For an arbitrary x ∈ X we denote

↑x = {y ∈ X : x 6 y} and ↓x = {y ∈ X : y 6 x} .
The sets ↑x and ↓x are called the principal �lter and the principal ideal, respectively,
generated by the element x ∈ X. A map α : (X,6) → (Y,0) from poset (X,6) into
a poset (Y,0) is called monotone or order preserving if x 6 y in (X,6) implies that
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xα 0 yα in (Y,0). A monotone map α : (X,6)→ (Y,0) is said to be order isomorphism

if it is bijective and its converse α−1 : (Y,0)→ (X,6) is monotone.
An semigroup S is called inverse if for any element x ∈ S there exists a unique

x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse
of x ∈ S. If S is an inverse semigroup, then the function inv : S → S which assigns to
every element x of S its inverse element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E (S).
If S is an inverse semigroup, then E (S) is closed under multiplication. The semigroup
operation on S determines the following partial order 4 on E (S): e 4 f if and only if
ef = fe = e. This order is called the natural partial order on E (S). A semilattice is a
commutative semigroup of idempotents.

If S is a semigroup, then we shall denote the Green relations on S by R, L , J , D
and H (see [9]). A semigroup S is called simple if S does not contain proper two-sided
ideals and bisimple if S has only one D-class.

Hereafter we shall assume that λ is an in�nite cardinal. If α : λ ⇀ λ is a partial map,
then we shall denote the domain and the range of α by domα and ranα, respectively.

Let Iλ be the set of all partial one-to-one transformations of a cardinal λ together
with the following semigroup operation:

x (αβ) = (xα)β if x ∈ dom (αβ) = {y ∈ domα | yα ∈ domβ} , for α, β ∈ Iλ.

The semigroup Iλ is called the symmetric inverse semigroup over the cardinal λ (see [9,
Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [29] and it
plays a major role in the theory of semigroups.

The bicyclic semigroup (or the bicyclic monoid) C (p, q) is the semigroup with the
identity 1 generated by elements p and q subject only to the condition pq = 1.

The bicyclic semigroup plays an important role in the algebraic theory of semigroups
and the theory of topological semigroups. For instance, a well-known Andersen's result [1]
states that a (0-)simple semigroup with an idempotent is completely (0-)simple if and
only if it does not contain an isomorphic copy of the bicyclic semigroup.

The bicyclic monoid admits only the discrete semigroup topology. Bertman and
West in [7] extended this result for the case of semitopological semigroups. Stable and
Γ-compact topological semigroups do not contain the bicyclic monoid [2, 22]. The problem
of an embedding of the bicyclic monoid into compact-like topological semigroups was
studied in [3, 4, 19]. The study of various generalizations of the bicyclic monoid, their
algebraic and topological properties, like topologizations, shift-continuous topologizati-
ons and embedding into compact-like topological semigroups was conducted in several
publications, including [5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 25, 18].

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup
CN (α, β) which is generated by partial transformations α and β of the set of positi-
ve integers N, de�ned as follows: (n)α = n + 1 if n > 1 and (n)β = n − 1 if n > 1 (see
Exercise IV.1.11(ii) in [27]).

Taking into account this remark, we shall consider the following generalization of
the bicyclic semigroup. For an arbitrary positive integer n > 2 by (Nn,6) we denote the
n-th power of the set of positive integers N with the product order:

(x1, . . . , xn) 6 (y1, . . . , yn) if and only if xi 6 yi for all i = 1, . . . , n.
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It is obvious that the set of all order isomorphisms between principal �lters of the poset
(Nn,6) with the operation of the composition of partial maps forms a semigroup. Denote
this semigroup by IPF(Nn). The structure of the semigroup IPF(Nn) was introduced
and studied in [15]. There was shown that IPF(Nn) is a bisimple, E-unitary, F -inverse
monoid, described Green's relations on IPF(Nn) and its maximal subgroups. It was
proved that IPF(Nn) is isomorphic to the semidirect product of the direct n-th power
of the bicyclic monoid C n(p, q) by the group of permutation Sn, every non-identity
congruence on IPF(Nn) is group and was described the least group congruence on
IPF(Nn). It was shown that every shift-continuous topology on IPF(Nn) is discrete
and discussed embedding of the semigroup IPF(Nn) into compact-like topological semi-
groups. In [25] it was proved that a Hausdor� locally compact semitopological semigroup
IPF(Nn) with an adjoined zero is either compact or discrete. In this paper we shall
extend this generalization from Nn to σNκ for any in�nite cardinal κ.

For any in�nite cardinal κ consider the subset σNκ of Nκ which contains all maps
a such that the set {x ∈ κ | (x) a 6= 1} is �nite, i.e.,

σNκ = {a ∈ Nκ | {x ∈ κ | (x) a 6= 1} is �nite }.

Similarly de�ne σZκ as the subset of Zκ which contains all maps a such that the
set {x ∈ κ | (x) a 6= 0} is �nite.

By 1 we shall denote the element of the Nκ such that (x)1 = 1 for any x ∈ κ.
On the set Zκ consider the product order 6:

a 6 b if and only if (x) a 6 (x) b for all x ∈ κ.

Also, consider the pointwise operations +, −, max and min on the set Zκ. For any
a, b ∈ Zκ de�ne

(x) (a+ b) = (x) a+ (x) b,

(x) (a− b) = (x) a− (x) b,

(x) (max{a, b}) = max{(x) a, (x) b},
(x) (min{a, b}) = min{(x) a, (x) b}

for any x ∈ κ. It is obvious that the set σZκ is closed under these operations. The set
σNκ is also closed under the operation max and min but not for + and −. Moreover

a+ b, a− b /∈ σNκ for any a, b ∈ σNκ.

But

a+ b− 1 ∈ σNκ for any a, b ∈ σNκ,
and

a− b+ 1 ∈ σNκ for any a ∈ σNκ and b ∈ ↓a.
Let κ by any in�nite cardinal. De�ne the semigroup IPF (σNκ) as the set of all

order isomorphisms between principal �lters of the poset (σNκ,6) with the operation of
the composition of partial maps, i.e.,

IPF (σNκ) = ({α : ↑a→ ↑b | a, b ∈ σNκ and α is an order isomorphism}, ◦) .

Consider the following notation. For any α ∈ IPF (σNκ) by dα and rα we denote
the elements of σNκ such that domα = ↑dα and ranα = ↑rα
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Also we de�ne the maps λα, ρα ∈ IPF (σNκ) in the following way:

dom ρα = domα = ↑dα, ran ρα = σNκ, (a) ρα = a− dα + 1 for a ∈ dom ρα;

ranλα = ranα = ↑rα, domλα = σNκ, (a)λα = a+ rα − 1 for a ∈ domλα.

Since a + rα − 1 ∈ σNκ for any a ∈ domλα we have that λα is well-de�ned. Similarly,
a−dα+1 ∈ σNκ for any a ∈ dom ρα, so ρα is well-de�ned too. We note that the de�nition
of λα, ρα implies that λλα = λα and ρρα = ρα.

For any in�nite cardinal κ and for any bijection g ∈ Sκ de�ne the selfmap Fg : Zκ →
Zκ by formula:

(x) (a)Fg =
(
(x) g−1

)
a, a ∈ Zκ, x ∈ κ.

2. Algebraic properties of the semigroup IPF (σNκ)

Proposition 1. For any in�nite cardinal κ the following statements hold:

(i) IPF (σNκ) is an inverse semigroup;

(ii) the semilattice E (IPF (σNκ)) is isomorphic to the semilattice (σNκ,max) by the
mapping ε 7→ dε;

(iii) αL β in IPF (σNκ) if and only if domα = domβ;
(iv) αRβ in IPF (σNκ) if and only if ranα = ranβ;
(v) αH β in IPF (σNκ) if and only if domα = domβ and ranα = ranβ;

(vi) for any idempotents ε, ι ∈ IPF (σNκ) there exist elements α, β ∈ IPF (σNκ)
such that αβ = ε and βα = ι, hence IPF (σNκ) is bisimple which implies that it

is simple.

Proof. (i) The de�nition of the semigroup IPF (σNκ) implies that IPF (σNκ) is an
inverse subsemigroup of the symmetric inverse monoid IσNκ over the set σNκ.

(ii) implies from statement (i).
(iii)�(v) follow from statement (i) and Proposition 3.2.11(1)�(3) of [23].
(vi) Fix arbitrary idempotents ε, ι ∈ IPF (σNκ). De�ne a partial map α : σNκ ⇀

σNκ in the following way:

domα = dom ε, ranα = dom ι and (z)α = z−dε+dι, for any z ∈ domα.

Since ε, ι ∈ IPF (σNκ), the partial map α is well-de�ned and α ∈ IPF (σNκ). Then
αα−1 = ε and α−1α = ι and hence we put β = α−1. Lemma 1.1 from [26] implies that
IPF (σNκ) is bisimple and hence simple. �

For any positive integer k > 2 and for any x ∈ κ, consider the map kx : κ → N
de�ned by

(t) kx =

{
k, if t = x,

1, otherwise.

Lemma 1. For any in�nite cardinal κ and for any bijection g ∈ Sκ, the following

statements hold:

(i) The selfmap Fg is an order automorphism of the poset (Zκ,6), and (Fg)−1
=

Fg−1 .

(ii) (σNκ)Fg = σNκ.
(iii) (σZκ)Fg = σZκ.
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(iv) Fgh = FgFh for any h ∈ Sκ.
(v) For any k ∈ N and for any x ∈ κ : (kx)Fg = k(x)g.

(vi) (1)Fg = 1.
(vii) For any h ∈ Sκ : g 6= h =⇒ Fg 6= Fh.

(viii) For any a, b ∈ Zκ : (a+ b)Fg = (a)Fg + (b)Fg.
(ix) For any a, b ∈ Zκ : (a− b)Fg = (a)Fg − (b)Fg.
(x) For any a, b ∈ Zκ : (max{a, b})Fg = max{(a)Fg, (b)Fg}.

(xi) For any a, b ∈ Zκ : (min{a, b})Fg = min{(a)Fg, (b)Fg}.

Proof. (i) Show that Fg is an order isomorphism. Fix distinct a, b ∈ Zκ. Then there
exists x ∈ κ such that (x) a 6= (x) b. For y = (x) g, we have that x = (y) g−1, then(
(y) g−1

)
a 6=

(
(y) g−1

)
b implies that (a)Fg 6= (b)Fg, so Fg is injective.

For any a ∈ Zκ, consider the map b : (x) b = ((x) g) a for any x ∈ κ, then

(x) (b)Fg =
(
(x) g−1

)
b =

((
(x) g−1

)
g
)
a = (x) a

for any x ∈ κ, so Fg is surjective and moreover its converse (Fg)−1
is equals to the Fg−1 .

Let a, b ∈ Zκ and a 6 b. For any x ∈ κ we have that
(
(x) g−1

)
a 6

(
(x) g−1

)
b which

implies that (x) (a)Fg 6 (x) (b)Fg, i.e., (a)Fg 6 (b)Fg, so Fg is monotone and such is
F−1
g , therefore Fg is an order isomorphism.

(ii) Fix an element a ∈ σNκ. Since (x) (a)Fg =
(
(x) g−1

)
a ∈ N for any x ∈ κ

we have that (a)Fg ∈ Nκ. Consider the set A = {x ∈ κ | (x) a 6= 1} and suppose
that (x) (a)Fg 6= 1 for some x ∈ κ, then

(
(x) g−1

)
a 6= 1 and therefore (x) g−1 ∈ A, so

x ∈ (A) g. Since the set A is �nite and g is a bijection, we have that the set (A) g is
�nite as well. So (a)Fg ∈ σNκ, therefore (σNκ)Fg ⊂ σNκ. By proved above, we have
that (a)Fg−1 ∈ σNκ, then

(
(a)Fg−1

)
Fg = a implies that σNκ ⊂ (σNκ)Fg.

(iii) The proof is similar to the proof of (ii).
(iv) For any h ∈ Sκ, a ∈ Zκ and x ∈ κ we have that

(x) (a)Fgh =
(

(x) (gh)
−1
)
a =

=
(
(x)
(
h−1g−1

))
a =

=
((

(x)h−1
)
g−1

)
a =

=
(
(x)h−1

)
(a)Fg =

= (x) ((a)Fg)Fh =

= (x) (a) (FgFh) .

(v) Let k ∈ N and x ∈ κ. Then for any t ∈ κ we have that

(t) (kx)Fg =
(
(t) g−1

)
kx =

=

{
k, if (t) g−1 = x

1, otherwise
=

=

{
k, if t = (x) g

1, otherwise
=

= (t) k(x)g.
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(vi) For any t ∈ κ we have that (t) (1)Fg =
(
(t) g−1

)
1 = 1.

(vii) Let h ∈ Sκ and g 6= h. Then there exists x ∈ κ such that (x) g−1 6= (x)h−1.
Consider the image of 2(x)g−1 under the maps Fg and Fh. Statement (v) and the inequali-

ty (x) g−1 6= (x)h−1 imply that:(
2(x)g−1

)
Fg = 2x 6= 2((x)g−1)h =

(
2(x)g−1

)
Fh.

(viii) For any a, b ∈ Zκ and for any x ∈ κ we have that

(x) (a+ b)Fg =
(
(x) g−1

)
(a+ b) =

=
(
(x) g−1

)
a+

(
(x) g−1

)
b =

= (x) (a)Fg + (x) (b)Fg.

Proof of statements (ix) and (xi) are similar to the proof of (viii). �

For any in�nite cardinal κ and for any bijection g ∈ Sκ de�ne the map F◦g : σNκ →
σNκ as the restriction of the map Fg to the set σNκ. By statement (ii) of Lemma 1,
the map F◦g is well-de�ned and F◦g is a bijection. This and statement (i) of Lemma 1
imply that the map F◦g is an order isomorphism of the poset (σNκ,6). Similarly, de�ne
the map F�g : σZκ → σZκ as the restriction of the map Fg to the set σZκ. And similarly,
statement (iii) of Lemma 1 implies that the map F�g is well-de�ned and F�g is a bijection.

The proof to the next lemma is similar to the proof of Lemma 1.

Lemma 2. For any in�nite cardinal κ and for any bijection g ∈ Sκ statements (iv)−(xi)
of Lemma 1 also hold for F◦g and F�g .

We shall denote by I the identity map of σNκ. It is obvious that I is the unit
element of the semigroup IPF (σNκ). Also by H (I) we shall denote the group of units
of IPF (σNκ). It is clear that α ∈ IPF (σNκ) is an element of H (I) if and only if it is
an order isomorphism of the poset (σNκ,6).

Lemma 3. Let κ be any in�nite cardinal and α ∈ H (I). Then (1)α = 1 and for any

x ∈ κ there exists y ∈ κ such that (kx)α = ky for any positive integer k > 2.

Proof. Consider (1)α. Statement 1 6 (1)α implies that (1)α−1 6 ((1)α)α−1 = 1, so
(1)α = 1.

Now, consider any x ∈ κ and consider (2x)α. Since 1 = (1)α 6= (2x)α, there exists
y ∈ κ such that 2y 6 (2x)α, and the inequality (2y)α−1 6 2x implies that (2x)α = 2y.

Let k > 2 be a positive integer, suppose that for any positive integer n 6 k the
statement of the lemma holds.

For any x ∈ κ consider the image ((k + 1)x)α. There exists z ∈ κ such that
(k + 1)z 6 ((k + 1)x)α. Suppose the contrary that (k + 1)z 
 ((k + 1)x)α for any z ∈ κ.
Since

((k + 1)x)α /∈ {1, 2z, 3z, . . . , kz | z ∈ κ},
there exist two distinct elements z1, z2 ∈ κ such that

1 < (z1) ((k + 1)x)α < k + 1 and 1 < (z2) ((k + 1)x)α < k + 1.

Hence we have that

2z1 6 ((k + 1)x)α and 2z2 6 ((k + 1)x)α,
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and then

(2z1)α−1 6 (k + 1)x and (2z2)α−1 6 (k + 1)x .

Since (2z1)α−1 = 2z′1 and (2z2)α−1 = 2z′2 for some z′1, z
′
2 we have that z′1 = z′2. Then

2z1 = 2z2 and hence z1 = z2, which contradicts z1 6= z2. Thus, ((k + 1)z)α
−1 6 (k + 1)x .

Since ((k + 1)z)α
−1 /∈ {1, 2x, 3x, . . . , kx}, we have that ((k + 1)z)α

−1 = (k + 1)x, and
hence ((k + 1)x)α = (k + 1)z. We shall prove that x = y. The relation 2x < (k + 1)x
implies that (2x)α < ((k + 1)x)α. Since (2x)α = 2y and ((k + 1)x)α = (k + 1)z we have
that 2y < (k + 1)z, so z = y. �

For any x ∈ κ, consider the map πx : σNκ → σNκ de�ned by the formula:

(t) (a)πx =

{
(t) a, if t = x;

1, otherwise,

for any a ∈ σNκ and t ∈ κ.

Lemma 4. Let κ be any in�nite cardinal and α ∈ H (I) such that the equality (2x)α = 2x
holds for any x ∈ κ. Then α is the identity map.

Proof. Let a ∈ σNκ. Since the inequality (a)πx 6 a holds for any x ∈ κ and α is an
order isomorphism, it follows that ((a)πx)α 6 (a)α. By Lemma 3 and by the lemma
assumption we have that ((a)πx)α = (a)πx, so (a)πx 6 (a)α for any x ∈ κ and therefore
a 6 (a)α.

So, we have that a 6 (a)α for any a ∈ σNκ and for any α that satis�es the lemma
assumption. Applying this result to the element (a)α and the map α−1 we have that
(a)α 6 ((a)α)α−1 = a.

The inequalities a 6 (a)α and (a)α 6 a imply that (a)α = a. �

Theorem 1. For any in�nite cardinal κ, the group of units H (I) of the semigroup

IPF (σNκ) is isomorphic to the group Sκ of all bijections of the cardinal κ. Moreover

α ∈ H (I) if and only if α = F◦g for some g ∈ Sκ.

Proof. De�ne the map F : Sκ → H (I) in the following way:

∀g ∈ Sκ (g)F = F◦g ,

Since F◦g is an order automorphism of the poset (σNκ,6) we have that the map F◦g is
an element of the group of units H (I), so F is well-de�ned. Next, we shall show that the
map F is an isomorphism.

Statement (iv) of Lemma 1 implies that the map F is a homomorphism and
statement (vii) of Lemma 1 implies that F is injective.

We shall show that F is surjective. Let α ∈ H (I). Lemma 3 implies that for any
x ∈ κ there exists y ∈ κ such that (2x)α = 2y. We de�ne the map g : κ → κ in the
following way: (x) g = y. Since α is a bijection so is g.

Now consider the composition α ◦ F◦g−1 . Let x ∈ κ. The de�nition of the map g

implies that

(2x)
(
α ◦ F◦g−1

)
=
(
2(x)g

)
F◦g−1
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and statement (v) of Lemma 1 implies that
(
2(x)g

)
F◦g−1 = 2x, so (2x)

(
α ◦ F◦g−1

)
= 2x.

By Lemma 4, α ◦ F◦g−1 is identity map, therefore α =
(
F◦g−1

)−1

= F◦g . �

Theorems 2.3 and 2.20 from [9] and Theorem 1 imply the following corollary.

Corollary 1. For any in�nite cardinal κ every maximal subgroup of the semigroup

IPF (σNκ) is isomorphic to the group Sκ of all bijections of the cardinal κ.

Proposition 2. For any in�nite cardinal κ and for any α ∈ IPF (σNκ) there exists a

unique bijection gα ∈ Sκ such that α = ραF◦gαλα.

Proof. Let α ∈ IPF (σNκ). For the element ρ−1
α αλ−1

α we have that

ραρ
−1
α αλ−1

α λα = εαι,

where ε and ι are idempotents with dom ε = domα and dom ι = ranα, so εαι = α. Since

dom
(
ρ−1
α αλ−1

α

)
= ran

(
ρ−1
α αλ−1

α

)
= σNκ,

we have that ρ−1
α αλ−1

α ∈ H (I). By Theorem 1, for ρ−1
α αλ−1

α there exists a bijection
gα ∈ Sκ such that ρ−1

α αλ−1
α = F◦gα .

Suppose that there exists h ∈ Sκ such that α = ραF◦hλα. Then the equality

ραF◦hλα = ραF◦gαλα

implies that (
ρ−1
α ρα

)
F◦h
(
λαλ

−1
α

)
=
(
ρ−1
α ρα

)
F◦gα

(
λαλ

−1
α

)
.

The de�nition of λα, ρα implies that

ρ−1
α ρα = λαλ

−1
α = I,

so F◦h = F◦gα . Statement (v) of Lemma 1 implies that h = gα. �

The following corollary states that every order isomorphism α in the semigroup
IPF (σNκ) can be uniquely represented as a composition of three basic transformations:
shifting to the origin of coordinates, an order isomorphism of entire σNκ, and then shifting
to the range of α.

Corollary 2. For any in�nite cardinal κ and for any element α ∈ IPF (σNκ) the

representation α = ραF◦gαλα is unique.

For any α ∈ IPF (σNκ) we shall use this notation gα to denote the element of Sκ
that implements this representation α = ραF◦gαλα.

Lemma 5. Let κ be any in�nite cardinal and α, β ∈ IPF (σNκ), then

dαβ = (max{rα, dβ} − rα)F−1
gα + dα;

rαβ = (max{rα, dβ} − dβ)Fgβ + rβ ;

F◦gαβ = F◦gαF
◦
gβ
.
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Proof. By the de�nition of the composition of the partial maps:

dom (αβ) = (ranα ∩ domβ)α−1 =

= (↑rα ∩ ↑dβ)α−1 =

= (↑max{rα, dβ})α−1.

Since α is an order isomorphism we get that

(↑max{rα, dβ})α−1 = ↑
[
(max{rα, dβ})α−1

]
,

and then, by Corollary 2 and by Lemma 1[(vi) , (viii)],

dom (αβ) = ↑
[
(max{rα, dβ})α−1

]
=

= ↑
(

[max{rα, dβ}]λ−1
α

(
F◦gα

)−1
ρ−1
α

)
=

= ↑
(

[max{rα, dβ} − rα + 1]
(
F◦gα

)−1
ρ−1
α

)
=

= ↑
([

(max{rα, dβ} − rα)F−1
gα + 1

]
ρ−1
α

)
=

= ↑
[
(max{rα, dβ} − rα)F−1

gα + dα
]
.

Similarly, by the de�nition of the range of the composition of the partial maps:

ran (αβ) = (ranα ∩ domβ)β =

= (↑rα ∩ ↑dβ)β =

= (↑max{rα, dβ})β.

Since β is an order isomorphism we get that

(↑max{rα, dβ})β = ↑ [(max{rα, dβ})β] ,

and then, by Corollary 2 and by Lemma 1[(vi) , (viii)],

ran (αβ) = ↑ [(max{rα, dβ})β] =

= ↑
(

[max{rα, dβ}]λβF◦gβρβ
)

=

= ↑
(

[max{rα, dβ} − dβ + 1]F◦gβρβ
)

=

= ↑
([

(max{rα, dβ} − dβ)Fgβ + 1
]
ρβ
)

=

= ↑
[
(max{rα, dβ} − dβ)Fgβ + rβ

]
.

We shall prove that

αβ = ραβF◦gαF
◦
gβ
λαβ .

The de�nition of the maps ραβ , F◦gα , F
◦
gβ
, λαβ and the de�nition of the composition of

the partial maps imply that

dom
(
ραβF◦gαF

◦
gβ
λαβ

)
= dom (αβ)

and

ran
(
ραβF◦gαF

◦
gβ
λαβ

)
= ran (αβ) .
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Now consider any a ∈ dom (αβ) and the representation a = dαβ+a−dαβ . Denote a−dαβ
by b, then a has the representation a = dαβ + b. And consider the images of a under the
maps αβ and ραβF◦gαF

◦
gβ
λαβ :

(a)αβ = (dαβ + b)αβ =

=
(
[max{rα, dβ} − rα]F−1

gα + dα + b
)
αβ =

=
(
[max{rα, dβ} − rα]F−1

gα + dα + b
)
ραF◦gαλαρβF

◦
gβ
λβ =

=
(
[max{rα, dβ} − rα]F−1

gα + 1 + b
)
F◦gαλαρβF

◦
gβ
λβ =

= (max{rα, dβ} − rα + 1 + (b)Fgα)λαρβF◦gβλβ =

= (max{rα, dβ}+ (b)Fgα) ρβF◦gβλβ =

= (max{rα, dβ} − dβ + 1 + (b)Fgα)F◦gβλβ =

=
(
[max{rα, dβ} − dβ ]Fgβ + 1 + (b)FgαFgβ

)
λβ =

= [max{rα, dβ} − dβ ]Fgβ + (b)FgαFgβ + rβ =

= rαβ + (b)FgαFgβ ;

(a) ραβF◦gαF
◦
gβ
λαβ = (dαβ + b) ραβF◦gαF

◦
gβ
λαβ =

= (b+ 1)F◦gαF
◦
gβ
λαβ =

=
(
(b)FgαFgβ + 1

)
λαβ =

= (b)FgαFgβ + rαβ .

We have that αβ = ραβF◦gαF
◦
gβ
λαβ , so by Corollary 2 F◦gαβ = F◦gαF

◦
gβ
. �

Corollary 3. For any in�nite cardinal κ and for any elements α, β ∈ IPF (σNκ) the

bijection gαβ is equals to gαgβ.

Corollary 4. Let κ be any in�nite cardinal and ε be the idempotent of the semigroup

IPF (σNκ), then gε = idκ, F◦gε = I.

Remark 2. In the bicyclic semigroup C (p, q) the semigroup operation is determined in
the following way:

piqj · pkql =

 piqj−k+l, if j > k;
piql, if j = k;
pi−j+kql, if j < k,

which is equivalent to the following formula:

piqj · pkql = pi+max{j,k}−jql+max{j,k}−k.

We note that the bicyclic semigroup C (p, q) is isomorphic to the semigroup (N× N, ∗)
which is de�ned on the square N×N of the set of all positive integers with the following
multiplication:

(1) (i, j) ∗ (k, l) = (i+ max{j, k} − j, l + max{j, k} − k) .

To see this, it is su�ciently to check that the map

f : C (p, q)→ N× N : piqj
f7→ (i+ 1, j + 1)

is an isomorphism between semigroups C (p, q) and (N× N, ∗).
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In this paper we shall use the semigroup (N× N, ∗) as a representation of the bicyclic
semigroup C (p, q) and we shall denote the semigroup (N× N, ∗) by B.

For any in�nite cardinal κ, de�ne the semigroup σBκ as the set σNκ×σNκ with the
multiplications ∗κ which is similar to (1):

(2) (a, b) ∗κ (c, d) = (a+ max{b, c} − b, d+ max{b, c} − c) , where a, b, c, d ∈ σNκ.
We can observe that the semigroup σBκ, as de�ned by the multiplication operation

∗κ in (2), is indeed isomorphic to the σ-product of κ many copies of the bicyclic monoid.
For any g ∈ Sκ consider a map Φg : σBκ → σBκ de�ned in the following way: for

any (a, b) ∈ σBκ de�ne

((a, b)) Φg =
(
(a)F◦g , (b)F◦g

)
.

Statements (i) and (ii) of Lemma 1 imply that the map Φg is well-de�ned and Φg is a
bijection.

Check that the map Φg is an automorphism of σBκ. For any (a, b) , (c, d) ∈ σBκ, by
statements (xiii)− (x) of Lemma 1:(

(a, b) ∗κ (c, d)
)
Φg = ((a+ max{b, c} − b, d+ max{b, c} − c)) Φg =

=
(
(a+ max{b, c} − b)F◦g , (d+ max{b, c} − c)F◦g

)
=

= ((a)Fg + max{(b)Fg, (c)Fg} − (b)Fg, (d)Fg + max{(b)Fg, (c)Fg} − (c)Fg) =

= ((a)Fg, (b)Fg) ∗κ ((c)Fg, (d)Fg) =
(
(a)F◦g , (b)F◦g

)
∗κ
(
(c)F◦g , (d)F◦g

)
=

= (a, b) Φg ∗κ (c, d) Φg.

Let κ be any in�nite cardinal and Aut(σBκ) be the group of automorphisms of the
semigroup σBκ. Consider the map Φ: Sκ → Aut (σBκ) for any g ∈ Sκ de�ne (g) Φ = Φg.
Statement (vii) of Lemma 1 implies that Φ is injective. Next, we show that the map Φ
is a homomorphism. For any g, h ∈ Sκ consider the image of their composition: for any
[a, b] ∈ σBκ

([a, b]) (gh) Φ = ([a, b]) Φgh =

=
[
(a)F◦gh, (b)F◦gh

]
.

Statement (iv) of Lemma 1 implies that[
(a)F◦gh, (b)F◦gh

]
=
[
(a)F◦gF◦h , (b)F◦gF◦h

]
,

and since [
(a)F◦gF◦h , (b)F◦gF◦h

]
=
([

(a)F◦g , (b)F◦g
])

Φh =

= ([a, b]) ΦgΦh =

= ([a, b]) (g) Φ (h) Φ,

we have that

([a, b]) (gh) Φ = ([a, b]) (g) Φ (h) Φ,

i.e., Φ is a homomorphism.
For any in�nite cardinal κ consider the semidirect product Sκ nΦ σBκ of the semi-

group σBκ by the group Sκ as the set Sκ × σBκ with the operation:

(g, [a, b]) (h, [c, d]) = (gh, ([a, b]) Φh ∗κ [c, d]) for (g, [a, b]) , (h, [c, d]) ∈ Sκ × σBκ.
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De�ne the map Ψ: IPF (σNκ)→ Sκ nΦ σBκ by the formula:

(α) Ψ =
(
gα,
[
(dα)F◦gα , rα

])
.

The de�nition of dα, rα, gα and F◦gα implies that the map Ψ is well-de�ned.

Theorem 2. For any in�nite cardinal κ the semigroup IPF (σNκ) is isomorphic to the

semidirect product Sκ nΦ σBκ of the semigroup σBκ by the group Sκ.

Proof. Consider the map Ψ. Corollary 2 implies that Ψ is a bijection. We shall prove
that Ψ is also a homomorphism.

For any α, β ∈ IPF (σNκ) we have that (αβ) Ψ =
(
gαβ ,

[
(dαβ)F◦gαβ , rαβ

])
. Corol-

lary 3 and Lemma 5 imply that(
gαβ ,

[
(dαβ)F◦gαβ , rαβ

])
=

=
(
gαgβ ,

[(
(max{rα, dβ} − rα)F−1

gα + dα
)
F◦gαF

◦
gβ
, (max{rα, dβ} − dβ)Fgβ + rβ

])
.

Lemma 1, the de�nition of the operation ∗κ, and the de�nition of the map Φ imply that(
gαgβ ,

[(
(max{rα, dβ} − rα)F−1

gα + dα
)
F◦gαF

◦
gβ
, (max{rα, dβ} − dβ)Fgβ + rβ

])
=

=
(
gαgβ ,

[
max{(rα)Fgβ , (dβ)Fgβ} − (rα)Fgβ + (dα)FgαFgβ ,max{(rα)Fgβ ,

(dβ)Fgβ} − (dβ)Fgβ + rβ
])

=

=
(
gαgβ ,

[
(dα)FgαFgβ , (rα)Fgβ

]
∗κ
[
(dβ)Fgβ , rβ

])
=

=
(
gαgβ ,

[
(dα)F◦gαF

◦
gβ
, (rα)F◦gβ

]
∗κ
[
(dβ)F◦gβ , rβ

])
=

=
(
gαgβ ,

([
(dα)F◦gα , rα

])
Φgβ ∗κ

[
(dβ)F◦gβ , rβ

])
=

=
(
gα,
[
(dα)F◦gα , rα

]) (
gβ ,
[
(dβ)F◦gβ , rβ

])
= (α) Ψ (β) Ψ.

�

For any α ∈ IPF (σNκ), let
(
gα,
[
(dα)F◦gα , rα

])
= (α) Ψ be the image of the element

α by the isomorphism Ψ: IPF (σNκ)→ Sκ nΦ σBκ which is de�ned above the proof of
Theorem 2.

Every inverse semigroup S admits the least group congruence Cmg (see [27, Secti-
on III]):

sCmgt if and only if there exists an idempotent e ∈ S such that se = te.

Proposition 3. For any in�nite cardinal κ, any element α ∈ IPF (σNκ) and for any

idempotent ε ∈ IPF (σNκ) we have:

(αε) Ψ =
(
gα,
[
(dα)F◦gα , rα

])
(idκ, [dε, dε]) =

=
(
gα,
[
max{rα, dε} − rα + (dα)F◦gα ,max{rα, dε}

])
;

(εα) Ψ = (idκ, [dε, dε])
(
gα,
[
(dα)F◦gα , rα

])
=

=
(
gα,
[
(max{dε, dα})F◦gα , (max{dε, dα})F◦gα − (dα)F◦gα + rα

])
.
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Proof. By Corollary 4, gε is the identity permutation, i.e., gε = idκ and F◦gε = I. Since
dom ε = ran ε we have that dε = rε and then (dε)F◦gε = dε = rε, so(

gε,
[
(dε)F◦gε , rε

])
= (idκ, [dε, dε]) .

Then the de�nition of the multiplication in SκnΦσBκ completes the proof of the proposi-
tion. �

The following theorem describes the least group congruence on the semigroup
IPF (σNκ).

Theorem 3. Let κ be any in�nite cardinal. Then αCmgβ in the semigroup IPF (σNκ)
if and only if

gα = gβ and (dα)F◦gα − rα = (dβ)F◦gβ − rβ .

Proof. Fix an idempotent ε in IPF (σNκ). By Proposition 3,(
gα,
[
(dα)F◦gα , rα

])
(idκ, [dε, dε]) =

(
gα,
[
max{rα, dε} − rα + (dα)F◦gα ,max{rα, dε}

])
,(

gβ ,
[
(dβ)F◦gβ , rβ

])
(idκ, [dε, dε]) =

(
gβ ,
[
max{rβ , dε} − rβ + (dβ)F◦gβ ,max{rβ , dε}

])
,

so the equality αε = βε holds if and only if

gα = gβ and (dα)F◦gα − rα = (dβ)F◦gβ − rβ .

�

For any in�nite cardinal κ, by σZκ+ we shall denote the group (σZκ,+). Let
Aut(σZκ+) be the group of automorphisms of the group σZκ+. Consider the map

Θ: Sκ → Aut
(
σZκ+

)
: for any g ∈ Sκ de�ne (g) Θ = F�g .

Statements (i) , (iii) and (viii) of Lemma 1 imply that for any g ∈ S the map F�g is
an isomorphism of the group σZκ+, so the map Θ is well-de�ned. Next, statements (iv)
and (vii) of Lemma 1 imply that the map Θ is an injective homomorphism.

Consider the semidirect product Sκ nΘ (σZκ,+) as the set Sκ × σZκ with the
operation

(g,m) (h, n) = (gh, (m)F�h + n) .

Theorem 4. For any in�nite cardinal κ the quotient semigroup IPF (σNκ) /Cmg is

isomorphic to the semidirect product Sκ nΘ (σZκ,+) of the group (σZκ,+) by the group

Sκ.

Proof. De�ne the map Υ: IPF (σNκ) → Sκ nΘ (σZκ,+) in the following way: for any
α ∈ IPF (σNκ) we put

(α) Υ =
(
gα, (dα)F◦gα − rα

)
.

Since a− b ∈ σZκ for any a, b ∈ σNκ we have that Υ is well-de�ned.
For any α, β ∈ IPF (σNκ) by the de�nition of Υ we have that

(αβ) Υ =
(
gαβ , (dαβ)F◦gαβ − rαβ

)
,

and by Lemma 5

(αβ) Υ=
(
gαgβ ,

(
(max{rα, dβ}−rα)F−1

gα + dα
)
F◦gαF

◦
gβ
− (max{rα, dβ}−dβ)Fgβ−rβ

)
,
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then, by statements (viii) and (ix) of Lemma 1

(αβ) Υ =
(
gαgβ , (max{rα, dβ})Fgβ − (rα)Fgβ + (dα)FgαFgβ − (max{rα, dβ})Fgβ+

+ (dβ)Fgβ − rβ
)

=

=
(
gαgβ , (dα)FgαFgβ − (rα)Fgβ + (dβ)Fgβ − rβ

)
=

=
(
gα, (dα)F◦gα − rα

) (
gβ , (dβ)F◦gβ − rβ

)
=

= (α) Υ (β) Υ,

and hence Υ is a homomorphism.
Show that the map Υ is surjective. For any (g, z) ∈ Sκ × σZκ, consider the maps

a, b : κ→ N. For any x ∈ κ:

(x) a =


(x) z, if (x) z > 0

1, if (x) z = 0

0, if (x) z < 0

and (x) b =


0, if (x) z > 0

1, if (x) z = 0

− (x) z, if (x) z < 0.

We have that a, b ∈ σNκ and z = a− b. Now we consider α ∈ IPF (σNκ) such that

gα = g,

dα = (a)
(
F◦g
)−1

,

rα = b.

Then

(α) Υ =
(
gα, (dα)F◦gα − rα

)
=

=
(
g,
(

(a)
(
F◦g
)−1
)
F◦g − b

)
=

= (g, a− b) =

= (g, z) ,

so Υ is surjective.
Also, Theorem 3 implies that αCmgβ in IPF (σNκ) if and only if (α) Υ = (β) Υ. This

implies that the homomorphism Υ generates the congruences Cmg on IPF (σNκ). �

Every inverse semigroup S admits a partial order:

a 4 b if and only if there exists e ∈ E (S) such that a = be.

So de�ned order is called the natural partial order on S. We observe that a 4 b in an
inverse semigroup S if and only if a = fb for some f ∈ E (S) (see [23, Lemma 1.4.6]).

This and Proposition 3 imply the following proposition, which describes the natural
partial order on the semigroup IPF (σNκ).

Proposition 4. Let κ be any in�nite cardinal and let α, β ∈ IPF (σNκ). Then the

following conditions are equivalent:

(i) α 4 β;
(ii) gα = gβ, (dα)F◦gα − rα = (dβ)F◦gβ − rβ and dβ 6 dα in the poset (σNκ,6);

(iii) gα = gβ, (dα)F◦gα − rα = (dβ)F◦gβ − rβ and rβ 6 rα in the poset (σNκ,6).
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An inverse semigroup S is said to be E-unitary if ae ∈ E (S) for some e ∈ E (S)
implies that a ∈ E (S) [23]. E-unitary inverse semigroups were introduced by Siat�o in
[28], where they were called �proper ordered inverse semigroups�.

Proposition 5. For any in�nite cardinal κ, the inverse semigroup IPF (σNκ) is

E-unitary.

Proof. Let α ∈ IPF (σNκ). Suppose that αε is an idempotent for some idempotent
ε ∈ IPF (σNκ). Then Proposition 3 and the de�nition of idempotents imply that gα = idκ
and dα = (dα)Fgα = rα, so α is an idempotent. �

An inverse semigroup S is called F -inverse, if the Cmg-class sCmg of each element s
has the top (biggest) element with the respect to the natural partial order on S [24].

Proposition 6. For any in�nite cardinal κ, the semigroup IPF (σNκ) is an F -inverse
semigroup.

Proof. Let α ∈ IPF (σNκ). Consider an element β ∈ IPF (σNκ) such that

gβ = gα,

dβ = dα −min{dα, (rα)
(
F◦gα

)−1}+ 1,

rβ = rα −min{(dα)F◦gα , rα}+ 1.

We have that min{dα, (rα)
(
F◦gα

)−1} ∈ σNκ and min{dα, (rα)
(
F◦gα

)−1} 6 dα, so dβ ∈
σNκ. Similar rβ ∈ σNκ, so β is well-de�ned. Also, we have that gβ = gα and

(dβ)F◦gβ−rβ =
(
dα−min{dα, (rα)

(
F◦gα

)−1}+1
)
F◦gα−

(
rα−min{(dα)F◦gα , rα}+1

)
=

= (dα)F◦gα −min{(dα)F◦gα , rα}+ 1− rα + min{(dα)F◦gα , rα} − 1 =

= (dα)F◦gα − rα,
then Theorem 3 implies that βCmgα.

Now, for any γ ∈ IPF (σNκ), such that γCmgα, we consider the idempotent ε with
dε = rγ and consider the product (β) Ψ (ε) Ψ. By Proposition 3

(β) Ψ (ε) Ψ =
(
gβ ,
[
(dβ)F◦gβ , rβ

])
(idκ, [dε, dε]) =

=
(
gβ ,
[
max{rβ , dε} − rβ + (dβ)F◦gβ ,max{rβ , dε}

])
=

=
(
gβ ,
[
max{rβ , rγ} − rβ + (dβ)F◦gβ ,max{rβ , rγ}

])
.

Since γCmgα, by Theorem 3 we have that gγ = gα and rγ−(dγ)F◦gγ = rα−(dα)F◦gα ,
then for any x ∈ κ

(x) (max{rβ , rγ}) = (x)
(
max{rα −min{(dα)F◦gα , rα}+ 1, rγ}

)
=

=

{
max{(x) rα − (x) rα + (x)1, (x) rγ}, if (x) (dα)F◦gα > (x) rα

max{(x) rα − (x) (dα)F◦gα + (x)1, (x) rγ}, otherwise
=

=

{
max{1, (x) rγ}, if (x) (dα)F◦gα > (x) rα

max{(x) rγ − (x) (dγ)F◦gγ + 1, (x) rγ}, otherwise
=

= (x) rγ ,
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so max{rβ , rγ} = rγ . Also

max{rβ , rγ} − rβ + (dβ)F◦gβ = rγ − rβ + (dβ)F◦gβ =

= rγ − rα + (dα)F◦gα =

= (dγ)F◦gγ ,
so (

gβ ,
[
max{rβ , rγ} − rβ + (dβ)F◦gβ ,max{rβ , rγ}

])
=
(
gγ ,
[
(dγ)F◦gγ , rγ

])
= (γ) Ψ.

The equality (β) Ψ (ε) Ψ = (γ) Ψ implies that γ = βε, so γ 4 β. This means that
the element β is the biggest element in the Cmg-class of the element α in IPF (σNκ). �

Lemma 6. Let κ be any in�nite cardinal and let C be a congruence on the semigroup

IPF (σNκ) such that εCι for some two distinct idempotents ε, ι ∈ IPF (σNκ). Then ςCυ
for all idempotents ς, υ of IPF (σNκ).

Proof. We observe that without loss of generality we may assume that ε 4 ι where
4 is the natural partial order on the semilattice E(IPF (σNκ)). Indeed, if ε, ι ∈
E(IPF (σNκ)) then εCι implies that ε = εεCιε, and since the idempotents ε and ι are
distinct in IPF (σNκ) we have that ιε 4 ε.

Now, the inequality ε 4 ι implies that dom ε ⊆ dom ι. Next, we de�ne partial map
α : σNκ ⇀ σNκ in the following way:

domα = σNκ, ranα = dom ι and (z)α = z + dι − 1, for any z ∈ domα.

The de�nition of α implies that αια−1 = αα−1 = I and α−1α = ι, and moreover, we
have that (

αεα−1
) (
αεα−1

)
= αε

(
α−1α

)
εα−1 =

= αειεα−1 =

= αεεα−1 =

= αεα−1,

which implies that αεα−1 is an idempotent of IPF (σNκ) such that αεα−1 6= I.
Thus, it was shown that there exists a non-unit idempotent ε∗ in IPF (σNκ) such

that ε∗CI. This implies that ε0CI for any idempotent ε0 of IPF (σNκ) such that ε∗ 4
ε0 4 I. Since ε∗ 6= I we have that dε∗ 6= 1, so there exists x ∈ κ such that (x) dε∗ 6= 1,
thus 2x 6 dε∗ . Consider an idempotent εx in IPF (σNκ) such that dεx = 2x. Then
dεx = 2x 6 dε∗ implies that ε∗ 4 εx, so εxCI.

Fix an arbitrary y ∈ κ \ {x}. De�ne a bijection on the set κ in the following way:

(x) g = y, (y) g = x and (t) g = t, for t ∈ κ \ {x, y}.

Next, consider the map F◦g as an element of IPF (σNκ). The de�nition of g implies that

g−1 = g, then, by Lemma 1(i) we have that
(
F◦g
)−1

= F◦g−1 = F◦g and then

F◦g IF◦g = F◦gF◦g = F◦g
(
F◦g
)−1

= I.
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The calculations (
F◦g εxF◦g

)
Ψ =

(
F◦g
)

Ψ (εdx) Ψ
(
F◦g
)

Ψ =

= (g, [1,1]) (idκ, [2x, 2x]) (g, [1,1]) =

= (g, [2x, 2x]) (g, [1,1]) =

=
(
gg,
[
(2x)F◦g , (2x)F◦g

])
=

=
(
idκ,

[
2(x)g, 2(x)g

])
=

= (idκ, [2y, 2y]) =

= (εy) Ψ

shows that F◦g εxF◦g = εy, where εy is an idempotent in IPF (σNκ) such that dεy = 2y.
Then

εy =
(
F◦g εxF◦g

)
C
(
F◦g IF◦g

)
= I

implies that εyCI.
The above arguments imply that εxCI for every idempotent εx ∈ IPF (σNκ) such

that εx is the identity map of the principal �lter ↑2x of the poset (σNκ,6), x ∈ κ. Now,
�x an idempotent ζ in IPF (σNκ) and consider the set A = {x ∈ κ | (x) dζ 6= 1}. Since
dζ ∈ σNκ the set A is �nite, so there exists k ∈ N such that A = {x1, x2, . . . , xk} for
some x1, x2, . . . , xk ∈ κ. Consider the idempotent εA = εx1 . . . εxk . Since C is congruence,
εxiCI for any xi ∈ A and A is �nite we have that (εx1

. . . εxk)CI. The de�nition of εA
and the semigroup operation of IPF (σNκ) imply that dεA = 2A, where

(t) 2A =

{
2 if t ∈ A
1 otherwise.

We de�ne the partial map γ : σNκ ⇀ σNκ in the following way:

dom γ = σNκ, ran γ = ↑2A and (z) γ = z + 2A − 1, for any z ∈ dom γ.

The de�nition of γ implies that that γγ−1 = I and γ−1γ = εA. For any positive integer
n ∈ N consider the idempotent(

γ−1
)n
γn = γ−1 . . . γ−1︸ ︷︷ ︸

n-times

γ . . . γ︸ ︷︷ ︸
n-times

.

Since εA = γ−1γCI we have that γ−1γ−1γγCγ−1γ = εA and γ−1γ−1γγCI, so by induction(
γ−1

)n
γnCI, for any n ∈ N. Also, by induction, we have that d(γ−1)nγn = (n+1)A, where

(t) (n+ 1)A =

{
n+ 1 if t ∈ A
1 otherwise,

for any n ∈ N. Thus, we have that
dζ 6 d(γ−1)mγm = (m+ 1)A,

where m = max{(x) dζ | x ∈ κ}, implies that
(
γ−1

)m
γm 4 ζ, so ζCI. �

Lemma 7. Let κ be any in�nite cardinal and let C be a congruence on the semigroup

IPF (σNκ) such that αCβ for some non-H -equivalent elements α, β ∈ IPF (σNκ). Then
εCι for all idempotents ε, ι of IPF (σNκ).
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Proof. Since α and β are not-H -equivalent in IPF (σNκ) we have that either αα−1 6=
ββ−1 or α−1α 6= β−1β (see [23, p. 82]). Then Proposition 4 from [23, Section 2.3] implies
that αα−1Cββ−1 and α−1αCβ−1β and hence the assumption of Lemma 6 holds. �

Lemma 8. Let κ be any in�nite cardinal and let C be a congruence on the semi-

group IPF (σNκ) such that αCβ for some two distinct H -equivalent elements α, β ∈
IPF (σNκ). Then εCι for all idempotents ε, ι of IPF (σNκ).

Proof. By Proposition 1(vi) the semigroup IPF (σNκ) is simple and then Theorem 2.3
from [9] implies that there exist µ, ξ ∈ IPF (σNκ) such that f : Hα → HI : χ 7→ µχξ
maps α to I and β to γ 6= I, respectively, which implies that ICγ. Since γ is an element of
the group of units of the semigroup IPF (σNκ), by Theorem 1, γ = F◦gγ and since γ 6= I
we have that gγ 6= idκ, so there exists x ∈ κ such that (x) gγ 6= x. Put ε as the identity
map with dε = 2x. Since C is a congruence on the semigroup IPF (σNκ) and γ ∈ HI we
have that

ε = εε = εIεCεγε.
Proposition 3 implies that

(εγε) Ψ =
(
gγ ,
[
max{(2x)F◦gγ , 2x},max{(2x)F◦gγ , 2x}

])
.

By Lemma 1(v) we have that (2x)F◦gγ = 2(x)gγ 6= 2x, this and the de�nition of elements

2x and 2(x)gγ imply that max{(2x)F◦gγ , 2x} 6= 2x, so

rεγε = max{(2x)F◦gγ , 2x} 6= 2x = rε,

then by Proposition 1(v), εγε and ε are non-H -equivalent elements in IPF (σNκ). Next,
we apply Lemma 7. �

Theorem 5. For any in�nite cardinal κ every non-identity congruence C on the semi-

group IPF (σNκ) is group.

Proof. For every non-identity congruence C on IPF (σNκ) there exist two distinct
elements α, β ∈ IPF (σNκ) such that αCβ. If αH β in IPF (σNκ) then by Lemma 7 all
idempotents of the semigroup IPF (σNκ) are C-equivalent, otherwise by Lemma 8 we
get the same. Thus, by Lemma II.1.10 of [27] the quotient semigroup IPF (σNκ) /C has
a unique idempotent and hence it is a group. �
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